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Novel Monte Carlo Approach to the Dynamics of Fluids: Single-Particle Diffusion,
Correlation Functions, and Phase Ordering of Binary Fluids
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(Received 26 March 1996)

We propose a novel Monte Carlo scheme to study the late-timedynamicsof a 2D hard sphere fluid,
modeled by a tethered network of hard spheres. Fluidity is simulated by breaking and reattaching t
flexible tethers. We study the diffusion of a tagged particle, and show that the velocity autocorrelatio
function has a long-timet21 tail. We investigate the dynamics of phase separation of a binary fluid at
late times, and show that the domain sizeRstd grows ast1y2 for high-viscosity fluids with a crossover
to t2y3 for low-viscosity fluids. Our scheme can accommodate particles interacting with a softer pa
potentialV srd. [S0031-9007(96)00823-X]

PACS numbers: 61.20.Ja, 64.75.+g
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With the advent of modern computers, there have b
several large scale molecular dynamics (MD) [1], lattic
gas automata (LG) [2], and Langevin simulations (LS)
of the late-time dynamics of fluids. These simulatio
have been used to compute dynamical correlation funct
and to study fluid flow in different geometries. MD an
LS have also been used to study the dynamics of ph
ordering of binary fluids, where the relative concentrati
of the fluids is coupled to the fluid velocity. In many suc
applications, one is interested in late-time hydrodynam
behavior. Since MD provides an accurate description
the microscopic physics, it may not probe dynamics
such late time, unless one makes a sizable computati
investment. LS are a more coarse-grained descript
however, the dynamical equations are too complica
to solve, and it is not clear that the various simplifyin
approximations made do not miss features which mi
affect the physics at large length and time scales.

There is a considerable advantage if Monte Carlo (M
simulations could be used instead. MC simulations
have been remarkably successful in the study of the
namics of alloys, magnets, and so on,but have never been
used to study the late-time dynamics of fluids. This is
because there is no natural way to incorporate themo-
mentum densityin a MC simulation. It seems eminentl
desirable to devise a MC scheme to handle the dyn
ics of fluids, since it is more coarse grained than MD a
more microscopic than LS. This is what we attempt to
in this Letter. More recently, lattice Boltzmann (LB) [5
simulations have been employed with this specific goa
mind, but, since such simulations do not depend on
specific form of the Hamiltonian, one has to choose
equilibrium distribution functions consistent with interfa
cial profiles and equilibrium densities.

In this Letter, we present a novel MC technique whi
successfully simulates the fluidity of a fluid. Although th
algorithm can be extended to dimensionsd $ 2, and to
any pair potential, we demonstrate its efficacy for a h
sphere fluid ind ­ 2. We determine the single-particl
diffusion coefficient and the long-time tail of the veloci
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autocorrelation function for dense fluids. We also stu
the kinetics of phase ordering of a binary fluid in 2D an
compute the concentration correlation function to extra
the growth laws described below.

A typical configuration of our model 2D fluid consist
of hard spherical beads (vertices) (the number of beadN
and the diameter of the beadsa are fixed), restricted onto
a finite planar region of areaA. All the beads are linked
together by straight flexible tethers (bonds) in such a w
as to triangulate this region. The tethers do not inters
each other—each configuration is thus aconnected planar
graph. Since the particles are restricted to a 2D plane,
distribution of local coordination numbers is symmetr
about 6. For numerical convenience we ensure that
local coordination number of every bead lies between
and 9. The hard spherical beads are, of course, infinit
repulsive at distances less thana. Moreover, the length
of each flexible tether can vary betweenlmin ­ a and
lmax ­ 5

p
3 a, the latter choice guaranteeing that half

the attempted MC moves are accepted. We distingu
between external (edge) verticessV Ed and internal (bulk)
verticessV Ikd. An external (edge) tethersTEd connects
two external vertices, while an internal (bulk) tethersTI d
connects at least one internal vertex.

Our Monte Carlo simulation should allow for configu
ration changes which sampleall permissibleregions in
phase space. The configuration changes of our 2D fl
consist of the movement of beads with fixed connectiv
(bead moves) and the movement of tethers with fixe
vertex positions (flip moves). As we shall see below, the
flip moves are crucial in maintaining fluidity. We sha
use rigid boundary conditions (on a hexagonal frame), a
so neitherV E nor T E are moved.

