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Effect of Environment on Hydrogen Bond Dynamics in Liquid Water
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In a series of molecular dynamics calculations we simulate the dynamics of forming and breaking

a hydrogen bond in liquid water at room temperature. We show that this dynamics is clearly
nonexponential, yet virtually uncorrelated with the fluctuations of neighboring bonds.

PACS numbers: 61.25.Em, 61.20.Ja

It is generally accepted that the distinctive properties ofAt equilibrium, the probability that a specific pair of
water can be ascribed to hydrogen bonding [1]. The funmolecules is bonded in a large system is negligibly small.
damental dynamical process of the liquid is the making and hus, ¢(¢) relaxes to zero. The rate of relaxation to equi-
breaking of hydrogen bonds. This dynamics, however, igibrium is characterized by the reactive flux correlation
far from being completely understood. Experiments suchiunction,

as infrared absorption and Raman scattering [2], depolar- _ _ B
ized light scattering [3], and inelastic neutron scattering [4] k(1) de/dt _<J(O) [_1 oD/, (2?
probe hydrogen bond dynamics indirectly and can be inwherej(0) = —dh/dt|,— is the integrated flux departing

terpreted in only a qualitative way [5]. While limited to the hydrogen bond configuration space at time zero. The
classical models, the method of molecular dynamics cafunctionk(z) is the average of this integrated flux for those
be used to explore hydrogen bond dynamics at the mitrajectories where the bond is broken at a later tiptaus
croscopic level [6]. Factors controlling the dynamics canthe terminology “reactive flux.” Its zero time value is the
be determined from trajectory calculations of correlationstatistical transition state theory estimate of the rate of
functions. Different types of hydrogen bond correlationrelaxation [12].

functions, as proposed by Stillinger [7], have been com- Thek(z) determined from our simulation of room tem-
puted for liquid water. Different conclusions for the long perature water [13] is shown in Fig. 1. An assortment of
time relaxation have been drawn. Some workers concludeotions leading to hydrogen bond breaking is evident. At
this relaxation is purely exponential; others conclude it isshort timesk(z) quickly changes from its initial value, in-
nonexponential [8]. In this Letter, we demonstrate that thelicating many recrossings in and out of the bonding region
long time dynamics of a single hydrogen bond in ambient
liquid water is indeed characterized by significant nonex-
ponential relaxation, and this complex relaxation is essen-
tially uncorrelated to the specific bonding patterns near the
tagged hydrogen bond.

Our results are based upon an analysis of a large number 1.00 ¢ \V 33
of molecular dynamics simulations employing the single i ™

point charge (SPC) [9] intermolecular potential model for 0.1
liquid water. A configurational criterion for whether a
particular pair of water molecules is bonded allows the
construction of a hydrogen bond population operator,

It is unity when the particular tagged pair of molecules is
hydrogen bonded, according to the adopted definition [10],
and is zero otherwise. Two water molecules are chosen as
being hydrogen bonded only if their interoxygen distance is
less than 3.5 A, and simultaneously the-H ... O angle i
is less than 30[11]. The average number of hydrogen L. ‘ .

bonds in an equilibrium o water molecules i$N(N — 0 4 8 12
1) (h), where(h) denotes the time average bf In the t/ps

dynamical equilibrium of liquid water, the hydrogen bond IG. 1. The reactive flux hydrogen bond correlation function
population operator fluctuates in time. These fluctuation serhilégarithm plot) (1), fo¥ Wgter at room temperature,
are characterized by the correlation function calculated by molecular dynamics. The present data are
c(r) = (h(0)h(2))/{(h). (1)  obtained from ten consecutive trajectories, each of 24 ps in
. L o length. The inset panel shows the log-log plot of the same
This function is the probability that the hydrogen bondfunction, and conditional reactive fluxés, () (labeled 44) and
is intact at timer, given it was intact at time zero. ks (¢) (labeled 33).
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on a time scale of less than 0.1 ps. The dynamics on thigther is participating im hydrogen bonds; otherwisg,,,
time scale is primarily due to librations. Interoxygen vi- is zero.

