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Synchronizing Hyperchaos with a Scalar Transmitted Signal
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Recent work has considered the possibility of exploiting the phenomenon of chaos synchronization
to achieve secure communication. But theoretical and experimental models studied thus far have
been limited to low dimensional systems with one positive Lyapunov exponent. We investigate chaos
synchronism in high dimensional systems. In particular, in regard to applications to communication,
we show that by transmitting just one scalar signal one can achieve synchronism in chaotic systems
with two or more positive Lyapunov exponents.

PACS numbers: 05.45.+b, 89.70.+c
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Synchronization of chaotic systems has in recent ye
become an area of active research [1–7]. Different
proaches are proposed and being pursued. Among t
is the technique of Pecora and Carroll [2] who show th
when a state variable from a chaotically evolving syst
is transmitted as an input to a replica of part of the origi
system, the replica subsystem (receiver) sometimes
chronizes to the original system (sender). They sugg
that this phenomenon of chaos synchronism may serv
the basis for new ways to achieve secure communicat
Subsequent work enriches and substantiates the claim
6]. In a related paper [4] it is pointed out that the receiv
subsystem does not need to be a replica of part of
sender system. In fact, allowing the use of nonrepl
subsystems adds flexibility and enhances synchronism

In this work we begin by noting that theoretical as w
as experimental studies reported so far concern mainly
dimensional systems with one positive Lyapunov exp
nent. Perez and Cerdeira [7] show that messages ma
by such simple chaotic processes, once intercepted,
sometimes readily extracted. Our objective is thus
implementation of the Pecora-Carroll paradigm of cha
synchronism in high dimensional chaotic systems wh
takes advantage of the increased randomness and u
dictability. In such systems one generally encount
multiple positive Lyapunov exponents (a situation call
hyperchaos [8]). This feature improves security by g
ing rise to more complex time signals, but at the sa
time, it also raises the question of whether by transm
ting just a single scalar variable, as would be desired
communication situation, we can still achieve synchroni
tion. Naively, one speculates that the number of variab
to be transmitted should be equal to that of positive L
punov exponents in order to account for the same num
of unstable directions along the chaotic trajectory. In t
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Letter, using two examples of hyperchaos, one a differe
tial equation and the other a discrete map, we show t
such intuition is incorrect, and in fact, chaos synchronis
is attained over a broad range of parameters by usin
transmitted signal that is expressed as a linear combi
tion of the original phase space variables. We proceed
argue that this approach is general and does not depen
the systems investigated.

Problem formulation.—For specificity, we assume the
sender to be a chaotic system in the form

dxstdydt  Fsssxstdddd , (1)

wherex [ Rm is anm-dimensional vector. In addition,
we take the signal to be transmitted as a scalar variable
the form ustd  KT xstd  K1x1std 1 K2x2std 1 · · · 1

Kmxmstd, with K a constant column vector. HereT
denotes matrix transpose. The receiver subsystem is t
written as

dystdydt  Fsssystdddd 2 Bsssystd 2 ustdddd , (2)

where ystd  KT ystd and B  sB1, B2, . . . , BmdT is an
m-dimensional constant vector.

Observe that ifystd  xstd is plugged into Eq. (2),
the equation is satisfied, meaning that synchronization
chaos is possible for the combined system, Eqs. (1) a
(2). The question is whether this solution is attractin
so that it can be realized in practice. To answer th
question we evaluate the largest Lyapunov exponent
the subsystem Eq. (2) with respect to the trajectoryystd 
xstd. Consider infinitesimal deviations ofystd from xstd,
i.e.,

ystd  xstd 1 dystd .
© 1996 The American Physical Society
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From (2),

ddyydt  f≠Fsydy≠yjyx 2 BKT gdy . (3)

The largest subsystem Lyapunov exponents, denotedL,
are then given by solving (3) using a typical orbitxstd for
the original system (1) and a typical orientation fordys0d,

L  lim
t!`

1
t

ln
jdystdj
jdys0dj

. (4)

WhenL , 0, for typical ys0d fi xs0d,

lim
t!`

jystd 2 xstdj  0 . (5)

