VOLUME 77, NUMBER 6 PHYSICAL REVIEW LETTERS 5 AIGUsT 1996
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Correlation Functions, and Phase Ordering of Binary Fluids
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We propose a novel Monte Carlo scheme to study the late-diynamicsof a 2D hard sphere fluid,
modeled by a tethered network of hard spheres. Fluidity is simulated by breaking and reattaching the
flexible tethers. We study the diffusion of a tagged particle, and show that the velocity autocorrelation
function has a long-time™! tail. We investigate the dynamics of phase separation of a binary fluid at
late times, and show that the domain si&) grows ast'/? for high-viscosity fluids with a crossover
to 12/ for low-viscosity fluids. Our scheme can accommodate particles interacting with a softer pair
potentialV(r). [S0031-9007(96)00823-X]

PACS numbers: 61.20.Ja, 64.75.+g

With the advent of modern computers, there have beeautocorrelation function for dense fluids. We also study
several large scale molecular dynamics (MD) [1], lattice-the kinetics of phase ordering of a binary fluid in 2D and
gas automata (LG) [2], and Langevin simulations (LS) [3]Jcompute the concentration correlation function to extract
of the late-time dynamics of fluids. These simulationsthe growth laws described below.
have been used to compute dynamical correlation functions A typical configuration of our model 2D fluid consists
and to study fluid flow in different geometries. MD and of hard spherical beads (vertices) (the number of b@ads
LS have also been used to study the dynamics of phasend the diameter of the beadsare fixed), restricted onto
ordering of binary fluids, where the relative concentrationa finite planar region of area. All the beads are linked
of the fluids is coupled to the fluid velocity. In many such together by straight flexible tethers (bonds) in such a way
applications, one is interested in late-time hydrodynamicads to triangulate this region. The tethers do not intersect
behavior. Since MD provides an accurate description otach other—each configuration is thuscmnected planar
the microscopic physics, it may not probe dynamics agraph Since the particles are restricted to a 2D plane, the
such late time, unless one makes a sizable computationdistribution of local coordination numbers is symmetric
investment. LS are a more coarse-grained descriptiorgbout 6. For numerical convenience we ensure that the
however, the dynamical equations are too complicatetbcal coordination number of every bead lies between 3
to solve, and it is not clear that the various simplifyingand 9. The hard spherical beads are, of course, infinitely
approximations made do not miss features which mightepulsive at distances less than Moreover, the length
affect the physics at large length and time scales. of each flexible tether can vary betweép, = a and

There is a considerable advantage if Monte Carlo (MCYm.x = 5+/3 a, the latter choice guaranteeing that half of
simulations could be used instead. MC simulations [4}the attempted MC moves are accepted. We distinguish
have been remarkably successful in the study of the dybetween external (edge) verticds?) and internal (bulk)
namics of alloys, magnets, and so bat have never been vertices(V/k). An external (edge) tethd?) connects
used to study the late-time dynamics of fluidBhis is  two external vertices, while an internal (bulk) teti&Y)
because there is no natural way to incorporatertftte  connects at least one internal vertex.
mentum densitin a MC simulation. It seems eminently  Our Monte Carlo simulation should allow for configu-
desirable to devise a MC scheme to handle the dynanration changes which sampkbdl permissibleregions in
ics of fluids, since it is more coarse grained than MD andohase space. The configuration changes of our 2D fluid
more microscopic than LS. This is what we attempt to doconsist of the movement of beads with fixed connectivity
in this Letter. More recently, lattice Boltzmann (LB) [5] (bead movesand the movement of tethers with fixed
simulations have been employed with this specific goal irvertex positionsf(ip move$. As we shall see below, the
mind, but, since such simulations do not depend on thélip moves are crucial in maintaining fluidity. We shall
specific form of the Hamiltonian, one has to choose theuse rigid boundary conditions (on a hexagonal frame), and
equilibrium distribution functions consistent with interfa- so neitherVZ nor T* are moved.
cial profiles and equilibrium densities. The bead moves are effected by randomly choosing