The bead moves are effected by randomly choos
a beadi and then translatingi to a random point (with
a uniform distribution) within a square (of sizel ­ 2a)
centered on the old position ofi. The movement is
accepted if the new bond lengths lie betweenlmin and
lmax, and the graph remains planar(i.e., no bond inter-
sections). With each particlei, we can identify a unique
© 1996 The American Physical Society 1067
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n-gon (concave or convex) whose vertice
hy1, y2, . . . , ynj, arranged in cyclic order, are con-
nected toi. Let us denote the areas of the triangle
hiy1y2, . . . , iyn21ynj as hAsiy1y2d, . . . , Asiyn21yndj.
Planarity of the graph is retained ifAsiy1y2d 1 · · · 1

Asiyn21ynd remains unchanged after the move oni. Our
unit of time is set by one Monte Carlo sweep (MCS)
defined asN attempted bead moves.

Fluidity can be generated by a combination of bea
and flip moves. The flip moves are a modification o
the bond reconnection algorithm, developed to study th
equilibrium behavior of fluid membranes [6]. A bondtij

(connecting verticesi and j) is picked at random. With
every internal bondtij, we can identify two trianglesijy1
and ijy2 on either side oftij which have thesmallest
area. This defines a quadrilateral, withi and j being a
pair of opposite vertices. The bondtij is now flipped,
only if y1 and y2 are not already connected by a bond
so that it now connectsy1 and y2 (leaving the vertices
i and j unconnected by a bond). This flip is accepte
provided the length ofty1y2 is less than the maximum
allowed lengthlmax, and if ty1y2 does not intersect any
other tether(planarity). Note that the total number of
bonds is conserved during this operation. During on
MCS, we makeNflip attempts at flipping bonds.

How well does this algorithm mimic the statics and
dynamics of a simple fluid? The equilibrium proper
ties of a simple fluid can be derived from the parti
tion functionZ ­ TrgTrr exps2bFfg, h rjgd ssswhereF ­R

f g2y2r0 1 V sh rjd g is the free-energy functional of
the local momentum densitygsr, td and the mass den-
sity rsr, td of the fluidddd. In our simulation, we define
the local velocity for theith particle,ui ­ giym, as its
vector displacement in a single MCS. Even though pa
ticle displacements are picked with a uniform distributio
from a square of sidel centered at the original position
of the particle, large displacements, which have a hig
chance of violating the tethering and planarity constraint
are rejected. Clearly, the larger the coordination numb
of the ith particle, the higher is the chance that large dis
placements are rejected and so the smaller isjuij. The
displacements of particlesi andj are clearly independent
of each other and so, by the central limit theorem, the di
placements (and hence the velocities) of particles tend to
normal (Maxwellian) distribution over several MC times
The time scale over which this happens is the veloci
equilibration timetu. From equipartition, a computation
of ku2

i l gives the kinetic temperature2kBTym, wherem
is the mass of the particle. On the other hand, the tra
over r is identical to a sum over configurations with (dy
namically) varying local coordination number. Since th
tethering is dynamical, there is no restriction on the allow
able configurations sampled by our fluid, and the syste
reaches equilibrium at late times.

Equilibrium is achieved through collisions between pa
ticles which result in velocity exchanges. In our simu
1068
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lations, “collisions” occur either through the rejection o
certain MC moves due to the hard sphere constraint
through flip moves. Collisions resulting from flip move
transform particles with low coordination number to hig
and vice versa. From our discussion above, this res
in an exchange of velocities. It is clear that particle m
menta (and angular momenta) are not conserved du
an elementary “collision,” and so our algorithm will no
mimic fluid dynamics at short time scales. However, a
eraged over several collisions, both momenta and an
lar momenta can be seen to be conserved. Just as
Langevin simulation, momentum is conserved only in
statistical sense. Our MC dynamics thus mimics the d
namics of a fluid over several collision time scales. Sta
ing with a random triangulation (which we generate b
repeated bead and flip moves on an initial triangular l
tice), we allow the fluid to evolve via our MC algorithm
We measure various dynamical transport coefficients
ter discarding all configurations arising from, typically
the first ten Monte Carlo sweeps. The single-particle d
fusion coefficientDs can be extracted by measuring th
mean-square displacement of a tagged particle (avera
over several initial conditions and particles) for differe
values ofNflip and density (Fig. 1). Not surprisingly,Ds

(and hence the inverse viscosityh21) is an increasing
function of Nflip (inset, Fig. 1) at constant density befor
it saturates.

