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Recent work has considered the possibility of exploiting the phenomenon of chaos synchronization
to achieve secure communication. But theoretical and experimental models studied thus far have
been limited to low dimensional systems with one positive Lyapunov exponent. We investigate chaos
synchronism in high dimensional systems. In particular, in regard to applications to communication,
we show that by transmitting just one scalar signal one can achieve synchronism in chaotic systems
with two or more positive Lyapunov exponents.

PACS numbers: 05.45.+b, 89.70.+c

Synchronization of chaotic systems has in recent yearketter, using two examples of hyperchaos, one a differen-
become an area of active research [1-7]. Different aptial equation and the other a discrete map, we show that
proaches are proposed and being pursued. Among thesuch intuition is incorrect, and in fact, chaos synchronism
is the technique of Pecora and Carroll [2] who show thatjs attained over a broad range of parameters by using a
when a state variable from a chaotically evolving systentransmitted signal that is expressed as a linear combina-
is transmitted as an input to a replica of part of the originakion of the original phase space variables. We proceed to
system, the replica subsystem (receiver) sometimes symrgue that this approach is general and does not depend on
chronizes to the original system (sender). They suggeshe systems investigated.
that this phenomenon of chaos synchronism may serve as Problem formulation—For specificity, we assume the
the basis for new ways to achieve secure communicatiorsender to be a chaotic system in the form
Subsequent work enriches and substantiates the claim [3—

6]. In arelated paper [4] it is pointed out that the receiver dx(t)/dt = F(x(1)), ()
subsystem does not need to be a replica of part of the

sender system. In fact, allowing the use of nonreplicavherex € R™ is anm-dimensional vector. In addition,
subsystems adds flexibility and enhances synchronism. we take the signal to be transmitted as a scalar variable in

In this work we begin by noting that theoretical as wellthe form u(r) = K'x(1) = Kix;(t) + Kyxp(t) + -+ +
as experimental studies reported so far concern mainly lo»x.(¢), with K a constant column vector. HerE
dimensional systems with one positive Lyapunov expodenotes matrix transpose. The receiver subsystem is then
nent. Perez and Cerdeira [7] show that messages maskatiitten as
by such simple chaotic processes, once intercepted, are
sometimes readily extracted. Our objective is thus the dy(t)/dt = F(y(1)) — B(v(r) — u(?)), (2)
implementation of the Pecora-Carroll paradigm of chaos - -
synchronism in high dimensional chaotic systems whictVhere v(r) = K7y(z) and B = (B, B,,.... B,)" is an
takes advantage of the increased randomness and unpfé-dimensional constant vector. _
dictability. In such systems one generally encounters Observe that ify(s) = x(s) is plugged into Eq. (2),
multiple positive Lyapunov exponents (a situation calledthe equation is satisfied, meaning that synchronization of
hyperchaos [8]). This feature improves security by giv-cha@os is possible for the combined system, Egs. (1) and
ing rise to more complex time signals, but at the samé2)- The question is whether this solution is attracting

time, it also raises the question of whether by transmitSC that it can be realized in practice. To answer this
ting just a single scalar variable, as would be desired in guestion we evaluate the largest Lyapunov exponent for

communication situation, we can still achieve synchroniza€ Subsystem Eq. (2) with respect to the trajectdry =

tion. Naively, one speculates that the number of variable¥(?). Consider infinitesimal deviations gf/) from x(z),
to be transmitted should be equal to that of positive Lyal-€-

punov exponents in order to account for the same number

of unstable directions along the chaotic trajectory. In this y(r) = x(t) + 8y(r).
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From (2), 0.2
ddy/dt = [9F(y)/dyly—x — BK"]dy. ®3) ot
The largest subsystem Lyapunov exponents, dendted
are then given by solving (3) using a typical orkit) for A O
the original system (1) and a typical orientation &yr(0),
.1 |8yl 0.1
A=1m = In . 4
M7 M oy @
WhenA < 0, for typical y(0) # x(0), a3 Pll6 PI/3 Pil2
lim ly() = x(0)] = 0. (5) ’

FIG. 1. The largest subsystem Lyapunov expondntfor

; the Rossler system Egs. (6)—(9) plotted as a function of the
Namely, we observe the occurrence of synchronism. parametem. It is seen that, over a substantial range of ¢he

We note that it is a common practice to transmit,qye A is negative, indicating synchronism between the sender
a signal that is a phase space variable of the originadnd the receiver systems.

