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Diffusion due to Beam-Beam Interaction and Fluctuating Fields in Hadron Colliders
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Random fluctuations in the tune, beam offsets, and beam size in the presence of the beam-beam
interaction are shown to lead to significant particle diffusion and emittance growth in hadron colliders.
We find that far from resonances high frequency noise causes the most diffusion while near resonances
low frequency noise is responsible for the large emittance growth observed. Comparison of different
fluctuations shows that offset fluctuations between the beams cause the largest diffusion for particles in
the beam core. [S0031-9007(96)00857-5]

PACS numbers: 41.75.—i, 29.20.Dh, 29.27.Bd

Emittance growth due to the nonlinear beam-beam inmatic factor for the protons, and,, is the rms size of the
teraction is a major concern at all hadron colliders. Theopposing beam. Transforming to action-angle coordinates
tunes (i.e., the rotation numbers of the transverse betatrqW, ) viax = /2J 8% cosy, x' = —+/2J /B siny where
oscillations) are always chosen to avoid low-order reso* is the 8 function at the interaction point, we obtain the
nances and analysis shows that particle amplitude growtRourier expansion of the potential
under typical static conditions is not significant. How- -
ever, deterministic and stochastic variations of parameters Ulx) =C Z Ur(a) cos2ky (1)
in time change the dynamics qualitatively. The effects =0
of deterministic tune modulation are well studied, and re-

_ ) . . .
moving modulation lines from the betatron spectrum re_wherea B /20, is a dimensionless amplitude. The

duces particle loss from the tails of the beam [1]. RandomFOurler amplitudes are
fluctuations in the tune, closed orbit, and beam size are a1 b o—w

also present in accelerators. Qualitative arguments [2] andUx = j; ;[5% — (2 = dor) (=1 e Ir(w)]dw,
numerical simulations [3] have shown that tune fluctua- 2)
tions lead to emittance growth especially for tunes close

to a resonance. Although experiments have been done {ghere thel, are modified Bessel functions. Including
measure the diffusion rate of large-amplitude particles [4-the linear motion and the beam-beam interaction, the
6], no comparable measurements exist yet under luminosdamiltonian is H = »°J + U(J,¢)8,(0) where »° is

ity conditions for small-amplitude particles in the beamthe nominal tune,§,(9) is the periodic delta function
core. This is the region where the beam-beam interactiowith period2s/Nip, Nip being the number of interaction
is dominant and where our theory is expected to explaipoints, and, the “time” variable, advances Ryr per turn.

quantitatively the amplitude dependence of diffusion. Integrating the equations of motion over one turn leads
As we shall discuss below, the one-dimensional expresto the one-turn beam-beam mapy = 270 + 9U/9J
sions for the off-resonance diffusion coefficients containandAJ = —aU /.

qualitatively the same physics as the more realistic two- First we consider the diffusion in amplitude due to ran-

dimensional expressions. Only near resonance does tl@m fluctuations in the tune. Usually the random contri-

two-dimensional case have new features. All accelerabution to the tune is quite small, of the order of 0.001 at the
tors are operated far from low-order resonances, so it ifost, but this is sufficient to affect the long time dynam-

valid to draw on the one-dimensional results to explain thécs. The sources of tune fluctuation include power supply
underlying physics. We consider collisions of a protonnoise in quadrupoles, closed orbit fluctuations through the
beam with an opposing beam composed of either leptonsonlinear magnets and mechanical vibrations of the nonlin-
as at HERA or hadrons as at the Fermilab Tevatron andar magnets. In addition, scattering with the residual gas
the proposed LHC at CERN. For one-dimensional mo-molecules, intrabeam scattering due to the Coulomb force,
tion, the beam-beam potential seen by a proton, assumand RF noise lead to fluctuating particle momenta. This
ing a Gaussian charge distribution of the opposing beanin turn leads to a tune fluctuation via the machine chro-
isgivenbyU(x) = C [, dq[1 — e*X‘/@”%p*q)]/(zagp +  maticity. We model the tune fluctuation by an additional

g). The constant i€ = N, opr,/vp WhereN, o, is the  term Ay, in the total phase. Assuming that the random

number of particles per bunch in the opposing begjms  contribution is small, we can write the change in action

