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We investigate the transition of a two-dimensional electron gas from the regime of the quantum
effect to the regime of weak magnetic fields for a tight-binding model. Unlike previous work, we
the following: (1) the linear field dependence of the extended-state energies is not affected by dis
although the total density of states below each level of extended states increases with disorder st
(2) for each Landau band and disorder strength there exists a critical fieldBc below which the extended
level disappears, withBc smaller for lower Landau bands. We show how the experimental findings
level flotation and direct transition from high Landau level states to the Anderson insulating phase
be explained in light of our results.
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It is an unsolved problem regarding how a tw
dimensional electron gas transforms from the quan
Hall regime [1] to the weak magnetic field regim
According to the scaling theory of localization [2] a
electrons in a two-dimensional system are localized in
absence of magnetic field. In the presence of a str
magnetic field, the energy spectrum becomes a serie
impurity broadened Landau bands; extended states re
in the center of each band while the states at other ene
are localized. The quantum Hall effect is observed
the strong field regime, where the Hall conductance
quantized and jumps from one quantized value to ano
when the Fermi energy crosses an extended-state l
It is important to know the fate of the extended Land
levels asB ! 0. According to the conventional pictur
of Khmelnitskii [3] and Laughlin [4], the extended leve
stay with the centers of the Landau bands at str
magnetic field, but float up in energy at small magne
field and go to infinity asB ! 0. This is also a centra
ingredient of the theory of Kivelson, Lee, and Zhang
for the global phase diagram of the quantum Hall effec

In this Letter, we propose an alternative scenario
the behavior of the extended Landau levels, which
based on our numerical results for a tight-binding mo
of two-dimensional electrons in a magnetic field a
random potentials. In our picture, each extended le
is destroyed by strong disorder at a critical magnetic fi
instead of floating up in energy. Using a direct calculat
of the localization length for finite-size samples using
transfer matrix technique, we systematically investig
the field and disorder dependence of the energies
extended states in the regime of strong coupling betw
the Landau bands. We find the following: (1) the line
field dependence of the extended-state energies is
affected by disorder, although the total density of sta
below each extended level increases with disorder; (2)
a given Landau band there exists a critical magn
field Bc below which the extended level disappea
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with Bc smaller for lower Landau bands and for weak
disorder.

Our results can be summarized as the phase diagram
sented in Fig. 1, where only theE , 0 part is shown be-
cause of symmetry. At strong magnetic fields, extend
levels appear in the center of Landau bands [En ­ sn 1

1y2dh̄vc, wherevc ­ eBymc]. The linear field depen-
dence of these energies is maintained as the field beco
weak, until they hit a phase boundary represented by
thick curve, where they become terminated. The sta
on the phase boundary are themselves extended, but c
negative Chern numbers. The phase boundary has
a shape that the higher Landau levels disappear at la
magnetic fields. As disorder strength increases, it mo
towards the direction of lower energy and higher magne

FIG. 1. Our proposed weak field phase diagram for an inte
quantum Hall liquid in a lattice model. The diamonds repres
the extended levels in the center of Landau bands. The th
solid line represents the boundary between quantum Hall liq
and Anderson insulator.
© 1996 The American Physical Society 975
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field. Experimental consequences of our phase diag
will be discussed.

We first briefly outline our model and technique fo
calculating the localization length (a similar model w
discussed in previous works [6,7]). Our two-dimension
system is a standard tight-binding square lattice with ne
est neighbor hopping, in a very long strip geometry w
a finite width (M). The periodic boundary condition in
the width direction is used to remove the edge extend
states. The disorder is modeled by the on-site white-no
potentialVim (i denotes the column index,m denotes the
chain index) distributed uniformly from2Wy2 to Wy2.
The magnetic field is represented in the phase of the h
ping terms. The strength of the magnetic field is char
terized by the flux per plaquette (f) in units of magnetic
flux quanta (hcye). Unlike the closed torus geometry
our model can allow arbitrarily small values of the ma
netic field. The amplitude of hopping is chosen as t
unit of energy. For a specific energyE, a transfer matrix
TisEd can be set up to map the wave-function amplitud
at columni 2 1 and i to those at columni 1 1. Using
a standard iteration algorithm [8], we can calculate t
Lyapunov exponents for the transfer matrixTisEd. The
localization lengthlMsEd for energy E at finite width
M is then given by the inverse of the smallest Lyap
nov exponent. In our numerical calculation, we choo
the sample length to be over104 to achieve self-averaging

In Fig. 2, we present the localization length at vario
values of the magnetic field for a finite-size sample (M ­
32). Because of the symmetry of the lattice model, only t
results for the lower energy branch are shown here. In
absence of disorder, the energy band of the tight-bind
lattice ranges fromE ­ 24 to E ­ 4, which breaks up
into q subbands in a magnetic field withf ­ 1yq (where
q is an integer). The subbands in the lower energy bra
correspond to Landau levels in a continuum model. P
(b) of Fig. 2 is for very weak magnetic fields, where on
the lowest two Landau bands are shown for clarity. In t
continuum model, each Landau level evolves into a ba
when disorder is turned on, with extended states residin
the center of each Landau band. The maxima of the fin
size localization length in Fig. 2 are therefore regarded
the locations of the extended states [8,9]. It is striki
to see that, with disorder strength as large asW ­ 1, their
energies remain linear inB ~ f, and that they intersect th
parent-band minimumE ­ 24.0 as B ! 0, resembling
the behavior of Landau levels in the continuum model
the absence of disorder.