Namely, we observe the occurrence of synchronism.
We note that it is a common practice to transm

a signal that is a phase space variable of the origi
system. It is found that synchronism is often not attain
when this is the case. The problem becomes m
acute when the original chaotic system has two or m
positive Lyapunov exponents. For such systems, e
the use of a nonreplica receiver subsystem as propo
in [4], which has tunable parameters in theB vector, can
become inadequate. In this regard, our approach outli
above represents an important step in methodology tow
remedying the situation. In particular,L in Eq. (4) is
now a function of the2m parameters contained in bothK
andB vectors. This enlargedK-B space renders greate
flexibility not only in designing the characteristics of th
transmission but also in choosing the correct parame
combinations to meet the condition for and enhance
performance of synchronism. Specifically, our task
now reduced to that of locating a suitable region in t
K-B space for whichL is negative. In what follows we
demonstrate how this is done and illustrate why it c
be done using two examples, one a four variable Rös
equation exhibiting two positive Lyapunov exponents, a
the other a coupled map lattice allowing as many posit
Lyapunov exponents as the system size.

Example 1.—The hyperchaotic Rössler [8] system w
treat here is written as

dx1ydt  2x2 2 x3 , (6)

dx2ydt  x1 1 0.25x2 1 x4 , (7)

dx3ydt  3.0 1 x1x3 , (8)

dx4ydt  20.5x3 1 0.05x4 . (9)

Numerical evidence indicates that the attractor h
two positive Lyapunov exponents,l1  0.11 and
l2  0.02. Choosing K  ssinu, 0, cosu, 0dT and
B  5.0scosu, 0, sinu, 0dT somewhat arbitrarily, we
plot the largest receiver subsystem Lyapunov exponenL
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FIG. 1. The largest subsystem Lyapunov exponentL for
the Rössler system Eqs. (6)–(9) plotted as a function of
parameteru. It is seen that, over a substantial range of theu
value,L is negative, indicating synchronism between the sen
and the receiver systems.

as a function ofu in Fig. 1. As can be seen, there is
range ofu values over whichL is negative. In Fig. 2 we
show the result of our synchronization experiment p
formed on the Rössler system by plotting the differen
betweenx1 andy1 for u  py3. Within the resolution of
the figure we obtain chaos synchronism in about 60 ti
units. We remark that in this example, when a pla
phase space variable (i.e.,xi, i  1, 2, 3, 4) is sent as the
input to the receiver subsystem, no synchronization
observed.

Clearly, for our approach to be successful we need
resolve the question concerning how to find regions in
K-B parameter space yielding negativeL. We propose
the following general method as a possible solution. Fir
for a given system, replace in Eq. (3) the vectorx and
its functions by their average values calculated on

FIG. 2. Result from our numerical synchronization expe
ment usingu  py3 (see Fig. 1). The difference between th
variable x1 of the sender and the variabley1 of the receiver
asymptotes toward zero as time progresses.
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original chaotic attractor. Now Eq. (3) becomes a line
equation of constant coefficients. Second, solve this lin
equation and study how the eigenvalues change as
parametersBi and Ki vary. This will give us a rough
indication as to how to locate a favorable region
start our search. Third, beginning in a favorable reg
obtained above, integrate the full Eqs. (1) and (3), a
gradually expand the parameter space exploration u
finding a region where the value ofL is negative. Our
experience shows that, in general, the more posi
Lyapunov exponents we have in the system, the sma
is such a region. Other ways of searching the param
space tailored for specific systems are also attempte
our work, and they prove to be effective.

Example 2.—As stressed earlier, achieving synchr
nism with a scalar transmitted variable is a problem
dependent of the number of positive Lyapunov expone
involved. To further illustrate, we study a discrete co
pled map lattice [9] that can be treated more analytica
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In component form, the iteration equation analogous
Eq. (1) is

xisn 1 1d  Fisssxsndddd

 s1 2 ei,i21 2 ei,i11dfsssxisndddd

1 ei21,ifsssxi21sndddd 1 ei11,ifsssxi11sndddd , (10)

wherei labels the lattice site,n denotes the discrete time
fsxd prescribes the local chaotic dynamics at each latt
site, andei,i11 is the coupling strength from sitei to site
i 1 1, which is the same as that from sitei 1 1 to sitei,
ei11,i , namely,ei,i11  ei11,i . Here we use nonuniform
coupling to simulate a reaction-diffusion equation wi
space dependent diffusion rate. Letm be the size of
the lattice and assume periodic boundary condition. T
receiver equation analogous to (2) is
yisn 1 1d  Fisss ysndddd 2 Bisyn 2 und  s1 2 ei,i21 2 ei,i11dfsss yisndddd 1 ei21,ifsss yi21sndddd

