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Edge Localized Modes as New Bifurcation in Tokamaks
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A model of giant edge localized modes in tokamaks is developed. The theory of self-sus
turbulence of a current-diffusive ballooning mode is extended. A bifurcation from theH mode to a
third state with magnetic braiding, theM mode, is found to occur if the pressure gradient reach
a critical value. Nonlinear excitation of magnetic perturbation takes place, followed by catastr
increase of transport. With backtransition to theHsLd mode, a new hysteresis is found in the gradien
flux relation. The process then repeats itself. Avalanche of transport catastrophe across the
radius is analyzed.
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The H mode in tokamaks [1] is a bifurcation phenom
enon in confined plasmas and is one of the typical
amples for the structural transition in the system far fro
thermal equilibrium. This state is associated with the s
regulating dynamics, such as transition, transport bar
formation, and pulsating plasma losses. The latter
namics, which are called edge localized modes (ELM
[2], have attracted wide attention from the interest of no
linear dynamics as well as of fusion research.

Various kinds of ELMs have been identified in e
periments [2,3]. The small and frequent one, known
dithering ELMs, was explained in terms of a limit cy
cle due to the hysteresis characteristics in transport
electric field structure [4], based on the electric field
furcation model of theH mode [5]. This picture has bee
confirmed by experiments [6]. At the same time, oth
kinds of ELMs, the repetitive occurrence of isolated gia
bursts, have been widely observed. Due to a possibilit
serious impact on the fusion device, this kind of ELM h
been intensively studied in experiments. The condit
for the occurrence of bursts was observed to be clos
the stability boundary against the linear ideal balloon
mode [2,3,7]. However, it was noticeable that the ma
netic fluctuations, which suddenly start to grow at the o
set of the crash, change the growth rate abruptly with
being preceded by a variation of the equilibrium plas
profile. This observation clarifies that the giant ELMs a
essentially nonlinear and catastrophic events, not co
quences of the growth of linear instabilities. Several th
oretical efforts have been made as explanations [8,9],
including the quasilinear dynamics of magnetohydrod
namic (MHD) mode [9]; however, the understanding
giant ELMs is far from satisfactory.
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Recently, a new theoretical methodology for the plas
turbulence, i.e., the theory of self-sustained turbulen
has been developed to explain theL- and H-mode
confinement [10,11]. In this framework, the possibili
for the onset magnetic stochasticity and the catastro
of transport was identified [12]. This is applied t
the current diffusive ballooning mode (CDBM) in th
presence of the radial electric field shear, which is relev
for the study of theH mode in tokamaks [5,13]. It is
found that the self-sustained magnetic braiding, associa
with the sudden enhancement of transport coefficient
fluctuation level, occurs if the pressure gradient exce
a critical value. This new state (“M mode”) persists
until the pressure gradient becomes lower than ano
critical value. A new hysteresis in the flux-gradie
relation is found, and the periodic dynamics consisting
a fast burst of fluctuations, a fast crash, followed by t
slow buildup of pressure gradient is obtained. Contra
to previous ELM models [4,6,8,9], this new hysteres
exists even without including the flow shear dynamic
The critical pressure gradient is found to be close
experimental observations. The frequency of this cy
and the avalanche of transport catastrophe across
plasma radius are also analyzed. This mechanism
only explains giant ELMs in tokamaks but also serves
one typical example of the self-regulating dynamics in t
nonlinear systems far from thermal equilibrium.

We study CDBM turbulence in high-aspect-ratio an
circular tokamaks. To analyze self-sustained turbulen
the eigenvalue equation of the dressed-test mode
derived, in which nonlinear interactions are renormaliz
in a form of anomalous transport coefficients as [11]
d
dh

F

ĝ 1 l̂n4q4F2

d
dh

µ
ĝ 1 x̂n2q2F 1 vE1

d
dh

∂
p̃ 1 afk 1 cosh 1 ssh 2 a sinhd sinhgp̃2µ

ĝ 1 m̂n2q2F 1 ve1
d

dh

∂
F

µ
ĝ 1 x̂n2q2F 1 vE1

d
dh

∂
p̃ ­ 0 . (1)
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The following notation is used:̃p the perturbed pressure
g the growth rate,n the toroidal mode number;x, m, and
l stand for thermal conductivity, viscosity, and curre
diffusivity, respectively, F ­ 1 1 ssh 2 a sinhd2, h

the ballooning coordinate [14],a ­ 2q2Rb0, s ­ rq0yq,
q the safety factor,R the major radius,a the minor
radius,vE1 ­ E0

rtApyB, tAp ­ qRyVA (VA being Alfvén
velocity, andb ­ 2m0pyB2. A caret indicates normali-
zation ĝ ­ gtAp , m̂ ­ mtApa22, x̂ ­ xtApa22, and
l̂ ­ sdyad2m̂e, whered is the collisionless skin depth
Although Eq. (1) was derived in the limit ofE 3 B
transport, the same equation is formally obtained
the limit of magnetic stochasticity [15] with differen
eigenvalues (x, l, m).