In order to assess the finite-size effect, we carried
the same calculations for system sizeM ­ 64 as shown
by the open circles in Fig. 2(a). One can see that, in
localized regime, the localization length is independe
of sample size, while for energies close to the center
each Landau band, the localization length scales with
sample size. However, the peaks of the localization len
do not shift in energy with increasing sample size.
further illustrate this point, we have carried out finite-si
976
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FIG. 2. Finite-size localization length (lM) at different weak
magnetic field for fixed disorder strengthW ­ 1, with lower
curves corresponding to weaker field. (a)f ­ 1y13, 1y9, 1y7,
1y5, open circles are the data forM ­ 64, filled circles for
M ­ 32; (b) f ­ 1y33, 1y31, 1y29, 1y27, 1y25. Each curve
is shifted vertically relative to the lowest one of each pan
by an amount proportional to the magnetic field, in order
show the linear field dependence of the peak positions. T
open squares in (b) are the thermodynamic localization leng
j (reduced by a factor of5) for f ­ 1y33 obtained from finite-
size scaling analysis.

scaling calculations [10] forf ­ 1y33 with system sizes
M ­ 16, 24, 32, 48, 64, and 84. The thermodynam
localization lengthj (reduced by a factor of 5 to fit
into the range of the figure) for the lowest Landau ban
is shown in Fig. 2(b). Clearly,j diverges at the same
energy where finite-size localization lengthlM reaches its
peak. Therefore, we conclude that the finite-size effect
not important to the position of extended states which w
are addressing in this paper.

We now address the effect of disorder strength on t
extended states at a fixed weak magnetic field. As p
sented in Fig. 3, the localization length decreases as
strength of disorder increases. The peaks associated w
the higher energy Landau bands are destroyed in the p
ence of strong enough disorder, while those of the low
Landau bands become broader. The peak for the low
Landau band is the most robust, but it is neverthele
destroyed at stronger disorder. In the entire range of d
order strength shown in Fig. 3, the peak center positions
the Landau bands stay constant (even slightly going dow
in energy without any trace of floating up, even thoug
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FIG. 3. Finite-size localization length (lM) for different dis-
order strength at magnetic fieldf ­ 1y11 andW ­ 1, 2, 3, 4,
5 (from the highest curve to the lowest one). The localizat
length for weaker disorder strength is scaled by a factor of 5
from the one for the next stronger disorder strength.

the localization lengths are changed by several order
magnitude. These results provide additional support to
conclusion that the linear field dependence of the extend
state energies are not affected by disorder.

We believe that the localization transition here is caus
by Landau level coupling effect which is more severe
weak fields. For our tight-binding model, the zero-fie
level broadening is [11]

G ­
W2

6pE
K

µ
4t
E

∂
, (1)

wheret is the hopping amplitude which is set to unity an
Ksxd is the complete elliptical integral of the first kind
Indeed, the peaks in Fig. 3 start to disappear whenG .
vc, i.e., when the Landau levels start to couple togethe

There is then the question of whether and how our res
conform with the conservation of Chern numbers [1
Consider the case of fluxf ­ 1y11, for instance; each
Landau band carries a Chern number11 except the band
at the center (E ­ 0) which carries Chern number210
[13,14]. There are three possibilities for the sideban
(with 11 Chern number) to change their Chern numbe
by annihilating with the center band: (i) all the sideban
move towards center (floating up); (ii) center band sp
into two 25 branches and each branch moves towards
band edge; and (iii) sidebands move towards center
center branches move towards the sides (weakly floa
up). Our numerical studies confirm the second scena
i.e., no floating up in the extended-state energies. T
boundary curve in Fig. 1 represents the motion of the low
branch originally split from the center band. Each time th
branch intersects with one Landau level, its Chern num
reduces in magnitude by1.

There have been a number of experimental attem
[15–19] to address the transition of delocalized states
the weak magnetic field limit. In the earlier experimen
[15,16] on strongly disordered two-dimensional electr
gases (2DEG), only the observation of the lowest Land
level plateau was reported (n ­ 2 for spin unresolved
n
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2DEG), which is consistent with our argument that th
extended states in the lowest Landau band are the m
robust.