A crucial test of whether our MC algorithm correctl
describes the hydrodynamic behavior of fluids, is t
occurrence of “long-time tails” in the measured veloci
autocorrelation functionZstd ; kuis0d ? uistdl of dense
(or highly viscous) fluids [7]. We computeZstd (averaged
over several initial conditions and particles) for differe
values ofNflip and density. We find a convincingt21

tail (Fig. 2) in the Zstd of high-density (largeN) and
high-viscosity (lowNflip ­ 0.25N) fluids. The inset of

FIG. 1. The single-particle diffusion coefficientDs at differ-
ent Nflip for Nflip ­ N , 2N , 5N , and9N , going from bottom
to top, is given by the value ofkr2ly4t at the plateau. The
inset showsDs as a function ofNflip (in units of N). The area
fraction Npa2yA ­ 0.14 is kept fixed.
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FIG. 2. The velocity autocorrelation functionZstd for high-
density, high-viscosity fluids exhibits a cleart21 long-time tail.
Inset : Zstd decays to zero for low-viscosity fluids (thet21 tail
is displayed for comparison).

Fig. 2 shows the exponential decay (Enskog result)
Zstd for lower viscosity sNflip ­ 10Nd. Note that the
early time fall from Zs0d ­ 1 does not show up since
for the densities under consideration, several collisi
have taken place within one MC time step. The inset a
displays thet21 tail for comparison.

Encouraged by this success, we study the dynamic
phase separation of a binary fluid using our MC algorith
Let us recount that, when two immiscible fluids, su
as water + toluene, are cooled below their coexiste
curve, they phase segregate into water-rich and tolue
rich regions, separated by sharp interfaces. At l
times, the system enters a dynamical scaling regime
where the equal-time concentration correlation funct
behaves asgsr , td ­ gsrytzd. The growth exponentz is
independent of microscopic details and depends on
existence of conservation laws. The scaling form defi
a characteristic length scaleRstd , tz , which measures
the typical distance between interfaces.

The phase separation dynamics of a 2D binary fluid
described by a (conserved) concentration densityfsr, td
coupled to a (conserved) momentum densityp sr, td. A
variety of theoretical (based on dimensional analy
[3,8]) and numerical (MD [9] and LS [10]) technique
have been used to understand the late stage dyna
of a 2D binary fluid, but have, unfortunately, given ris
to conflicting results. The theoretical analysis and
contend that, as in 3D, the growth crosses over fr
a viscosity dominatedR , t to an inertia dominated
R , t2y3. On the other hand, extensive MD simulatio
[9] report a late-timeR , t1y2 growth.

Our model 2D binary fluid consists of two types
hard spheres,A and B [the total number ofA sNAd
and B sNBd beads are fixed,N ­ NA 1 NB]. The local
concentrationfi, defined as the difference in the densiti
of
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of A and B, takes values11 (for A) and 21 (for B).
The dynamics off is described by the usual Kawasa
exchange, which conserves

P
i fi. Thus, locally, fi

evolves by exchanging particles at verticesi and j,
where j is connected toi by a tether, with a transition
probability which obeys detailed balance [4]W si $

jd ­ f1 2 tanhsDEy2kBT dgy2, whereDE is the energy
difference between the final and the initial configuratio
The energy is calculated using the Ising Hamiltonian

Hex ­ 2J
X
kijl

fifj , (1)

where the sum overkijl is over vertex pairs connected b
a tether.

In addition to the two MC moves described above, ea
Monte Carlo sweep now includesNex attempts at per-
forming Kawasaki exchanges. Note that the Boltzma
weights associated with particle movements and the b
flips do not involveHex. It is clear that fluctuations in
the local exchange energy are related to fluctuations in
local coordination number, which, in turn, are related
fluctuations in the local velocity. In this way, the conce
tration variablef gets coupled to the velocityu.