In this Letter, we present a novel MC technique whicha beadi and then translating to a random point (with
successfully simulates the fluidity of a fluid. Although the a uniform distribution) within a square (of siZze= 2a)
algorithm can be extended to dimensiahs= 2, and to  centered on the old position af The movement is
any pair potential, we demonstrate its efficacy for a harcaccepted if the new bond lengths lie betwdgh, and
sphere fluid ind = 2. We determine the single-particle .., andthe graph remains plana.e., no bond inter-
diffusion coefficient and the long-time tail of the velocity sections). With each particle we can identify a unique
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n-gon (concave or convex) whose verticeslations, “collisions” occur either through the rejection of
{vi,v3,...,v,}, arranged in cyclic order, are con- certain MC moves due to the hard sphere constraint or
nected toi. Let us denote the areas of the trianglesthrough flip moves. Collisions resulting from flip moves
{iviva, ..., iv,—v,p  as {A(ivivy),...,Aliv,—1v,)}.  transform particles with low coordination number to high,
Planarity of the graph is retained K(iv,v,) + --- +  and vice versa. From our discussion above, this results
A(iv,-1v,) remains unchanged after the moveionOur in an exchange of velocities. It is clear that particle mo-
unit of time is set by one Monte Carlo sweep (MCS),menta (and angular momenta) are not conserved during
defined agv attempted bead moves. an elementary “collision,” and so our algorithm will not
Fluidity can be generated by a combination of beadmimic fluid dynamics at short time scales. However, av-
and flip moves. The flip moves are a modification oferaged over several collisions, both momenta and angu-
the bond reconnection algorithm, developed to study théar momenta can be seen to be conserved. Just as in a
equilibrium behavior of fluid membranes [6]. A bong Langevin simulation, momentum is conserved only in a
(connecting vertices and j) is picked at random. With statistical sense. Our MC dynamics thus mimics the dy-
every internal bond;;, we can identify two trianglesjv, namics of a fluid over several collision time scales. Start-
and ijv, on either side oft;; which have thesmallest ing with a random triangulation (which we generate by
area This defines a quadrilateral, withand j being a repeated bead and flip moves on an initial triangular lat-
pair of opposite vertices. The bong is now flipped, tice), we allow the fluid to evolve via our MC algorithm.
only if v; andv, are not already connected by a bond,We measure various dynamical transport coefficients af-
so that it now connects; and v, (leaving the vertices ter discarding all configurations arising from, typically,
i and j unconnected by a bond). This flip is acceptedthe first ten Monte Carlo sweeps. The single-particle dif-
provided the length ot,,,, is less than the maximum fusion coefficientD; can be extracted by measuring the
allowed lengthl,,.x, and if ¢,,,, does not intersect any mean-square displacement of a tagged patrticle (averaged
other tether(planarity). Note that the total number of over several initial conditions and particles) for different
bonds is conserved during this operation. During onevalues ofNj;, and density (Fig. 1). Not surprisingly
MCS, we makeVyy;, attempts at flipping bonds. (and hence the inverse viscosity !) is an increasing
How well does this algorithm mimic the statics and function of Ny, (inset, Fig. 1) at constant density before
dynamics of a simple fluid? The equilibrium proper- it saturates.
ties of a simple fluid can be derived from the parti- A crucial test of whether our MC algorithm correctly
tion functionZ = TryTr, expf(—BF[g.{p}]) (WhereF =  describes the hydrodynamic behavior of fluids, is the
[[&%/2p0 + V({ p})] is the free-energy functional of occurrence of “long-time tails” in the measured velocity
the local momentum densityg(r, r) and the mass den- autocorrelation functiorZ(z) = (u;(0) - u;(¢)) of dense
sity p(r, ) of the fluid. In our simulation, we define (or highly viscous) fluids [7]. We computé(s) (averaged
the local velocity for theith particle,u; = g;/m, as its  over several initial conditions and particles) for different
vector displacement in a single MCS. Even though parvalues of Ny, and density. We find a convincing !
ticle displacements are picked with a uniform distributiontail (Fig. 2) in the Z(¢) of high-density (largeN) and
from a square of sidé centered at the original position high-viscosity (IlowNyj;, = 0.25N) fluids. The inset of
of the particle, large displacements, which have a high
chance of violating the tethering and planarity constraints,