1 ei11,ifsss yi11sndddd 2 Bisyn 2 und , (11)
a
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where un  KT xsnd  K1x1snd 1 K2x2snd 1 · · · 1

Kmxmsnd is the transmitted scalar signal, an
yn  KT ysnd  K1y1snd 1 K2y2snd 1 · · · 1 Kmymsnd.
The linearized equation determining the subsystem L
punov exponents is then

dysn 1 1d  f≠Fsydy≠yjyxsnd 2 BKT gdysnd . (12)

To facilitate our analysis we restrict ourselves to t
special case offsxd  2x mod1 andm  3. Let e1,2 
e2,1  e1, e2,3  e3,2  e2 ande3,1  e1,3  e3. Under
these conditions Eq. (12) becomes

dysn 1 1d  sA 2 BKT ddysnd , (13)

whereA is a constant matrix taking the explicit form,

A  2

0B@ 1 2 e1 2 e3 e1 e3
e1 1 2 e1 2 e2 e2

e3 e2 1 2 e2 2 e3

1CA .

For computation, we further fixe1  0.1, e2  0.05,
and e3  0.15. With this choice of parameters,A’s
eigenvalues are calculated to be 2.0, 1.57, and 1
Thus the Lyapunov exponents for the original system
l1  0.69, l2  0.45, andl3  0.21, all being positive.

Now consider the problem of achieving synchronis
between Eq. (10) and Eq. (11) in the presence of th
positive Lyapunov exponents by transmitting a scalarun.
-

3.
e

e

To reduce the task of searching the parameter space
somewhat arbitrarily letB  s1, 1.5, 0dT and let K 
rs4, 22, 3dT . In Fig. 3 we plot the value of the larges
subsystem Lyapunov exponentL as a function ofr.
Clearly, in the region of3.51 , r , 4.75, L becomes
negative.

This example can be put on a more general footing
recalling a result from control theory [10]. Consider th
following discrete control system,

zsn 1 1d  Azsnd 1 Bpsnd , (14)

FIG. 3. The largest subsystem Lyapunov exponentL for the
coupled map lattice Eq. (10) plotted as a function of t
parameterr. Synchronism is achieved forr in the range
3.51 , r , 4.75 over whichL is negative.
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where z [ Rm, A is an m 3 m constant matrix,B is
a column vector, andpsnd is a scalar control signal.
Relating psnd to the current state of the systemzsnd in
a feedback fashion,psnd  2KT zsnd, Eq. (14) becomes

zsn 1 1d  sA 2 BKT dzsnd , (15)

which is in the same form as Eq. (13). The question f
control theory is how to design a vectorK such thatz  0
becomes an attracting fixed point with any desired deg
of stability. It can be shown [10] that, if the vector
B, AB, A2B, . . . , and Am21B are linearly independent,
then for any given set of numbersm1, m2, . . . , mm one
can find aK so that the matrixA 2 BKT has this set of
numbers as its eigenvalues. An equivalent way to expr
the above condition is to construct a controllabilit
matrix C  sB j AB j A2B j · · · j Am21Bd and require
DetsCd fi 0.

For the coupled map lattice, the example ofm  3 with
the set of parameters chosen above the determinant of
controllability matrix has the value of 0.08. This conform
with the finding in Fig. 3, showing that the synchronizin
solution can be made stable by selecting suitable value
Ki . It is interesting to note that, if the coupling in Eq. (10
is uniform, i.e., e1  e2  e3, then the controllability
matrix has a zero determinant regardless of howB is
chosen. This means that one will not be able to use a sc
transmitted signal to synchronize the receiver subsyste
But we argue that this is a very rare case in terms of
possible dynamical systems in the form of Eq. (10).
slight deviation from the uniform coupling situation wil
typically restore the controllability condition and enab
again chaos synchronism by a single transmitted sca
signal.

In summary, we have considered the implementati
of the Pecora-Carroll synchronization paradigm in hig
dimensional chaotic systems with two or more positiv
Lyapunov exponents. In particular, pertaining to th
application to communication, we have addressed
issue of whether chaos synchronism is achievable in s
systems by transmitting a single scalar signal. We gi
an affirmative answer to the question by proposing t
use of a transmitted signal that is a linear combinati
of the original phase space variables. This approa
provides adjustable parameters in the relative weight
r

ee

ss

the

of

lar
m.
ll

lar

n
h
e
e
e

ch
e
e
n
h

of

these variables, and proves to be effective when app
to two typical examples of hyperchaos, one a different
equation system and the other a coupled map lattice.
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