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Universality in Sandpiles, Interface Depinning, and Earthquake Models
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Recent numerical results for a model describing dispersive transport in ricepiles are explained
by mapping the model to the depinning transition of an elastic interface that is dragged at one
end through a random medium. The average velocity of transport vanishes with systerh size
as(v) ~ L>"P? ~ L7923 and the avalanche size distribution exponent 2 — 1/D = 1.55, where
D = 2.23 from interface depinning. We conjecture that the purely deterministic Burridge-Knopoff
“train” model for earthquakes is in the same universality class. [S0031-9007(96)00517-0]

PACS numbers: 64.60.Lx, 05.60.+w, 46.30.Pa, 68.35.Fx

Evidence for self-organized criticality (SOC) [1] has and with our simulation results. Finally, we conjecture that
been found in controlled experiments on the granulathe Burridge-Knopoff [6] train model studied by de Sousa
dynamics of ricepiles [2]. By slowly adding elongated Vieira [7], a purely deterministic mechanical model with
rice grains in a narrow gap between two clear platesno embedded randomness of a block-spring chain pulled
Fretteet al. found that the ricepile evolves to a stationary at one end, is also in the same universality class.
angle of repose where on average one grain of rice falls The Oslo sandpile model is defined as follows: In
off the edge for every grain added at the wall. Thereaftea one-dimensional system of siZe an integer vari-
transport of the rice through the pile occurs in terms ofable i(x) gives the height of the pile at position and
bursts with no characteristic scale other than the system(x) = h(x) — h(x + 1) is the local slope. The bound-
size. The rice pile exhibits SOC. Subsequently, theary condition ish(L + 1) = 0. Grains are dropped at
Oslo group has investigated tracer dispersion in the SO& = 1 until the slopez(1) > z¢(1); then the site topples
pile by coloring rice grains. Christensen al. [3] found  and one grain is transferred to the neighboring site on the
that the average transport velocity of rice vanishes asightx = 2. At each subsequent time step, all sitesith
the system size diverges, and correspondingly that the(x) > z¢(x) topple in parallel. In a toppling event at site
distribution of transit times through the pile was broad.x, h(x) — h(x) — 1 andh(x + 1) — h(x + 1) + 1. No
They proposed a “sandpile” model, herein referred tograins are added to the pile until the avalanche resulting
as the Oslo model, to phenomenologically describe theifrom adding a sand grain ends and the system reaches a
experiments on one-dimensional ricepiles. stable state witly(x) = z°(x) for all x. The key ingre-

We establish that a broad universality class exists fodient making this model different from previous sandpile
SOC phenomena. The Oslo sandpile model is mappeshodels [1,8] is that the critical slope$(x) are dynamical
exactly to a model for interface depinning where the in-variables chosen randomly to be 1 or 2 every time a site
terface is slowly pulled at one end through a medium withtopples. The annealed randomness describes in a simple
guenched random pinning forces. The height of the interway the changes in the local slopes observed in the rice-
face maps to the number of toppling events in the sandpile experiments [3].
pile model. The annealed noise of the random thresholds It is useful to define a local force
for toppling sand grains maps to quenched pinning forces
for the interface. Thus a problem of dispersive transport F(x,1) = h(x,1) = h(x + 1,1) = n(x,H),

[4] in a granular medium can be recast in terms of the l=x=1L, (1)
somewhat better understood problem of interface depin-

ning [5]. This leads to a number of scaling relations ex-where n are the randomly distributed critical slopes,
pressing critical exponents in the Oslo sandpile model in.e., n(x,H) = z°(x) which take integer values 1 or 2
terms of the avalanche dimensidh. This quantity is with equal probability. The boundary condition/igl. +
equal to the avalanche dimension for a uniformly drivenl, ) = 0 for all times. At each time step— ¢ + 1,
interface, which has been determined numerically to ball unstable sites wherE(x, r) > 0 topple. The quantity

D = 223 * 0.03 [5]. We also predict that the avalanche H(x, ¢) in Eq. (1) is the total number of toppling events at
size distribution exponent = 2 — 1/D = 1.55 in the sitex up to times. The threshold slope at a site is chosen
Oslo model, and that the average velocity of transport vanrandomly after each toppling event at that site; hence
ishes agv) ~ L>"P? ~ L7923 when time is measured in 7(x, H) is an uncorrelated quenched random variable in
units of the number of sand grains added. These predidthe space of(x, H). The dynamics is central seeding;
tions agree with previous numerical simulation results [3]when all sites have reached a stable state whér¢ < 0,
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a grain of sand is added at site k(1) — #(1) + 1, the distribution of avalanche sizes Since the dynam-
t — t + 1, and a new avalanche starts. It is easy to seg&s is different, though, the critical exponents referring to
that the sandpile dynamics of toppling events is traced oypropagating avalanches are different, i.e., the dynamical
by an advancing interface where the height profile of theexponent, the fractal dimension of unstable siiés and
interface,H (x, t), is the accumulated number of topplings. the average growth of activityy. Note that the bound-
When the initial condition is an empty sandpile, ary driven interface combines certain aspects of these two
h(x,t = 0) = 0 for all x, and the dynamics is centrally cases for uniform driving. The dynamics occurs in paral-
seeded, the number of sand grainsxatat time ¢ is lel with all unstable sites advancing as for constant force
the local gradient in the number of topplings that havedepinning. The criticality is self-organized as in the ex-

occurred up to that time, tremal constant velocity case.
The size of an avalanchse, for the interface is the
h(x,t) = H(x — 1,1) = H(x,1). 2) integrated area during the burst resulting from pulling the