the classical radius of the protop, is the relativistic kine-  at turnm due to this fluctuating phase alone/&$, (m) =
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[dAJ(m)/dy] Ay, (m) + O(Ag?). The unperturbed to- plitude are averaged over the ten phases and over ten noise
tal phase at turm: and action/ is ¢(m) = 2mmwv(J) + realizations. The simulations were done for three corre-
Yo, whererv(J) = v° + Ap(J) is the tune including the lation times:7. = 1.1, 10, 100. Figure 1 shows a com-
beam-beam induced tune shift(J) andy is the initial  parison of the diffusion coefficient obtained from Eq. (4)
phase. When the tune is far from a resonance, the lineavith that calculated numerically at. = 10. This good
actionJ is conserved after averaging. This allows us toagreement holds for the other correlation times as well.
assume thaAJ,(m) < J(0) so that in the sum over turns Both the analysis and the numerical results show that
we can replacg/ (m) by J(0). We assume that the ran- D,(J) ~ 7! for larger.. High frequency noise (above
dom process is stationary so that the random phase cot-kHz, say) is strongly attenuated within the interior of the
relation function is of the form Ay, (1)A,(n + 1)) =  beam pipes by eddy currents within the metallic liner of
4m2Av2K,(n), where the average is over many noise rethe beam pipes and also by the impedance of the magnets
alizations,Av, is the amplitude of the tune fluctuations, and other devices in a storage ring so realistic values of the
andK,(—n) = K, (n). The diffusion coefficient defined noise correlation time for HERA are. = 10.

asD,(J) = limy_={[J(N) — J(0)]*)/N is found, by ex- The diffusion in amplitude causes emittance growth
tracting the dominant terms, to be over the period of stored beam—typically 24 to 30 h
% o for the proton beam at HERA. The emittance evolution

D,(J) = 32(wCAv,)? Z k*U? Z K, cosdmkvn. can be followed by solving the Fokker-Planck equation.
k=1 n=—o0 Assuming that the diffusion in action is a Markov process

()  and the drift coefficient is half the derivative of the

We observe thafar from resonances only the tune noise diffusion coefficient (as is usual f(_)r a Hamiltonian _system)
at even harmonics of the betatron tune leads to a difful?], the beam phase-space densitgvolves according to
sion in the action. A natural choice to model the tune the Fokker-Planck equation,

fluctuations is the Ornstein-Uhlenbeck (OU) process be- ap 1 9 ap

cause it is the only Gaussian stationary Markov process Py 5( () 5) (5)

and the spectral densif§{w) (related toK, by the cosine

transform) decays a® ~2 which is in reasonable agree- We integrate this one-dimensional Fokker-Planck equation
ment with measured noise densities. For the discrete timigy the method of lines [8]. An absorbing boundary is
OU process with correlation time., the correlation func- placed at an action, corresponding to the position of the
tioniskK,(n) = (1 — 1/7.)"l/[1 = 1/27.]. The spectral beam pipe. The density at the origin does not change since
density drops to roughly half its maximum value at athe diffusion coefficient and its derivative vanish there.
frequencyfi, = frwv/2m7.. The revolution frequency The evolution of the average action is then found from
frev @t HERA is 47.3 kHz. Substituting this form faf,  (j(1)) = [1" Jp(J,1)dJ/ [ p(J.1)dJ. Figure 2 shows
leads to the evolution of the average action for three correlation
(rCAp ) & kU2 sinh® times. For noise with the highest frequency contents=

D,(J) = 32 , (4 L1 (J) grows the most rapidly as expected, then decreases
1 — 1/27, & cosh® — cosdmkv as particles are lost at the boundary. Diffusion is slower
where® = —In(1 — 1/7.). The main amplitude depen- 1e-14 . ; ; . . . .
dence ofD,(J) is contained in the Fourier coefficients. o
From the expansion of the dominant coefficiehtwe find £ 1le15¢} _*,.z%»—”g & ]
that at small amplitudeB, (J) ~ J2. Atlarge amplitudes £ MWM °
the beam-beam force vanishes and all Fourier coefficients, Te-16 ¢ P 1
Uk go to constant values. Hence the diffusion coefficient g ot | &,@g 1
D, (J) due to the beam-beam interaction increases mono- © &
tonically in the core of the beam and levels off at large am- 1e-18 L & ]

plitudes. Magnetic multipole nonlinearities, not included
in our analysis, contribute significantly to the transport of
particles only in the tails of the beam. This results in .
the diffusion coefficient increasing with amplitude even at 1e-20 |
large amplitudes.

