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Diffusion due to Beam-Beam Interaction and Fluctuating Fields in Hadron Colliders
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Random fluctuations in the tune, beam offsets, and beam size in the presence of the beam-bea
interaction are shown to lead to significant particle diffusion and emittance growth in hadron colliders.
We find that far from resonances high frequency noise causes the most diffusion while near resonanc
low frequency noise is responsible for the large emittance growth observed. Comparison of differen
fluctuations shows that offset fluctuations between the beams cause the largest diffusion for particles
the beam core. [S0031-9007(96)00857-5]

PACS numbers: 41.75.– i, 29.20.Dh, 29.27.Bd
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Emittance growth due to the nonlinear beam-beam
teraction is a major concern at all hadron colliders. T
tunes (i.e., the rotation numbers of the transverse beta
oscillations) are always chosen to avoid low-order re
nances and analysis shows that particle amplitude gro
under typical static conditions is not significant. How
ever, deterministic and stochastic variations of parame
in time change the dynamics qualitatively. The effec
of deterministic tune modulation are well studied, and
moving modulation lines from the betatron spectrum
duces particle loss from the tails of the beam [1]. Rand
fluctuations in the tune, closed orbit, and beam size
also present in accelerators. Qualitative arguments [2]
numerical simulations [3] have shown that tune fluctu
tions lead to emittance growth especially for tunes clo
to a resonance. Although experiments have been don
measure the diffusion rate of large-amplitude particles [
6], no comparable measurements exist yet under lumin
ity conditions for small-amplitude particles in the bea
core. This is the region where the beam-beam interac
is dominant and where our theory is expected to expl
quantitatively the amplitude dependence of diffusion.

As we shall discuss below, the one-dimensional expr
sions for the off-resonance diffusion coefficients conta
qualitatively the same physics as the more realistic tw
dimensional expressions. Only near resonance does
two-dimensional case have new features. All accele
tors are operated far from low-order resonances, so
valid to draw on the one-dimensional results to explain
underlying physics. We consider collisions of a prot
beam with an opposing beam composed of either lept
as at HERA or hadrons as at the Fermilab Tevatron a
the proposed LHC at CERN. For one-dimensional m
tion, the beam-beam potential seen by a proton, ass
ing a Gaussian charge distribution of the opposing be
is given byUsxd ­ C

R`
0 dq f1 2 e2x2ys2s2

op1qdgys2s2
op 1

qd. The constant isC ­ Nb,oprpygp whereNb,op is the
number of particles per bunch in the opposing beam,rp is
the classical radius of the proton,gp is the relativistic kine-
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matic factor for the protons, andsop is the rms size of the
opposing beam. Transforming to action-angle coordina
sJ, cd via x ­

p
2Jbp cosc , x0 ­ 2

p
2Jybp sinc where

bp is theb function at the interaction point, we obtain th
Fourier expansion of the potential

Usxd ­ C
X̀
k­0

Uksad cos2kc , (1)

wherea ­ bpJy2s2
op is a dimensionless amplitude. Th

Fourier amplitudes are

Uk ­
Z a

0

1
w

fd0k 2 s2 2 d0 kd s21dke2wIkswdg dw ,

(2)

where theIk are modified Bessel functions. Includin
the linear motion and the beam-beam interaction,
Hamiltonian is H ­ n0J 1 UsJ, cddpsud where n0 is
the nominal tune,dpsud is the periodic delta function
with period2pyNIP , NIP being the number of interaction
points, andu, the “time” variable, advances by2p per turn.
Integrating the equations of motion over one turn lea
to the one-turn beam-beam map:Dc ­ 2pn0 1 ≠Uy≠J
andDJ ­ 2≠Uy≠c.

First we consider the diffusion in amplitude due to ra
dom fluctuations in the tune. Usually the random con
bution to the tune is quite small, of the order of 0.001 at t
most, but this is sufficient to affect the long time dynam
ics. The sources of tune fluctuation include power sup
noise in quadrupoles, closed orbit fluctuations through
nonlinear magnets and mechanical vibrations of the non
ear magnets. In addition, scattering with the residual
molecules, intrabeam scattering due to the Coulomb fo
and RF noise lead to fluctuating particle momenta. T
in turn leads to a tune fluctuation via the machine ch
maticity. We model the tune fluctuation by an addition
term Dcr in the total phase. Assuming that the rando
contribution is small, we can write the change in acti
at turnm due to this fluctuating phase alone asDJr smd ­
© 1996 The American Physical Society 1051
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fdDJsmdydcg Dcrsmd 1 OsDc2
r d. The unperturbed to