Equation (1) determines the transport coefficient,
fluctuation level, and the scale length of fluctuations. T
Prandtl numbers were found to be close to unity [1
and we setxeyme , xiymi , 1 here for simplicity. The
transport coefficient was obtained as

x̂i ­
a3y2

gss, adf1 1 Gss, adv2
E1g

µ
d

a

∂2 x̂e

x̂i
, (2)

where the coefficientsg andG, which are of the order of
1 and 10, respectively, are given explicitly in [10,12] a
are not repeated here.

In the H mode, (and theL mode as well, which
is given by taking the limit ofvE1 ! 0) the Ẽ 3 B
transport dominates, and the relation̂xeyx̂i . 1
holds. Introducing normalization aŝf ­ f̃y´ayAB0,
k̂u,r ­ aku,r , B̂r ­ B̃ry´B0, the static potential
perturbation and the scale lengths were given
f̂H,L ­ x̂H,L, k̂u ­ fgs1 1 Gv

2
E1da21g1y2ayd and

k̂r ­ sg21y2s1 1 Gv
2
E1d1y4k̂u , respectively [11]. Ohm’s

law gives the relation between the static and magn
perturbations aŝBr ­ ssk̂2

ua2yd2k̂4
'k̂rdf̂yx̂. Substituting

k̂r ,u , we obtain the magnetic fluctuation amplitude in t
H sLd mode as

B̂H
r ­ g21s1 1 s2g21

q
1 1 Gv

2
E1 d22s1 1 Gv2

E1d27y4

3 a3y2dya . (3)

Based on Eq. (3), the critical condition for the magne
island overlapping is derived. The magnetic island s
Dis is estimated asDisya ­ s21B̂r for the odd-c (even-
f) mode, wherec is the parallel component of vector po
tential. The magnetic island width expands in proport
to a3y2. The separation distance of each rational surfacd
can be estimated bŷd ; dya ­ ssk̂ud21. It grows in pro-
portion toa1y2. The Chirikov condition for island over
lapping, D̂is ­ d̂y2, is satisfied if the pressure gradie
becomes high enough. Using Eq. (3), the threshold c
dition is given as

a .

p
g

2
s1 1 Gv2

E1d5y4s1 1 s2g21
q

1 1 Gv
2
E1 d2

; aH
c . (4)

When a increases and reachesaH
c , fluctuating islands

overlap. The condition (4) shows that the critical val
t

n

e
e
],

s

ic

c
e

n
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FIG. 1. Size of the magnetic island,Dis, and the separation
distance of the mode rational surfaced as a function of
a. (Parametersdya ­ 1022, q ­ 3, ´ ­ 1y8, s ­ 1.5, and
vE1 ­ 0.12.)

aH
c is close to unity, and that it is increased by th

magnetic shear or by the radial electric field shear.
For comparison with experimental results, Eq. (

is solved numerically. The solution for the lea
stable modes is obtained for given equilibrium p
rameters sa, s, ´, . . .d. The critical condition is
calculated. In calculatingB̂r , the evaluation k2

r ­
n2q2

R`
2`ssh 2 a sinhd2p̃shd2dhs

R`
2` p̃shd2dhd21 is

used with the solution of̃p. Figure 1 illustrates the island
width and separation distance as a function of the press
gradient. It confirms thea dependencies ofDis and d,
and demonstrates that the island overlapping condit
is satisfied whena is of the order of unity. Figure 2
shows the critical conditions for the magnetic braidin
in the s-a diagram. The thick solid line shows the ca
of weak radial electric field shear, and the thick dash
line indicates the stronger case. The critical bound
aH

c increases approximately linearly in the high she
case. TheM-mode transition disappears in low she
and higha region, where the second stability from th
ideal MHD analysis has been predicted. For referen
the boundary for linear ideal ballooning instability is als
shown, which turns out to be close to the boundary
nonlinear bifurcation.

