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Size Scaling in the Decay of Metastable Structures
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The rate of thermal decay of special fabricated structures on Si(111) has been measured for stru
sizes ranging from 28 to 50 Å high. The mechanism of the decay via motion of individual ste
has been observed directly using scanning tunneling microscopy. The results are consistent with
scaling predictions of theory, and show that mass transport occurs via a mechanism in which ma
conserved locally. In addition, the theory yields a quantitative prediction of the measured rates with
adjustable parameters when previously measured equilibrium values for step-step interactions and
wandering are used. [S0031-9007(96)00789-2]

PACS numbers: 68.35.Fx, 61.16.Ch, 66.30.Qa, 68.35.Bs
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As the size scale of fabricated structures becom
smaller and smaller, it is increasingly important to u
derstand the mass transport governing the formation
stability of such metastable structures. Mullins describ
the essential physics of the decay of structures on surf
using a continuum model that is physically appropriate
diffusion on an isotropic surface, i.e., a surface above
roughening temperature [1,2]. However, under most c
ditions of physical interest, the surface is well below t
roughening temperature, which means that any struct
on the surface are appropriately described as a serie
discrete steps of the crystallographic layers of the mate
Gruber and Mullins [3] and later many others [4–6] re
ognized the importance of steps in the decay of structu
and there is now a useful mesoscopic-scale descriptio
surface mass transport that can be parametrized in term
the measurable equilibrium properties of steps [4–8].
this work, we test the validity of this mesoscopic theory
using scanning tunneling microscopy (STM) to meas
the decay of specially fabricated structures on Si(1
which consist of “bunches” of steps with controlled siz
ranging from an average of 9 to 16 steps per bunch.
are able to make a quantitative comparison with the
because previous measurements of the equilibrium p
erties of the steps at the decay temperature provide va
of the mesoscopic step parameters required for the the
the step-step interaction coefficient and the step mob
or the alternative terrace diffusion constant [9–12].

Previous experimental studies [13–15] have used
continuum analysis of Mullins to investigate the decay
sinusoidal profiles. In this study, we have investiga
the thermal relaxation of a slightly different geometr
step bunched structures. The key difference between
profiles and the previously studied sinusoids is that in
case all steps are aligned in the same direction. T
provides distinct advantages for comparing experim
to theory, since we do not require a description of s
and antistep annihilation events. We use direct curr
heating to produce these metastable structures which
ideal for use in our decay study. The dramatic change
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surface morphology produced by the use of direct curr
heating on the Si(111) surface have been well documen
[16–21]. For the conditions we use to obtain st
bunching, the number of steps within the bunches a
the distance between bunches increase with the increa
time of applied current. Thus the length of time durin
which direct current is applied to the sample is used
determine the size of the resulting structures produced
the surface.

The experiments were performed in a UHV syste
with base pressure4 3 10211 Torr, equipped with a
homemade scanning tunneling microscope [22]. We
two methods of heating the sample, resistive heating
electron bombardment heating from a tungsten filam
positioned behind the sample. The sample is15 3 3 3

0.4 mm3 in size, of nominally flat,n-type Si(111) with a
measured equilibrium step spacing of 1300 Å.

We studied the thermal decay of three different start
surfaces prepared by applying direct current in the st
down direction, at a temperature of,1260 ±C , to bunch
samples for 2, 1, and 0.5 min; resulting in structur
with average bunch sizes ofN  16, 12, and 9 steps
respectively. The voltage drop across the sample w
, 8 V and the current used,6 A. To avoid any effect
of a direct current on the decay of the surface structu
we used electron bombardment heating at a tempera
of 930±C (only a small current of 0.068 A was passe
through the sample for temperature measurement).
the starting surfaces which were direct current hea
for 2, 1, and 0.5 min, relaxations were done for 30 a
120, 15 and 60, and 11 and 24 min, respectively. Tim
were chosen to produce a similar amount of relaxation
the different initial surfaces. After each relaxation, th
sample was quenched and imaged at room tempera
The pressure during heating was less then6 3 10210 torr.

Figure 1(a) shows a three-dimensional STM image
the structures created by heating with direct current
2 min. Figures 1(b) and 1(c) show the surface af
subsequent relaxations of 30 and 120 min. There are
things to note in these images. First, even after 120 m
© 1996 The American Physical Society 1091
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FIG. 1. 50000 Å 3 50000 Å STM images of surfaces with
an average bunch size of 16 steps, a bunch-bunch separ
of 22 300 Å, and an initial step-step separation within t
bunches of,1.24 Å. Individual steps are a single interplana
spacing, 3.14 Å, high. The starting surface (a) was prepared
heating with DC in the step-down direction for 2 min. This w
followed by relaxations under indirect heating for (b) 30 m
and (c) 120 min.

the bunches have spread out by only a small amount.
are still in an early stage of the relaxation. The seco
thing to note is the presence of the crossing steps [
(e.g., single height steps that cross the large terraces
extremely shallow slope) on the surface. The relaxat
measure which we found to be the most useful under th
conditions is the maximum slope of the bunches. For e
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heating preparation, the maximum slope of the bunch
was measured for 11 to 22 bunches on the surfaces.
slopes were then averaged and plotted as a function
time as shown in Fig. 2. The error bars on each po
represent the standard deviation of the mean. The ini
slope (and thus the step-step distance) of the bunche
different for each of the starting surfaces. The step-s
spacing within the bunches decreases as the numbe
steps within the bunches increases, which is import
because the thermal relaxation of the surface is driv
by the repulsive step-step interaction. Thus, comparis
of the relaxation curves for the different starting surfac
requires setting the zero of time for the experimental d
so that all curves have the same slope att  0.