Fnd once. It is the difference between the final height
profile after the pull and the initial one before the pull. In
the Oslo models is the total number of toppling events

As a result, Eq. (1) can be rewritten as a dynamica
equation for an interface with height profit&(x, 1),

F(x,t) = V2H(x,t) — n(x, H), l=x=L, (3 which occur after adding one grain of sand at the origin.
As for the case of uniform driving, the distribution of
where the discretized Laplacid@WH(x) = H(x — 1) —  avalanche sizes is observed numerically to obey a scaling

2H(x) + H(x + 1). The interface dynamics is that for form [3]
all x whereF(x,t) >0, H(x,t + 1) = H(x,t) + 1 and s D
the site advances; otherwidé(x,r + 1) = H(x,?) and P(s) ~s77G(s/L7), (4)
the site is pinned. The boundary condition AL +  which is a power law with a cutoff that grows with system
1,t) = H(L,t) for all t. Whenever the interface becomessizes,, ~ L?, whereD is the avalanche dimension. We
stuck so thatF(x) =0 for all x, it is pulled at the now argue thaD for the boundary driven interface, and
boundary at the origin(0,¢ + 1) = H(0,¢) + 1. This hence for the Oslo sandpile model, is the same as for
is an example of depinning of an elastic interface whichthe uniformly driven interface. The amount of motion
has been widely studied [5,9,10]. The difference here isequired to reach the depinning transition starting from
that rather than being driven uniformly the interface isan arbitrary configuration scales &$ since it involves
driven by being slowly dragged at the boundary. Aftera system wide avalanche. During the transient approach
a sufficient amount of motion has occurred, the interfaceéo the depinning transition, the correlation length is less
approaches a self-organized critical depinning transitionthan the system size. Depinning occurs precisely when
In the critical state, information about the pull at one endevery site has moved at least once. At this instant, but not
can be communicated throughout the entire length of théefore, it is possible to communicate information from
interface. This occurs when the interface finds an averagie boundaries throughout the one-dimensional system.
curvature which precisely balances the pinning forcesThus the scaling of the amount of motion for the SOC
This corresponds to the sandpile reaching its critical anglattractor to be reached is independent of the boundary
of repose, where it can transfer sand out from the origircondition, i.e., whether we have boundary driven SOC
to the edge of the pile. or extremal, uniformly driven SOC. It depends only on
In order to proceed, we briefly review some known re-the anomalous diffusive dynamics [5,11] of avalanches.
sults for interface depinning with uniform driving [5]. The This hypothesis is confirmed by numerical simulations of
depinning transition can be reached either by applying ghe Oslo model givind = 2.25 = 0.10 [3] and extremal
constant force or constant velocity constraint. In constaninterface depinning giving@® = 2.23 = 0.03 [5].
force depinning a uniform force is applied to all sites, i.e., Since the avalanche is a compact object, the size of an
add a termF,, to the right hand side of Eqg. (3), and ad- avalanches ~ rr,, wherer is the spatial extent of the
vance all unstable sites with > 0 in parallel. WhenF,, avalanche along the internal interface coordinate and
is tuned toF. a depinning transition occurs. The constantis the maximum extension in the direction of growth. If
velocity depinning transition is an attractor for an extremalthere is only one length scale for motion in the direction
dynamics where the unique site along the interface with thef growth, thenr, ~ rX, with the roughness exponent
largest forceF'(x, t) is advanced. Now the dynamics oc- defined by the divergence of interfacial height fluctuations
curs in series with one site advancing at each step rathevith system sizev(L) ~ LX. We numerically measured
than in parallel. The extremal model self-organizes to thed = r,, the maximum number of topplings at a site vs
critical state of constant velocity depinning. As explainedr for 107 avalanches in the Oslo model and fouHd~
in Ref. [5], the critical exponents relating to the physical r!>3*%% in excellent agreement with our predictign=
extents of complete avalanches are the same in the cof — 1. Since the height of the sandpie~ dH /dx, the
stant force and constant velocity cases, i.e., the roughnessughness exponent of the surface of the sandpile model
exponenty, the avalanche dimensiadp, the exponent for is ypie = x — 1 =D — 2 = 0.23.
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The distribution of avalanche sizes for the Oslo modelmust be added slower and slower as the system size is
however, is different from the uniformly driven interface increased in order to stay at criticality.
due to a conversion law. From Eq. (4), the average size Burridge and Knopoff [6] introduced a mechanical
of an avalanche diverges with the system sizgsas~  model for the stick-slip dynamics of earthquake faults. It
LM” wherey = vD(2 — 7). Since on average each site consists of blocks connected by harmonic springs sliding
must topple exactly once in the critical state in order towith friction. The first element of the block-spring chain

transport the added grain of sand to the boundary, is connected to a driver that moves at constant velocity.
It is referred to as the train model [7]. de Sousa Vieira
(=L and 7=2-1/D. ()  found that the train model exhibits SOC unlike some