are rejected. Clearly, the larger the coordination number 026l .
of the ith particle, the higher is the chance that large dis- ' on
placements are rejected and so the smalldnjs The D‘m
displacements of particlesand; are clearly independent 022 " oo
of each other and so, by the central limit theorem, the dis- I 008l
placements (and hence the velocities) of particles tend to é< > 08} o s 5w
normal (Maxwellian) distribution over several MC times. ~at . R
The time scale over which this happens is the velocity ] S
equilibration timer,. From equipartition, a computation SRS L
of (u?) gives the kinetic temperatuzT /m, wherem 001 Lt e e DL
is the mass of the particle. On the other hand, the trace R I IR R R
over p is identical to a sum over configurations with (dy- .006 e
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namically) varying local coordination number. Since the t
tethering is dynamical, there is no restriction on the allow- . . I - :

. : . IG. 1. The single-particle diffusion coefficiedt, at differ-
able configurations sampled by our fluid, and the syste Nt Ny for Ney = N, 2N, SN, and9N, going from bottom

reaches equilibrium at late times. to top, is given by the value ofr2)/4: at the plateau. The
Equilibrium is achieved through collisions between par-inset showsD, as a function oV, (in units of N). The area
ticles which result in velocity exchanges. In our simu-fractionNwa?/A = 0.14 is kept fixed.
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of A and B, takes values+1 (for A) and —1 (for B).

0.2 The dynamics of¢ is described by the usual Kawasaki
2P 0.01 1 exchange, which conserves; ¢;. Thus, locally, ¢;
& Ottt evolves by exchanging particles at verticesand j,
3t 001 T where j is connected ta by a tether, with a transition
~ .t . I S | probability which obeys detailed balance [ (i <
N e, w0 2 4 6 & 10 12 j) =[1 — tanHAE/2kgT)]/2, where AE is the energy
z 5 difference between the final and the initial configuration.
The energy is calculated using the Ising Hamiltonian
6L
Hex = _Jz¢i¢js (1)
71 ()
8 where the sum ovefij) is over vertex pairs connected by

0 056 1 15 2 25 3 385 4 45 5
In (t)

a tether.

In addition to the two MC moves described above, each
Monte Carlo sweep now includes,, attempts at per-
forming Kawasaki exchanges. Note that the Boltzmann
weights associated with particle movements and the bond
flips do not involveH,,. It is clear that fluctuations in
the local exchange energy are related to fluctuations in the
) ) local coordination number, which, in turn, are related to
Fig. 2 shows the exponential decay (Enskog resulf) of,cqations in the local velocity. In this way, the concen-
Z(1) for lower viscosity (Nrip = 10N). Note that the  yaiion variableg gets coupled to the velocity.

early time fall fromZ(0) = 1 does not show up since, At time 1 = 0, our 2D binary fluid is a homogeneous
for the densities under consideration, several collision 50-50) mixture ofA and B in equilibrium at a high tem-

have taken place within one MC time step. The inset alsQa atyrer. We quench to below the critical temperature,

displays ther™" tail for comparison. T < T. =~ 2.25J (for a triangular lattice). The homoge-
Encouraged by this success, we study the dynamics of ‘ ' ( 9 ) )

) ' i ; . eous state is unstable at this temperature, and evolves
phase separation of a binary fluid using our MC algorithm;p, 5 final phase-separated state by the slow annealing
Let us recount that, when two immiscible fluids, such

| led bel hei : of interfaces, conserving the order paramegerduring
as water + toluene, are cooled below Ihelr coexistence, e process. A time sequence of typical configurations

curve, they phase segregate into water-rich and toluengz ' (resembling those in Ref. [3]) clearly exhibits statis-
rich regions, separated by sharp interfaces. At lai§cy| gelf-similarity at late times. As a quantitative mea-

times, the system enters a dynamical scaling regime [3k,re \ve compute the circularly averaged pair correlation
where the equal-time concentration correlation funCt'Oq‘unctiong(r =N (d(x + r 1)p(x,1)), averaged

o . 5 X 5 5 ’
behaves ag(r,1) = g(r/1°). The growth exponentis e several realizations of the initial configurationsqof

independent of microscopic details and depends on thg; \yas sufficient to average over ten realizations for good
existence of conservation laws. The scaling form define tatistics). The domain siz&(¢) is extracted from the

a characteristic length scal(r) ~ 1%, which measures {5t serq of the correlation functiop(R(1), /) = 0. The
the typical distance between interfaces.