When the magnetic perturbation is so large as to s
isfy the Chirikov criterion, Eq. (4), the electron transpo
is more strongly enhanced than that of ions,xe ¿ xi .
Under these circumstances, Eq. (2) shows that the
and electron transports are strongly enhanced from
H-mode (L-mode) transport. In the case for stochas
magnetic field, the turbulence renormalization gives
relation between the fluctuation level and transport c
efficient asx̂M

e ­ syteyyApd´k̂21
r MsB̂r , whereyte is the

electron thermal velocity (see, e.g., [16]). When the el
tron decorrelation time due to transportt

e
dec is shorter than

the transit timete
t , i.e., t

e
decyte

t , 1, thenMs . t
e
decyte

t
holds [17]. If t

e
decyte

t . 1, one hasMs . 1, which was
analyzed in [18]. Introducing the ratioM which is dis-
cussed later, the enhanced transport coefficient is
pressed as

x̂M
e ­

q
miymeMx̂M

i , x̂
MH,L

i ­
q

miymeMx̂H,L , (5)
921
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FIG. 2. Boundary of theH to M-mode transition in the
s-a diagram. The thick solid line indicates the boundary
vE1 ­ 0.1 and the thick dashed line forvE1 ­ 0.5. The M-
mode transition does not occur for the case of lower magn
shear. The thin dotted line indicates, for reference, the lin
ideal ballooning mode instability.

where M . t
i
decyti

t for t
i
decyti

t , 1 and Ms . 1 for
t

i
decyti

t . 1 [17]. This result is consistent with the on
for the double streaming regime in [17].

The level and fluctuation scale lengths are calcula
In the M mode, the fluctuation scale length becom
longer,sk̂M

u d21 ­ sk̂H
u d21sM2miymed1y4. For cases where

the ratiosk̂uyk̂' and k̂ryk̂u are unchanged from those i
theH sLd mode, the magnetic perturbation is calculated

B̂M
r ­ sg21s1 1 Gv2

E1d21y4smiymed1y4M3y2M21
s q21

3 b
21y2
i asdyad , (6)

where bi ­ y
2
tiyy

2
A. The backtransition from theM to

the H sLd mode is obtained by calculating the islan
width D

M
is and the spacing of the rational surfacedM .

Substituting Eq. (6) and̂kM
u,r , the conditionD

M
is . dMy2

can be rewritten as

a $ gs22s1 1 Gv2
E1d21y2sMsyMd2q2bi ; aM

1 . (7)

The region of the multifold branches is derived asa
M
1 #

a # aH
c . The enhanced transport coefficient in theM

state and the multifold branches in self-sustained tur
lence provide a new hysteresis in the flux-gradient re
tion if a

M
1 , aH

c . The schematic drawing of the variou
branches are shown in Fig. 3. The relationxsa; sd has the
nature of cusp-type bifurcation, and the cusp point is de
mined by the relationaM

1 ­ aH
c . Hysteresis disappears

a
M
1 , aH

c is not satisfied.
A cycle, the sequence of which consists of (1) t

buildup of pressure gradient inH mode, (2) theH-to-M
transition ata ­ aH

c , (3) the crash of plasma profile b
the M-mode transport, and (4) the backtransition to t
H at a ­ a

M
1 , is attributed to a giant ELM. At some

location near the edger ­ rCh, the Chirikov condition
for the magnetic island overlapping,a ­ aH

c , could be
first satisfied. A catastrophic transition sets in, and
rapid electron loss occurs and the fast ion loss is cause
922
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FIG. 3. Multifold solution of self-sustained turbulence. The
mal flux is shown as a function of the pressure gradient para
etera.

well: The electron and ion energy, as well as the dens
collapse. The time scale for the turbulence growtht̂gr is
given by the inverse of the nonlinear growth rate [10]
t̂gr , s1y3g1y6s1 1 s2g21d21y3a21y2, being the order of
the poloidal Alfvén time. Pressure is increased outsi
sr . rChd and is reduced insidesr , rChd. Thus the pivot
point of the pressure perturbation is close to the rad
r ­ rCh.