. _ L . . other block-spring systems [12] where every element is

rL;Selrr:'? vlv)lth_ tﬁgs%év:sgrrggm\:/t;u;islss!jn f r(s)e ?gi;i‘%fre' connected to the driver. The train model is completely
e T . deterministic and containso quenched randomness nor

the Oslo model. For the boundary driven interface, thlsrandomness in the initial conditionsThe equation of

conservation law expresses the constraint that on average . - e " o o et block U i

each site must advance one step when the end is draggeé) P 4 A

one step. The value = 1.55 for the boundary driven .. U;

interfacep is far fromr = 1.13 [5] measured Whe¥1 the in- Uj=Ujr1 = 2Uj + Uj-r — q)<,,_c> (7)

terface is d.rlven uniformly either at constant force or CON1y - static friction forceD(0) = 1, which is weakened at

stant velocity. These latter systems do not obey Eq. (5). finite velocity

Christensenet al.[3] measured the average velocity .
(v) of tracer grains in transit through the pile. It was (T /v,) = SQF(U) ®)
found to vanish agv) ~ L793*%1 in the model. The ¢ 1+ U/v,

time unit used to measure velocity was the number OtI'he equation of motion is valid if the sum of elastic forces
sand grains added. Based on another conservation Ia\pé, greater than the static friction force otherwié((; _

it was argued_ that the average velqcity in this'time unlt() The train model has precisely one positive Lyapunov
scales as the inverse width of the height fluctuations of th%.xponent giving chaotic behavior [13]. The blocks in
i i ~ . ~ ~ Xbpile i )
Zzzgﬂgi' tlﬁz’<rlr)1>o dell/c V(V)%le%t)el ée ;rétezhliitgcgu;rsoz ethis system exhibit stick-slip dynamics with a power law
bulk phase where the rgins r¥everpmove and an activ(mStribUtion of event sizes and extents. A sum rule for the
P . 9 oments of slipping events corresponding to Eq. (5) holds
surface zone of W'dtm.’l’“e 'Where transport takes place. since on average every block must move with an average
The collection c_)f grains in the active zone moves onvelocity equal to the pulling speed, but this motion takes
average as an incompressible object upon addition of Blace intermittently in terms of bursts [7]
f’a;‘iggi‘l% ffﬂg”? resUltpire ;D — 2, we fr(e'?rI\C:h We conjecture that the train model is in the same
v ical simulati N rtletasona € agreement wi € universality class as the Oslo model and boundary driven
numerical simutation resutts. interface depinning. Since the model is dissipative and

It is Important to notice that the time unit for the exhibits SOC, it is reasonable that a dissipative térm
Oslo model is different from the usual time unit used for . : .
ould dominate the acceleration term in Eq. (7) at long

!nterface depinning since each sand grain dropped reSUI%ngth and time scales. After a slip event, the blocks come
N many update steps, equal on average to the average rest in a new configuration with a random elastic force
duration of an avalanchg). In accordance with Eq. (4),

N . increment at each site required to induce a subsequent
we propose that the distribution of avalanche durations, _. . L !
is given by slip event or toppling. This is the result of the chaotic

dynamics, and in a coarse grained picture can be described
P(t) ~ 7 "G(t/L7), (6) by quenched random thresholds for static fricttb(0) in

the space of position and events, which corresponds to
where the cutoff in avalanche durations ~ L?, and 7(x,H). Such an equivalence of a deterministic model
from conservation of probability(7, — 1) = D(r — 1).  with no embedded randomness which is chaotic with a
Thus, from Eq. (6)¢) is diverging in the thermodynamic stochastic model also occurs between the deterministic
limit L — o« as (t) ~ L:@~7) ~ pPU=nD+z _ pz+1=D  Kyramoto-Shivashinsky [14] equation and the Langevin
Measuring time in the simulation in terms of update stepsequation proposed by Kardar, Parisi, and Zhang [15].
t, rather than sand added, we fitw) ~ L'"* ~ L7 %42, Indeed, numerical simulations of the train model give
We numerically measured the duration of avalanches; — 1 =06 and g =1+ D(r — 1) =D =22 [7],
t vs r wheret ~ r?, for 10’ avalanches in the Oslo which agree with the critical exponents measured for the
model and foundz = 1.42 = 0.03 which is the same Oslo model and support our conjecture.
as Leschhorn’s numerically measured vatue: 1.42 for Our results imply that broad universality classes in
the constant force depinning transition [10]. Since theself-organized critical phenomena exist. In particular we
average duration of avalanches is diverging withsand establish that the Oslo sandpile model for transport in
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