The phase separation dynamics of a 2D binary fluid is
described by a (conserved) concentration dengity, r) 1
coupled to a (conserved) momentum densitfr, 7). A )
variety of theoretical (based on dimensional analysis .
[3,8]) and numerical (MD [9] and LS [10]) techniques o6 y
have been used to understand the late stage dynamic_ 1 H
of a 2D binary fluid, but have, unfortunately, given rise %0'4 \ s
to conflicting results. The theoretical analysis and LS , N Y,
contend that, as in 3D, the growth crosses over from . Y
a viscosity dominated® ~ ¢ to an inertia dominated 0
R ~ t*/3. On the other hand, extensive MD simulations
[9] report a late-timeR ~ ¢!/2 growth. '0'20 05

Our model 2D binary fluid consists of two types of ‘
hard spheresA and B,[the total number ofA (N,) FIG. 3. Scaling functions for the correlation functigir, )
and B (Ng) beads are fixedV = N4 + Np]. The local  at (a) high viscosity(Ny;, = 30N) and (b) low viscosity
concentrationp;, defined as the difference in the densities(¥;, = 100N). Herex = r/R(z) is the scaling variable.

FIG. 2. The velocity autocorrelation functiafi(z) for high-
density, high-viscosity fluids exhibits a clear' long-time tail.
Inset : Z(t) decays to zero for low-viscosity fluids (the' tail
is displayed for comparison).
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correlation functiong(r,¢) exhibits dynamical scaling, 23 T T T T
g(r,t) = g(r/R(1)), at late times (Fig. 3), both for high- - .
viscosity Nrjip, = 30N [Fig. 3(a)] and for low-viscosity 22| 5o
Nriip = 100N [Fig. 3(b)] fluids. Our study seems to in- B Jw/:
dicate that the scaling function depends on the viscosity 21 | ++HZ@ P
of the fluid. o | ST
The domain sizeR(z), determined from both the < o | °~'°°° i
correlation function and the interfacial energy density, is i sef i
found to scale a®(r) ~ r*. As a preliminary check, we 19| M? |
perform the usual Kawasaki dynamics in the absence of L oe ¢
any bond flip and obtain a cleari/ Lifshitz-Slyozov I3 1 . . o]
growth. On introducing the flip moves that mimic fluidity, '8 7 75 8 8.5 9
we see a dramatic crossover to a growth influenced by Int

hydrodynamics. For high-viscosity fluid8/si, = 30N,  Fig. 4. Domain size (log-log plotR(r) scales ago) /2 for
Fig. 4 shows a growth consistent with ~ ¢'/2 at late  high viscosity (Ngi, = 30N) and (+) 2/ for low viscosity
times, before finite size effects become apparent. ANm;, = 100N). The lines with sloped/2 and2/3 are aids to
log-log plot for N = 7500 shows az = 0.48 + 0.03.  the eye.

Simulations for larger system sizes and longer times

give the Same.Value Oi, indicating that th|S value of moves by eXb_V(V)/kBT] In asubsequent pub”cation

the exponent is robust up to the late times we havgye hope to develop an analogous MC algorithm to study
investigated. This growth law is in agreement with MD the |ate-time hydrodynamics of fluids in three dimensions.
simulations [9]. On the other hand, for low-viscosity e have enjoyed discussions with Surajit Sengupta,

fluids N, = 100N, Fig. 4 shows a late time exponent griram Ramaswamy, and Rahul Pandit.
z = 0.6 £ 0.05, indicating a crossover from the viscosity

dominated r'/2 growth to the inertia dominated?/?

growth. Thus we expecR ~ ¢'/> whent < tx, and  [1] J.P. Hansen and I.R. McDonald, ifiheory of Simple
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