tal phase at turnm and actionJ is csmd ­ 2mpnsJd 1

c0, wherensJd ­ n0 1 DnsJd is the tune including the
beam-beam induced tune shiftDnsJd andc0 is the initial
phase. When the tune is far from a resonance, the li
action J is conserved after averaging. This allows us
assume thatDJr smd ø Js0d so that in the sum over turn
we can replaceJsmd by Js0d. We assume that the ran
dom process is stationary so that the random phase
relation function is of the formkDcr sldDcr sn 1 ldl ­
4p2Dn2

r Knsnd, where the average is over many noise
alizations,Dnr is the amplitude of the tune fluctuation
and Kns2nd ­ Knsnd. The diffusion coefficient defined
asDnsJd ; limN!`kfJsNd 2 Js0dg2lyN is found, by ex-
tracting the dominant terms, to be

DnsJd ­ 32spCDnr d2
X̀
k­1

k4U2
k

X̀
n­2`

Kn cos4pknn .

(3)

We observe thatfar from resonances only the tune noi
at even harmonics of the betatron tune leads to a di
sion in the action. A natural choice to model the tun
fluctuations is the Ornstein-Uhlenbeck (OU) process
cause it is the only Gaussian stationary Markov proc
and the spectral densitySsvd (related toKn by the cosine
transform) decays asv22 which is in reasonable agree
ment with measured noise densities. For the discrete
OU process with correlation timetc, the correlation func-
tion isKnsnd ­ s1 2 1ytcdjnjyf1 2 1y2tcg. The spectral
density drops to roughly half its maximum value at
frequencyf1y2 ­ frevy2ptc. The revolution frequency
frev at HERA is 47.3 kHz. Substituting this form forKn

leads to

DnsJd ­ 32
spCDnr d2

1 2 1y2tc

X̀
k­1

k4U2
k sinhQ

coshQ 2 cos4pkn
, (4)

whereQ ­ 2 lns1 2 1ytcd. The main amplitude depen
dence ofDnsJd is contained in the Fourier coefficient
From the expansion of the dominant coefficientU1 we find
that at small amplitudesDnsJd , J2. At large amplitudes
the beam-beam force vanishes and all Fourier coeffici
Uk go to constant values. Hence the diffusion coeffici
DnsJd due to the beam-beam interaction increases mo
tonically in the core of the beam and levels off at large a
plitudes. Magnetic multipole nonlinearities, not includ
in our analysis, contribute significantly to the transport
particles only in the tails of the beam. This results
the diffusion coefficient increasing with amplitude even
large amplitudes.

We have compared the above analysis with a num
cal calculation. An initial distribution of 1000 particles
placed at 100 different amplitudes with 10 particles at e
amplitude distributed uniformly in phase. The particles
tracked for107 turns or more (the number increasing w
the noise correlation time) using the beam-beam map
tune fluctuations. The diffusion coefficients at each a
1052
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plitude are averaged over the ten phases and over ten n
realizations. The simulations were done for three cor
lation times:tc ­ 1.1, 10, 100. Figure 1 shows a com
parison of the diffusion coefficient obtained from Eq. (4
with that calculated numerically attc ­ 10. This good
agreement holds for the other correlation times as we
Both the analysis and the numerical results show th
DnsJd , t21

c for largetc. High frequency noise (above
1 kHz, say) is strongly attenuated within the interior of th
beam pipes by eddy currents within the metallic liner
the beam pipes and also by the impedance of the mag
and other devices in a storage ring so realistic values of
noise correlation time for HERA aretc $ 10.

The diffusion in amplitude causes emittance grow
over the period of stored beam—typically 24 to 30
for the proton beam at HERA. The emittance evolutio
can be followed by solving the Fokker-Planck equatio
Assuming that the diffusion in action is a Markov proce
and the drift coefficient is half the derivative of th
diffusion coefficient (as is usual for a Hamiltonian system
[7], the beam phase-space densityr evolves according to
the Fokker-Planck equation,

≠r

≠t
­

1
2

≠

≠J

µ
DsJd

≠r

≠J

∂
. (5)

We integrate this one-dimensional Fokker-Planck equat
by the method of lines [8]. An absorbing boundary
placed at an actionJb corresponding to the position of the
beam pipe. The density at the origin does not change si
the diffusion coefficient and its derivative vanish ther
The evolution of the average action is then found fro
kJstdl ­