At time t ­ 0, our 2D binary fluid is a homogeneou
(50-50) mixture ofA andB in equilibrium at a high tem-
peratureT . We quench to below the critical temperatur
T , Tc ø 2.25J (for a triangular lattice). The homoge
neous state is unstable at this temperature, and evo
into a final phase-separated state by the slow annea
of interfaces, conserving the order parameterf during
the process. A time sequence of typical configuratio
of f (resembling those in Ref. [3]) clearly exhibits stati
tical self-similarity at late times. As a quantitative me
sure, we compute the circularly averaged pair correlat
function gsr , td ; N21

P
xkfsx 1 r, tdfsx, tdl, averaged

over several realizations of the initial configurations off

(it was sufficient to average over ten realizations for go
statistics). The domain sizeRstd is extracted from the
first zero of the correlation functiongsssRstd, tddd ­ 0. The

FIG. 3. Scaling functions for the correlation functiongsr , td
at (a) high viscositysNflip ­ 30Nd and (b) low viscosity
sNflip ­ 100Nd. Herex ­ ryRstd is the scaling variable.
1069
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correlation functiongsr , td exhibits dynamical scaling,
gsr , td ­ gsssryRstdddd, at late times (Fig. 3), both for high-
viscosity Nflip ­ 30N [Fig. 3(a)] and for low-viscosity
Nflip ­ 100N [Fig. 3(b)] fluids. Our study seems to in-
dicate that the scaling function depends on the viscos
of the fluid.

The domain sizeRstd, determined from both the
correlation function and the interfacial energy density,
found to scale asRstd , tz. As a preliminary check, we
perform the usual Kawasaki dynamics in the absence
any bond flip and obtain a cleant1y3 Lifshitz-Slyozov
growth. On introducing the flip moves that mimic fluidity,
we see a dramatic crossover to a growth influenced
hydrodynamics. For high-viscosity fluids,Nflip ­ 30N ,
Fig. 4 shows a growth consistent withR , t1y2 at late
times, before finite size effects become apparent.
log-log plot for N ­ 7500 shows az ­ 0.48 6 0.03.
Simulations for larger system sizes and longer time
give the same value ofz, indicating that this value of
the exponent is robust up to the late times we ha
investigated. This growth law is in agreement with MD
simulations [9]. On the other hand, for low-viscosity
fluids Nflip ­ 100N , Fig. 4 shows a late time exponen
z ­ 0.6 6 0.05, indicating a crossover from the viscosity
dominated t1y2 growth to the inertia dominatedt2y3

growth. Thus we expectR , t1y2 when t ø t3, and
R , t2y3 when t ¿ t3, where the crossover timet3 ,
ha . Indeed, recent LB simulations [11] have seen thet2y3

growth for low-viscosity fluids. At higher viscosities they
see an early timet1y3 growth, and claim a crossover to a
later timet2y3. However, their published data[11] clearly
indicate a crossover tot1y2. We claim that the LB results
are consistent with our MC simulations. As is clear from
the above discussion, our computational costs are lo
This crossover fromz ­ 1y2 for high viscosities toz ­
2y3 for low viscosities can be understood theoretically
and we defer a discussion to another paper [12].

In this Letter, we have presented the first Monte Car
algorithm to describe thelate-time dynamics of fluids
in two dimensions. A novel feature of this algorithm
is the incorporation of the momentum density of fluid
using a dynamical triangulation scheme. We have test
this code on a hard sphere fluid and have computed
long-time tail of the velocity autocorrelation function
We have studied the phase separation dynamics o
binary fluid and find that the domain sizeRstd , t1y2

for high viscosity and crosses over toRstd , t2y3 for
low-viscosity fluids, with a crossover time depending o
the viscosity. This algorithm can be easily extende
to arbitrary pair potentialsV srd by weighting the bead
1070
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FIG. 4. Domain size (log-log plot)Rstd scales ass¶d t1y2 for
high viscosity sNflip ­ 30Nd and s1d t2y3 for low viscosity
sNflip ­ 100Nd. The lines with slopes1y2 and2y3 are aids to
the eye.

moves by expf2V srdykBT g. In a subsequent publication
we hope to develop an analogous MC algorithm to stud
the late-time hydrodynamics of fluids in three dimension

We have enjoyed discussions with Surajit Sengupt
Sriram Ramaswamy, and Rahul Pandit.
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