brations are also evident, in this case on the time scale The indicesm and n serve to characterize the bond-
of 0.1-0.2 ps. Beyond this transient peridd;) decays ing state of the tagged pair of water moleculés,,, ()
monotonically. To the extent that each hydrogen bonds the reactive flux for the subset of equilibrium trajecto-
acted independently of other hydrogen bonds and also irries where the initial bonding state (8:, 7). That is, it
dependently of other processes of similar time scales, this the average integrated flux crossing out of the bond-
long time decay ok(r) would be that of first order kinetics. ing region given the initial bonding state:, n) and given
That is, one might expeét(r) ~ (1/7) exp(—t/7), with+  the bond is broken a time later. The ratio{ p,.h)/{h)
corresponding to the average hydrogen bond lifetime. Ass the probability thatm, n) is the environmental state of
seen in Fig. 1, howevek(r) does not relax exponentially. the tagged bond. To within small statistical uncertainties
Beyond the transient period, the slope of kdg) increases (1%—3%), the simulation results gi¥®,,,,n)/{h) « (2 —
monotonically with time. The log-log plot demonstrates §,,,)mP,,nP, where P, is the probability that a single
that this behavior does not coincide with a power law dewater molecule participates ié1thydrogen bonds [10(b)].
cay over the period of time that we have examined [14]. This proportionality indicates that the number of hydrogen

The long time relaxation referred to in Fig. 1 is in- bonds around a specified water molecule is uncorrelated
variant with respect to the specific definition of a hydro-with that number around a bonded nearest neighbor. Fur-
gen bond. To understand this fact, consider two differenther, we find only small deviations from ideal tetrahedral
but reasonable choices of hydrogen bond definition. Theonfigurations in thatm — 4| + |n — 4| = 0, 1, and 2,
surfaces in configuration space dividing bonded and norhave relative occurrences 24%, 41%, and 26%, respec-
bonded states are different for the two different definitionstively. Hence, spontaneous fluctuations in water structure
But if both definitions are physically reasonable, the divid-at room temperature are not large, as is consistent with
ing surfaces will lie close to each other. Trajectories pasmean field models of water [19].
quickly between nearby surfaces. Alteration of the divid- As for the dynamical consequences of these fluctuations,
ing surface will thus affect the short time transient decaywe have evaluated the fifteen conditional reactive fluxes
and the amount of recrossings, but not the longer time rewith 1 < m,n = 5, all others being statistically negligi-
active flux. Thus, the post-transient relaxation illustratecble. For studying the long time relaxation, we computed
in Fig. 1 is not an artifact of the specific hydrogen bondthe reactive flux functions out to times 2 orders of mag-
definition employed in the calculation. It is therefore anitude longer than the transient time. Some of the repre-
property of liquid water. The assignment 6{0.3 ps as  sentatives are given in Fig. 2 and the inset panel of Fig. 1.
the end of the transient period would coincide with the ar-
bitrary temporal definition of a hydrogen bond, used by
Sciortino and Fornili [8(e)].

Others [8(c),14,16] have noted that hydrogen bond dy-
namics is not characterized by a single relaxation time. For
room temperature water, the physical origin of this com- 4
plexity at long times can be understood in terms of the
coupling of hydrogen bond dynamics to diffusion. In par-
ticular, two molecules can diffuse apart only after the hy-
drogen bond between them breaks, and a broken bond can
reform if a molecule reverses its direction and diffuses
back to its partner. This aspect of hydrogen bond dynam-
ics clearly introduces a continuum of relaxation times, as -4
we have quantified elsewhere [17]. Here, we focus instead 4
on the effects of correlations between different hydrogen
bonds. Previous work would suggest that these correla- 8
tions may also play a significant role [8(a),8(e),14,16,18].

We can unambiguously examine their role by partitioning t/ps
the trajectories that contribute to the reactive flik), FIG. 2. Logarithm of the conditional reactive fluxes,,(t).

according to the particular environment of the hydrogenrhe data presented are obtained from 25 consecutive trajec-
bond. In particular, we define conditional reactive fluxtories, each of 8 ps in length. The values @in) are in-
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correlation functions, dicated by labels at the right. For the sake of comparison,
the total reactive flux,k(z), is presented (unlabeled curve).
kpn(£) = {pmnjO)[1 — () )/{ pmnh), (3) To make separate viewing possible, the labeled curves have

) ) i been shifted as follows: Ji,(t)/ps '] — 1, In[ky(2)/ps '] —
wherep,,, is unity when one of the water molecules in the 2 In[k,,(:)/ps '] — 3, In[ks3(1)/ps '] + 1. IN[kss(r)/ps '] +

tagged pair is participating im hydrogen bonds, and the 1.5, In[ks;3(¢)/ps '] + 3.5, In[kxn(¢)/ps '] + 4.
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