RJb

0 JrsJ , td dJy
RJb

0 rsJ, td dJ. Figure 2 shows
the evolution of the average action for three correlati
times. For noise with the highest frequency content,tc ­
1.1, kJl grows the most rapidly as expected, then decrea
as particles are lost at the boundary. Diffusion is slow

FIG. 1. The diffusion coefficientDnsJd calculated analytically
from Eq. (4) (dashed line) compared with the values obtain
from the simulation. sp is the rms size of the proton beam
Parameter valuesn0 ­ 0.291, Dnr ­ 1024, tc ­ 10, Nb,op ­
3.8 3 1010, gp ­ 874, bp ­ 7.0 m, andsop ­ 0.286 mm.
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FIG. 2. Relative growth in the average actionkJl of a proton
beam over a storage time of 30 h due to tune fluctuation
three noise correlation times. Parameters are the same
Fig. 1.

for the other two correlation times and particles are not l
at the boundary sokJl grows almost linearly with time.
These calculations show that even in this one dimensio
model tune fluctuation can cause the emittance to grow
10% to 70% over the storage time in a proton machine

Emittance growth due to fluctuations is significan
enhanced near a resonance. As the tunes approa
resonance, the resonance islands increase in width
the resonant amplitudes move further out. Finally, at
resonance tunes the fixed points are at infinity because
beam-beam tune shift is largest at the origin and vanis
at infinity. The phase-space portraits atn0 ­ 0.25, for
example, are diamond shaped close to the origin,
at large amplitudes they are four-armed stars with lo
arms along the four axes. Particle motion with exter
fluctuations has two aspects: motion on a level cur
labeled by a transverse energyE, and diffusive motion
between level curves. Near resonance a small-ampli
particle may be diffusively transported to a resonan
island where it experiences a large jump in amplitu
Exactly on resonance, e.g., atn0 ­ 0.25, a particle may,
after a long time, diffuse on to a star-shaped curve wh
subsequently leads to a very large-amplitude excursion

To analyze the diffusive motion we observe that witho
noise and even after averaging, the linear invariantJ is not
conserved near resonance. Instead, after averaging
the fast varying phases, a time-independent Hamiltonia
obtained which describes motion close to the2kth integer
resonance (tunen2k ­ integery2k),

H2k ­ dJ 1 A
X̀

m­0

Umk cos2mkf , (6)

whered ­ n0 2 n2k, the difference from the resonanc
tune, f ­ c 2 n2ku, the slowly varying phase, an
A ­ Cy2p. J oscillates periodically betweeen tw
limits Jmin and Jmax which are determined by the tran
verse energyE ­ H2k . Dropping all Umk, m . 1, the
at
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period on a curve labeled byE is TE ­ s1y2pkd 3RJmaxsEd
JminsEd dJy

p
A2U2

k 2 sE 2 dJ 2 AU0d2. In contrast
to the betatron tunen, this tune nE ­ 1yTE is very
small, typically of the order of 0.001 fork ­ 2 andd ,
1024. nE increases with the resonance order2k. The tune
fluctuationsDnr cause the resonant amplitude and t
island widths to also fluctuate and the energy to diffus
The rate of change ofH2k is found to bedH2kydu ­
2sdJyduduDnr , the subscriptu denotes the unperturbed
rate of change. After integrating over a turn, the t
tal change in the Hamiltonian at turnN is H2ksNd 2

H2ks0d ­ 2
PN

m­1fJsmd 2 Jsm 2 1dgDnrsmd. Expand-
ing J in a Fourier series,Jsmd ­

P`
j­0 Bj coss2pnEjm 1

ujd and using the stationarity ofkDnr sldDnr sl 1 ndl, we
obtain for the diffusion of the energy

DnsEd ­
sDnr d2

1 2 1ys2tcd

X̀
j­1

B2
j s1 2 cos2pjnEd sinhQ

coshQ 2 cos2pjnE
.

(7)

Diffusion at a given tune increases smoothly moving o
from the origin, jumps when the particle is on the large
of the resonant islands, decreases to zero at the st
fixed point, increases back to the value on the larg
island, and stays nearly constant thereafter. The no
frequencies which contribute to the diffusion in energ
are the harmonics of the low frequencynEfrev . The
topology of the phase-space orbits and the fact th
noise of comparatively low frequencies has the domin
contribution to the diffusion in energy explains the larg
growth in emittance due to noise in the neighborhood o
resonance.