We have compared the above analysis with a numeri-  1€-21 o 05 1 15 2 25 3 a5 a4
cal calculation. An initial distribution of 1000 particles is " Amplitude in units of sigma_p

laced at 100 different amplitudes with 10 particles at eac
P b b IG. 1. The diffusion coefficienb,(J) calculated analytically

amplitude dis7tributed uniformly in phase. The pamc'es A&rom Eq. (4) (dashed line) compared with the values obtained
tracked for10” turns or more (the number increasing with from the simulation. o, is the rms size of the proton beam.

the noise correlation time) using the beam-beam map witkarameter values® = 0.291, Ay, = 1074, 7. = 10, Njop =
tune fluctuations. The diffusion coefficients at each am3.8 x 10'°, y, = 874, g* = 7.0 m, ando,, = 0.286 mm.
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1.2 - - . ‘ . period on a curve labeled b¥ is T = (1/27k) X
Te=11 f((f)) dJ/\JA*U? — (E — 8J — AUp)*. In contrast
. 1r 1 to the betatron tunev, this tune vz = 1/Tg is very
N / small, typically of the order of 0.001 for = 2 andé ~
£ 081 Fe=10 | 107*. vy increases with the resonance order The tune
“g’: T fluctuationsAv, cause the resonant amplitude and the
g 06¢ T island widths to also fluctuate and the energy to diffuse.
© The rate of change off,; is found to bedH,;/d6 =
£ 0.4 r 1 —(dJ/d#),Av,, the subscript: denotes the unperturbed
e rate of change. After integrating over a turn, the to-
0.2 | —100 | tal change in the Hamiltonian at turN is Hy(N) —
o [ Hoy(0) = =3V _ [J(m) — J(m — 1)]Av,(m). Expand-
0 Mot ' ’ ' ing J in a Fourier series](m) = Y., B; co2mvgjm +
0 > 10 Tim;?Hrs) 20 25 %0 6;) and using the stationarity Qﬁjvr(l)Avr(l + n)), we

obtain for the diffusion of the ener
FIG. 2. Relative growth in the average acti@h of a proton oy

beam over a storage time of 30 h due to tune fluctuations at ) © p2e1 _ . :
three noise correlation times. Parameters are the same as D (E) = (Av,) Z Bj(l CoS27jvg) Sinh® .
Fig. 1. ’ 1 —1/@2r)

cosh® — cos2wjvg

(7
for the other two correlation times and particles are not lost
at the boundary s&J/) grows almost linearly with time. Diffusion at a given tune increases smoothly moving out
These calculations show that even in this one dimensiondfom the origin, jumps when the particle is on the largest
model tune fluctuation can cause the emittance to grow b9f the resonant islands, decreases to zero at the stable
10% to 70% over the storage time in a proton machine. fixed point, increases back to the value on the largest

Emittance growth due to fluctuations is significantly island, and stays nearly constant thereafter. The noise
enhanced near a resonance. As the tunes approachfraquencies which contribute to the diffusion in energy
resonance, the resonance islands increase in width a@de the harmonics of the low frequenay fr.,. The
the resonant amplitudes move further out. Finally, at théopology of the phase-space orbits and the fact that
resonance tunes the fixed points are at infinity because thwise of comparatively low frequencies has the dominant
beam-beam tune shift is largest at the origin and vanishegontribution to the diffusion in energy explains the large
at infinity. The phase-space portraits &t = 0.25, for ~ growth in emittance due to noise in the neighborhood of a
example, are diamond shaped close to the origin, angesonance.
at large amplitudes they are four-armed stars with long Next we consider fluctuations of the offset between the
arms along the four axes. Particle motion with externabeams at the interaction point (IP). The position of the
fluctuations has two aspects: motion on a level curvemaximum of the beam-beam force fluctuates so more par-
labeled by a transverse energy and diffusive motion ticles in the proton beam will be subjected to a larger
between level curves. Near resonance a small-amplitud@rce. It also destroys the symmetry of the beam-beam
particle may be diffusively transported to a resonancdorce and can excite odd order resonances. Our results
island where it experiences a large jump in amplitudebelow for the general potential of Eq. (1) generalizes the
Exactly on resonance, e.g., &t = 0.25, a particle may, earlier result of Stupakov [9] for a flat beam. We assume
after a long time, diffuse on to a star-shaped curve whictihat the offset fluctuatiorl, (m) at turnm is small and
subsequently leads to a very large-amplitude excursion. write it as d,(m) = Ad, x(m)o,, where Ad, is the di-