Two very recent experiments on low mobility gate
GaAsyAlGaAs hetereostructure [18] and high mobility S
samples [19] have reported floating up of the delocaliz
states in the magnetic-field–carrier-density plane. T
authors in Ref. [18] claimed that their experimental res
“unambiguously” demonstrated that the “energy” of th
delocalized states floats up asB ! 0. However, we argue
that floating up of the carrier density does not necessa
imply the same behavior for the energy. Here, it
important to note that our energy is measured with resp
to the band minimum of the system in the absence of
magnetic field and disorder, and no Coulomb interacti
between the carriers has been taken into account. It
with respect to this definition of energy measure th
Khmelnitskii [3] and Laughlin [4] discussed level flotatio
in their original papers.

To explain the anomalous floating up of the carri
density in the recent experiment by Glozman, Johns
and Jiang [18], we should include the Landau level mixi
effect at small magnetic field in the presence of stro
disorder. The localized tail of higher Landau bands c
well extend into the lower Landau bands. Therefo
the electrons have to fill up the tail of higher Landa
bands before reaching the extended states in the cente
the lowest Landau band, and the real filling factor cou
be greater than 2 (for spin unresolved 2DEG) when
quasiharmonic (QH) plateau for the lowest Landau lev
is observed. The same arguments apply to the filling
higher Landau bands. The point where the carrier den
starts to float up is the moment where inter-Landau-le
mixing shows up. The experimental fact that no floatin
was observed in higher mobility samples [18] strong
demonstrates the essential role of the Landau level mix
in the floating up of the carrier density.

To demonstrate this point, we show in Table I th
calculated filling factor to observe the QH transition
different Landau levels for fixed magnetic fieldf ­
1y11. Similar behavior can be seen at other values
the magnetic field. However, this “floating” from linea
behavior is entirely due to the density of states over
at strong disorder which would not affect our weak fie
phase diagram.

TABLE I. Filling factor for observing QH transitions, i.e., to
reach the extended states in the lowest three Landau levels

W n ­ 0 n ­ 1 n ­ 2

0.001 0.499 6 0.006 1.501 6 0.006 2.500 6 0.002
0.01 0.501 6 0.003 1.500 6 0.008 2.501 6 0.006
0.1 0.511 6 0.006 1.509 6 0.006 2.507 6 0.009
0.5 0.554 6 0.010 1.544 6 0.010 2.539 6 0.008
1.0 0.606 6 0.014 1.589 6 0.010 2.581 6 0.010
2.0 0.716 6 0.017 1.679 6 0.013 2.668 6 0.013
3.0 0.819 6 0.020 1.779 6 0.018 2.773 6 0.015
977
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Density flotation is a general phenomenon beyond
model. Let us first consider the high field limit suc
that Landau levels are well separated. In this limit, t
electron densityrc below E0 (energy of the extended
state for the lowest Landau level) is proportional to t
Landau level degeneracy. Thus,rc decreases linearly with
decreasingB. At the weak field limit with strong Landau
level coupling, the experimental density of states in Ga
samples can be well described by the Lorentzian form [

gsEd ­
1

2pl2

X
n

Gn

sE 2 End2 1 G2
n

(2)

and

rc ­
Z E0

2`
gsEd dE ~ vc

X
n

µ
1 2

2
p

arctan
nvc

Gn

∂
,

(3)

wherel is the magnetic length,vc is the cyclotron energy,
andEn ­ sn 1 1y2dvc is the energy for thenth Landau
level. Gn is the level broadening for thenth Landau level
which is found experimentally [20] to be independent
the magnetic field. AsB (or vc) decreases with fixed
Gn, more terms will be contained in the summation whi
makesrc increase. This simple calculation shows that
the high field limitrc goes down linearly with decreasin
B, and in the weak field limit it increases. Thus,rc has
to float upat weak enough magnetic fields. In reality, th
disorder potential is Coulomb long-range type and Land
levels are much more broadened than in the short-ra
impurity case [21], and therefore, the effect of Landau le
mixing is much more important [22].

A new prediction of our phase diagram is that it allow
direct transition from quantum Hall states of higher Land
bands to the Anderson insulator. This is possible beca
of the phase boundary carrying a negative Chern num
One might argue that this is an artifact of our lattice mod
because the states of negative Chern numbers origi
from the band center, and there is not such a cente
a continuum model. However, our lattice model can
more realistic than the continuum model, in that tw
dimensional electrons really reside in a subband of fin
width on the interface of a semiconductor heterostructu
In fact, Wanget al. [16] indicated briefly near the end o
their paper that they saw a direct transition to the Anders
insulator from the quantum Hall state with two Landa
bands occupied. This transition might also be obser
in another recent experiment [19].

In conclusion, we have proposed an alternative ph
diagram for the integer quantum Hall system in the we
field limit. We have demonstrated that there exists a cr
cal magnetic field below which a Landau level is destroy
Until this critical field, the energy of extended states
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the Landau band maintains the linear field depende
found in the zero disorder case. The lower Landau lev
are more robust than the higher ones, in that their criti
fields are lower, and they can overcome a larger disor
strength. In the strong disorder limit, Landau level mixin
effects can contribute to the floating up of the carrier de
sity even though the energies of the extended states n
float up.
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