Next we consider fluctuations of the offset between t
beams at the interaction point (IP). The position of t
maximum of the beam-beam force fluctuates so more p
ticles in the proton beam will be subjected to a larg
force. It also destroys the symmetry of the beam-be
force and can excite odd order resonances. Our res
below for the general potential of Eq. (1) generalizes t
earlier result of Stupakov [9] for a flat beam. We assum
that the offset fluctuationdr smd at turn m is small and
write it as dr smd ­ Ddrxsmdsop where Ddr is the di-
mensionless amplitude of the offset andxsmd is a random
variable of zero mean and unit variance. Calculation
the diffusion coefficient far from resonances yields

DoffsJd ­
1
8

sCsopDdr d2
X̀
k­0

s2k 1 1d2G2
k sad

3
X̀

n­2`

Koffsnd cos2ps2k 1 1dnn . (8)

The correlation function isKoff ­ kxsldxsn 1 ldl. Gk,
the Fourier coefficients of the beam-beam force, a
given byGk ­

p
a fU 0

k11 1 U 0
kgysop 1 fsk 1 1dUk11 2

kUkgy
p

a sop. Notice here that the odd harmonics of th
betatron tune contribute to the diffusion in action.
1053
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When the size of the opposing beam fluctuates, both
location of the maximum of the beam-beam force (~ sop)
and the maximum (~ s21

op ) also fluctuate. Consequently
protons in a larger range of amplitudes are subject
the maximum of the force—as with offset fluctuation
A study of this for the flat beam potential was report
recently in [10]. We find that the diffusion coefficient fo
the general beam-beam potential is

Dsop sJd ­ 8sCDsrad2
X̀
k­1

fkU 0
kg2

X̀
n­2`

Ksop cos4pknn .

(9)

The size fluctuation at turnn is Dsrhsndsop whereDsr

is dimensionless,hsnd is a random variable of mean zer
and unit variance, andKsop snd ­ khsldhsn 1 ldl.

Figure 3 compares the analytical diffusion coefficien
from the three fluctuating phenomena considered h
We find that diffusion due to offset fluctuations is large
for amplitudes up to twice the rms proton beam size.
greater amplitudes, diffusion due to beam size and of
fluctuations, both of which directly affect the amplitude
the beam-beam kick, are of the same order of magnit
[11]. Diffusion due to tune fluctuations is the smallest
all amplitudes because it affects only the phase at wh
the particle is kicked. Nevertheless, the sources of tu
fluctuations are difficult to eliminate and more numero
than for the other fluctuations.

Off resonances, the above formulas for the diffusion c
efficients can be extended to 2 degrees of freedom i
straightforward fashion [12] and lead to similar concl
sions. Near resonances, the significant difference is
diffusion is enhanced only close to low-order resonan
for the one-dimensional case, but for the two-dimensio
interaction even relatively high-order resonances, e.g., 1
order can lead to large emittance growth, as was also

FIG. 3. Comparison of the diffusion coefficients inJ due to
tune fluctuations, offset fluctuations, and beam size fluctuati
given by Eqs. (4), (8), and (9), respectively.tc ­ 10.0, Dnr ­
1024, andDdr ­ 0.01 ­ Dsr . Other parameters are the sam
as in Fig. 1.
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served in [3]. A detailed study of the two-dimensional ca
will appear separately [12]. A comparison with exper
ment requires that diffusion coefficients be measured o
a wide range of amplitudes ranging from the beam core
the tails. To date, the measurements reported so far
6] have been for a limited range of amplitudes within th
beam halo. Measurements of diffusion coefficients with
the beam core will require new techniques such as one w
beam echoes recently used to measure longitudinal di
sion rates [13].

We summarize the three main results in this Letter. F
from low-order resonances, high frequency tune fluctu
tions cause larger growth of particle amplitudes than lo
frequency fluctuations. These high frequency fluctuatio
can cause the emittance to nearly double over the stor
time of a day. Near resonances, low frequency fluctu
tions are resonant with the motion of the linear invaria
and these lead to the largest diffusion in the energy wh
subsequently leads to significant emittance growth. Co
paring different fluctuations in the off-resonance case,
have found that for reasonable values of the fluctuat
amplitudes, offset fluctuations at the IPs cause the larg
diffusion at small amplitudes, while at large amplitude
fluctuations in the size of the opposing beam have a co
parable effect as the offset fluctuations.
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