To analyze the diffusive motion we observe that withoutmensionless amplitude of the offset ap@n) is a random
noise and even after averaging, the linear invarfaistnot ~ variable of zero mean and unit variance. Calculation of
conserved near resonance. Instead, after averaging ovée diffusion coefficient far from resonances yields
the fast varying phases, a time-independent Hamiltonian is | .
obtained which describes motion close to i¢h integer _ 2 22
resonance (tune,; = integer'2k), ’ Dorr(/) = 8 (Couphd,)? 3 (2k + 1)’G(a)

j=1

k=0

X i Korr(n)cos2m 2k + Dvn. (8)

n=-—o

Hyy =6J + A Z U, COS2mk ¢ (6)
m=0
where§ = v° — vy, the difference from the resonance The correlation function iy = (x(Dx(n + 1)). G,
tune, ¢ = ¢ — vy 0, the slowly varying phase, and the Fourier coefficients of the beam-beam force, are
A = C/2m. J oscillates periodically betweeen two given byGy = /a[Uis, + Uil/oop + [(k + DUks1 —
limits Jmin and Jmax Which are determined by the trans- kUi]/\/a 0,. Notice here that the odd harmonics of the
verse energyE = Hy,. Dropping allU,,, m > 1, the  betatron tune contribute to the diffusion in action.
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When the size of the opposing beam fluctuates, both theerved in [3]. A detailed study of the two-dimensional case
location of the maximum of the beam-beam foreed,,)  will appear separately [12]. A comparison with experi-
and the maximumo{ agpl) also fluctuate. Consequently, ment requires that diffusion coefficients be measured over
protons in a larger range of amplitudes are subject t@ wide range of amplitudes ranging from the beam core to
the maximum of the force—as with offset fluctuations.the tails. To date, the measurements reported so far [4—
A study of this for the flat beam potential was reported6] have been for a limited range of amplitudes within the
recently in [10]. We find that the diffusion coefficient for beam halo. Measurements of diffusion coefficients within
the general beam-beam potential is the beam core will require new techniques such as one with

o % beam echoes recently used to measure longitudinal diffu-

Dy, (J) = 8(CAd,a)* D [kU,* D K, cosdmkvn.  Sion rates [13]. . o

k=1 n=—cw We summarize the three main results in this Letter. Far

(9)  from low-order resonances, high frequency tune fluctua-

tions cause larger growth of particle amplitudes than low

is dimensionlessy () is a random variable of mean zero frequency fluctuati_ons. These high frequency fluctuations
and unit variance, an&, (n) = (n()n(n + 1)) can cause the emittance to nearly double over the storage

. ' Top AN . . time of a day. Near resonances, low frequency fluctua-

Figure 3 compares the analytical diffusion coefficients,. ith th i f the li ; ant
from the three fluctuating phenomena considered heré'.Ons are resonant with the motion of the finear invariant,
We find that diffusion due to offset fluctuations is Iargestand these lead to the Ia.rge's.t dlfoSIO.n In the energy which
for amplitudes up to twice the rms proton beam size Asub.sequ_ently leads to s_lgnlfl_cant emittance growth. Com-
greater amplitudes, diffusion due to beam size and 6ffset{iar'ng different fluctuations in the off-resonance case, we

: ave found that for reasonable values of the fluctuating

Ilr?ec'[g:gr%nz’ez(r)rghk?glzv Zfeh gf'r;‘glg:rﬁzcg:gzrag?eggj;rﬁtaggmplitudes, offset fluctuations at the IPs cause the largest
e ' X . iffusion at small amplitudes, while at large amplitudes,
[11]. Diffusion due to tune fluctuations is the smallest atguctuations in the size of the opposing beam have a com-

The size fluctuation at turn is Ao, n(n)o,, WhereAo,

the particle s Kioked. Nevertheless. the Sources of (ungaiable effect s the offsetfuctuations.

fluctuations are difﬁCl'Jlt to eliminate :';md more numerou We th_ank A'. Bazzani, H. Mais, and F. Willeke for very
X Sfruitful discussions and support.

than for the other fluctuations.
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FIG. 3. Comparison of the diffusion coefficients Jndue to [11] The reasons advanced_ in Ref. [10] for the domin_anc_e of
tune fluctuations, offset fluctuations, and beam size fluctuations  the beam size fluctuations are not generally valid since

given by Egs. (4), (8), and (9), respectively, = 10.0, Ay, = these are the flut_:tuations of tbpposingbeam.
107*, andAd, = 0.01 = Acg,. Other parameters are the same [12] T. Sen and J. Ellison (to be published).
as in Fig. 1. [13] L. Spentzouriset al., Phys. Rev. Lett76, 620 (1996).
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