The chainedM-mode transitions propagate fromr ­
rCh. The typical time scale of the avalanche is ord
estimated from a simple model of dominos. The tim
for profile change atr ­ rCh is given roughly bytM

c ­
s,M

r d2yxM
e , and the steepening of pressure gradient

induced atr . rCh 6 ,M
r , leading to the onset of critical

condition at these locations. [The scale length,M
r is given

as skM
r d21.] The transport catastrophe propagates at t

speed of the order ofVava . ,M
r ytM

c . If the avalanche
occurs in the regionrp , r , rCh, the propagation time
is given bytava ­ srCh 2 rpdtM

c y,M
r . It is much faster

than the diffusion time of theL phase,tL
diff ­ srCh 2

rpd2yxL
e . The locationrp could be the place where the

hysteresis disappears, i.e.,a
M
1 srpd ­ aH

c srpd.
Finally, the period of ELM bursts is derived. The pe

riodic dynamics occurs if the power across the plasm
surface, Pout exceeds the threshold value,PG-ELM

th ­
s2p2aRB2ym0q2RdxH saH

c daH
c . The frequency of ELMs

nELM is given asnELM . stH 1 tgr 1 tM
c d, wheretH is

the time during which the value ofa increases froma1 to
aH

c . Sincetgr andtava are much shorter thantH , the ELM
period is approximated asnELM . t

21
H . An analytic esti-

mate ofnELM is given by balancing the input and loss en
ergies asPoutynELM . s4p2aD2B2y2m0q2d saH

c 2 a
M
1 d

for Pout ¿ PG-ELM
th (whereD is the typical radial width

of the ELM, D . a 2 rp), showing thatnELM ~ Pout

if s4p2aD2B2y2m0q2d saH
c 2 a

M
1 d is a weak function of

Pout. The dependence ofnELM on other parameters could
be derived from this relation.
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In summary, we presented a theoretical model of a gi
ELM as a bursting phenomenon caused by theM-mode
transition inside the plasma edge. The cycle of burst a
recovery is attributed to the type-I ELM. TheM-mode
is a transient phase of giant ELMs during which the fie
lines become stochastic because of violation of Chirik
criterion. This model explains several features of the gi
ELM: the sudden crash, rapid radial propagation, the pow
dependence of the period, the critical pressure grad
a ­ aH

c for the onset, and the disappearance in the sec
stability region against the ballooning mode. The criteri
could be close to the ideal beta limit without takin
the E0

r effects into account. The criterion in high-she
limit in Fig. 2, aH

c , sy2, is close to the experimenta
observations [7]. The gradient-flux relation in Fig. 3 giv
a general picture in a phenomenology of theH mode. Near
the threshold power for theL-H transition,Pout , P

LyH
th ,

the limit cycle (dithering ELMs) takes place [5]. In th
regionP

LyH
th ø Pout # PG-ELM

th , the stationary solution is
realized, which corresponds to the ELM-freeH mode. In
the case of the larger power fluxPout $ PG-ELM

th , the giant
ELMs are predicted to occur.

In the presence of the inhomogeneous radial elec
field, the 1D eigenvalue equation in the ballooning co
dinate [Eq. (1)] would be allowed in a smallvE1 limit,
but must be treated in 2D form in general [19]. Th
may change the critical value ofa quantitatively. The
other issue is the self-consistent determination ofMs and
M. In the case oft

j
t # t

j
dec sj ­ e andid, the transit

time is given aste
t ­ Lacyythe, where the autocorrelation

length of the magnetic perturbationLac has the relation
B̃ryB > 1yLackr [17]. By estimating the decorrelation
time asste

decd21 , xM
e skM

u d2, one can estimateM andMs

[20] asMs , 1 andM , sbiad1y2. Substituting thisM
into Eq. (5), we confirm that the form ofx

M
i is consistent

to the result by the scale invariance on the ballooning mo
with magnetic braiding [21]. (Note that the constraint su
as [22] does not apply here, because the turbulent deco
lation rate is larger than the mode frequency.) For the ty
cal value of the experiments,a , 1 andbi , s1 0.1d%,
we haveM , 1y10 1y20. The electron and ion transpo
coefficients in theM state are enhanced by the factor of a
proximately 20 and 5 times, respectively, from those inL
mode. These estimates forM andMs allow the hysteresis
to exist,a1 , ac, if the M-mode transition is possible in
Fig. 2, i.e.,s is greater than unity or so.

Variations invE1 ands would allow new paths of de-
velopment and more complicated oscillation phenome
The magnitude of the ELM event depends on the locat
of the end of avalancherp, the determination for which
requires global solution for profiles. A detailed study
dynamics near the marginal condition of transport chan
was given in [23]; such an investigation would be esse
tial for the case ofPout , PG-ELM

th and must be extended
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to this model with hysteresis. This theory could be alter
if the tearing modes are unstable, suggesting the neces
of careful study on the edge current profile. The stu
on the ion mass effects on theH-mode performance was
started [24], and the impact on ELMs will be discuss
in the future. For the explanation of the type-III ELMs
another theory would be necessary. This is left for futu
analysis.
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