Since the steps remain relatively straight, we used
quasi-one-dimensional model to analyze the data.
considered two different classes of relaxation mech
nisms. The first involves physical mechanisms for ma
transport in which the adatom density on the terraces
not locally conserved. This case is physically relevant
instances in which there is a rapid exchange of adato
across step edges (or across widely separated transv
regions of the same terrace in a two-dimensional (2
model). For this class we consider mass transport
which diffusion on the terraces is fast, and the ra
limiting factor is the rate of attachment or detachment
adatoms to or from the step edges. In this case, the c
centration, and thus the chemical potential of all terrac
assumes a constant value determined bym0, the chemical
potential of an adatom on a terrace (in the absence of
position or evaporation). The resulting equation for t
velocity of a given stepn is [4,23]

≠xn

≠t


2Gh3g
kT

√
1

l3
n21

2
1
l3
n

!
, (1)

FIG. 2. Plot of the maximum slope of the bunches versus ti
for the three experimental data sets. Each data point is
average of approximately 11–22 measurements, and the e
bars represent the standard deviation of the mean. The i
shows the maximum slope versus the scaled time,tyNa, with
the best fit value ofa  4.3.
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wherexn is the position of stepn, G is the step mobility
[24], g is the step-step interaction constant [12], andln is
the width of terracen.

In the second class of relaxation mechanisms, we
sume there is local conservation of adatoms. Specifica
the flux onto any terrace from the two adjacent ste
is required to be zero. Within this conserved class,
consider two different physical mechanisms, attachmey
detachment limited and diffusion limited. The fast diffu
sion in the attachmentydetachment limited case [4,6,11
results in a well defined and spatially uniform chemic
potential on each terrace, with a value determined by
chemical potential of the adjacent steps and the step
netic coefficients at these step edges. The equation
the step velocity in this case is [6,23]

≠xn

≠t
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The second conserved mechanism assumes tha
attachmentydetachment events at the step edges oc
rapidly, while diffusion on the terraces is the rate-limitin
factor. We make the simple assumption that the net fl
of adatoms is proportional to a constant concentrat
gradient across the terraces with the slope determine
the “step chemical potential” at the adjacent steps. T
equation for the step velocity in this case is [6,7,23,25]

≠xn

≠t


Dsceq0a2

kbT

√
mn 2 mn21

ln21
1

mn 2 mn11

ln

!
, (3)

wheremn  2ga2h3s1yl3
n21 2 1yl3

nd 1 m0 is the chemi-
cal potential of the step edgen relative to the equilibrium
value of the chemical potential,Ds is the diffusion con-
stant, andceq0 is the equilibrium adatom concentration o
the terraces.

In the continuum limit, appropriate for largeN, we
expect that the rate of relaxation of the slope of t
bunches satisfies the following scaling relationship:

SsN , td ø

√
t 1 t0

Na

!b

, (4)

where SsN , td is the maximum slope of the bunches,N
is the number of steps in the bunches,t is the time,a is
the size-scaling exponent, andb is the time-scaling expo
nent. From numerical solutions of Eqs. (1)-(3), we fi
that the same relation holds approximately even for m
erateN . For our initial “sawtooth” geometry, the size
scaling exponenta is found to be close to 2 for the mode
assuming local nonconservation of adatoms, and is c
to 4 for models requiring local adatom conservation. T
time-scaling exponent is21y4 for the two attachmenty
detachment limited mechanisms, and21y5 for the diffu-
sion limited mechanism. It is assumed in obtaining the
results that surfaces with different bunch sizes are sub
to the same initial driving force (i.e., have the same i
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tial slope), and that the initial slope is independent of t
period (the distance between one end of a bunch and
corresponding end of an adjacent bunch).

To investigate if the size-scaling relation exists
the experimental data, we iteratively scaled the tim
axis of the data asst 1 t0dyNa by varying the values
of a and the time shifts for data sets two and thr
[26]. The result, shown by the collapse of the da
points onto a single curve in the inset to Fig 2, for th
best fit value ofa  4.3 6 0.5, confirms the predicted
size scaling and shows that the physical mechanism
decay falls in the conserved class. The error bar ona

was obtained by varyinga about the best value of 4.3
and finding the values at which two experimental da
points moved outside their error bars from the sca
curves. In an independent fitting procedure, we tes
the specific power law functional form predicted b
Eq. (4). The result (not shown in figures) showed th
the relaxation of the slope follows a power law with th
exponent close to20.23 (20.2 to 20.3 give reasonable
fits). A fit by an exponential form, in contrast, gav
poor results with a substantially larger reducedx2. We
cannot distinguish between the conserved mechani
that are attachmentydetachment limited and diffusion
limited, for which the time-scaling exponents are21y4
and 21y5, respectively [23]. These power-law resul
for the relaxations are also in agreement with the resu
of Ozdemir and Zangwill [6]. They found that the
individual terrace widths for shape preserving solutio
evolve ast1y4 andt1y5 for attachmentydetachment limited
and diffusion limited mechanisms, respectively.

To make a quantitative comparison of the three the
retical classes of relaxation mechanisms with the exp
mental results, we need values of the step-step interac
coefficientg, the step mobilityG, and the diffusion coef-
ficient for atoms on the terracesDsceq0. The value of the
step-step interaction coefficient at 900±C has been found
experimentally to beg  0.015 eVyÅ2, with an uncer-
tainty of approximately 30% [9,12,24]. The kinetic pa
rameters have been determined by direct observation
the equilibrium fluctuations of the steps [7,10,11]. Th
result has been alternatively interpreted as due to s
attachmentydetachment limited kinetics with a step mobi
ity of G  5.5 3 107 Å3ys [11], and as due to diffusion
limited kinetics with a diffusion constant ofDsceq0 
1 3 108 s21 [10]. These parameters were used in t
numerical solutions of Eq. (1)–(3) to predict the rate
decay. The resulting calculated relaxation curves w
then scaled in the same way as the experimental dat
produce the curves shown in Fig. 3. The agreement
the predictions of both conserved cases with the obser
rate is well within the uncertainties. As in the case of t
analysis of the step fluctuations, the data do not allow
two cases to be distinguished. However, it is clear th
by using physically meaningful parameters, it is possib
to make quantitative predictions of the rate of decay us
the mesoscale theory.
1093



VOLUME 77, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 5 AUGUST 1996

r

s

n

l

e

e

o

to
he
e-
f
s,
y

nt

e
d-
ss
a-
e
i-
e,
s.

s
s

FIG. 3. Plot of scaled slope versus time for the experimen
data and the results of the numerical solutions. The th
experimental data sets are plotted using different symbols,d
for N  16, j for N  12, and m for N  9, and the error
bars represent the standard deviation of the mean. The clo
spaced points are the results of numerical solutions for the t
conserved relaxation mechanisms. The hollow squares w
dots in the centers denote results for the attachmentydetachment
limited mechanism, and the hollow circles with dot
in the centers denote results for the diffusion limited mech
nism. The error bar shown for each mechanism was obtain
from the numerical solution results, assuming an error ing of
30%, an error inG of 50%, and an order of magnitude variatio
in Dsceq. The error bar in each case is representative of t
larger percentage variations in slope for the times shown
the figure.

Finally, we consider the recent results of Keefeet al.
who have studied the decay of large sinusoidal profi
on the Si(100) surface [15]. They found a scaling relatio
in which the amplitude of the sinusoids depends on t
wavelength to the inverse fourth power. This result see
to be in agreement with our size-scaling result. Howev
this may only be fortuitous, since the geometry of Kee
et al. contains antisteps for which an adequate theoreti
formalism is not yet available. Keefeet al. also found
good agreement between the experimentally measured
cay of the amplitude and the exponential form predict
by Mullins [2] using a continuum approach. Initially this
may seem surprising, since it is known that the Si(00
surface is not rough at the temperature of the measu
decay, and that the step fluctuations obey a waveleng
squared behavior similar to that observed on Si(111) [2
However, the results of a numerical solution of Eq. (2) f
an initial sinusoidal profile [23], show that an exponen
tial form will be observed over part of the decay range (
has also been shown for tilted sinusoids with no antiste
[8]). The application of this model to Si(100) is compli
cated by the fact that the step-step interactions on Si(1
are more complex than on Si(111) due to the anisotro
of the surface reconstruction [28]. In addition, as di
cussed by Keefeet al. [15], the presence of crossing step
at the extrema of the sinusoids further clouds compa
son with quasi-one-dimensional theoretical predictions
the decay.
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In summary, we have used direct current heating
create metastable structures of a controlled size on t
Si(111) surface. We have investigated their thermal r
laxation to test the applicability of a step-based theory o
mass transport. In agreement with theoretical prediction
we have found a size-scaling relation in which the deca
of the slope of the bunches scales astN2a , whereN is
the number of steps in the bunches. The scaling expone
a is found to be4.3 6 0.5, consistent with decay mecha-
nisms which require local adatom conservation. We hav
shown that the rate of decay can be predicted with no a
justable parameters using the mesoscopic theory of ma
transport and the parameters determined from the me
surement of the equilibrium surface properties. Thes
results show that the theory may be extended to arb
trary quasi-one-dimensional geometries with confidenc
and set the stage for studies of more complex geometrie
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