system. It is found that synchronism is often not attained

when this is the case. The problem becomes more

acute when the original chaotic system has two or more ] o )
positive Lyapunov exponents. For such systems, evefS @ function of¢ in Fig. 1. As can be seen, there is a
the use of a nonreplica receiver subsystem as proposé@nge ofé values over which\ is negative. In Fig. 2 we

in [4], which has tunable parameters in tBevector, can show the result 9f our synchronlzatlon_ experiment per-
become inadequate. In this regard, our approach outline@med on the Rossler system by plotting the difference
above represents an important step in methodology towar@gtweenx; andy, for 6 = /3. Within the resolution of
remedying the situation. In particulasy in Eq. (4) is thg figure we obtain chaqs sy_nchronlsm in about 60 time
now a function of th&m parameters contained in boka ~ units. We remark that in Fh's example, when a plain
and B vectors. This enlargeK-B space renders greater Phase space variable (i.e;, i = 1,2,3,4) is sent as the
flexibility not only in designing the characteristics of the INPut to the receiver subsystem, no synchronization is
transmission but also in choosing the correct parametetPserved.

combinations to meet the condition for and enhance the Clearly, for our approach to be successful we need to
performance of synchronism. Specifically, our task isresolve the question concerning how to find regions in the
now reduced to that of locating a suitable region in thel-B parameter space yielding negatide We propose
K-B space for whichA is negative. In what follows we the foII(_)Wlng general method as a possible solution. First,
demonstrate how this is done and illustrate why it carfo" & given system, replace in Eq. (3) the vectoand

be done using two examples, one a four variable RssldfS functions by their average values calculated on the

equation exhibiting two positive Lyapunov exponents, and
the other a coupled map lattice allowing as many positive

0.2

Lyapunov exponents as the system size.
Example 1—The hyperchaotic Rossler [8] system we
treat here is written as
0.14
dxl/dt = —X2 — X3, (6) IS
dxy/dt = x; + 0.25x2 + x4, (7) S I |
dX3/dl = 3.0 + x1x3, (8)
dxy/dt = —0.5x3 + 0.05x4. 9 oA 5 py oo
Numerical evidence indicates that the attractor has ¢

two positive Lyapunogv - exponenisi; = 0.11 and FIG. 2. Result from our numerical synchronization experi-

— i — H T
A2 = 0.02, Choo_smg Ig = (sing, 0, COSH’, 0) . and ment usingd = 7 /3 (see Fig. 1). The difference between the
B = 5.0(cos®, 0, sing, 0)° somewhat arbitrarily, we variable x, of the sender and the variablg of the receiver
plot the largest receiver subsystem Lyapunov expofent asymptotes toward zero as time progresses.
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original chaotic attractor. Now Eq. (3) becomes a lineain component form, the iteration equation analogous to

equation of constant coefficients. Second, solve this linedEq. (1) is

equation and study how the eigenvalues change as the

parametersB; and K; vary. This will give us a rough

indication as to how to locate a favorable region tox;(n + 1)= F;(x(n))

start our search. Third, beginning in a favorable region

obtained above, integrate the full Egs. (1) and (3), and = (1= €1 = €iir)f(xi(n)

gradually expand the parameter space exploration until + €1, f(xi-1(n)) + €41, f(xiv1(n)), (10)

finding a region where the value d¢f is negative. Our

experience shows that, in general, the more positive

Lyapunov exponents we have in the system, the smallevherei labels the lattice site; denotes the discrete time,

is such a region. Other ways of searching the parametef(x) prescribes the local chaotic dynamics at each lattice

space tailored for specific systems are also attempted site, ande; ;4 is the coupling strength from siteto site

our work, and they prove to be effective. i + 1, which is the same as that from sitet- 1 to sitei,
Example 2—As stressed earlier, achieving synchro-e€;4+,;, namely,e;;+1 = €;+1;. Here we use nonuniform

nism with a scalar transmitted variable is a problem in-coupling to simulate a reaction-diffusion equation with

dependent of the number of positive Lyapunov exponentspace dependent diffusion rate. Let be the size of

involved. To further illustrate, we study a discrete cou-the lattice and assume periodic boundary condition. The

pled map lattice [9] that can be treated more analyticallyreceiver equation analogous to (2) is

yiln + 1) = Fi(y(n)) — Bi(vy, —up) = (1 — €;-1 — €,i+1)f(yi(n)) + €i-1,f(yi-1(n))
+ €41, f (yie1(n)) — Bi(v, — uy), (11)

I
where u, = K'x(n) = K1x1(n) + Kaxa(n) + --- + To reduce the task of searching the parameter space, we
Knxn(n) is the transmitted scalar signal, andsomewhat arbitrarily leB = (1, 1.5, 0)" and letK =
v, = K'y(n) = Kiy1(n) + Kayo(n) + --- + K, yu(n). r(4, —2, 3)T. In Fig. 3 we plot the value of the largest
The linearized equation determining the subsystem Lyasubsystem Lyapunov exponewt as a function ofr.
punov exponents is then Clearly, in the region of3.51 < r < 4.75, A becomes
negative.
dy(n + 1) = [0F(y)/dyly—xm) — BK"18y(n). (12) This example can be put on a more general footing by
recalling a result from control theory [10]. Consider the
following discrete control system,
To facilitate our analysis we restrict ourselves to the
special case of (x) = 2xmodl andn = 3. Lete;, = z(n + 1) = Az(n) + Bp(n), (14)
€)1 = €1, €3 = €37 = €) and63,1 = €13 = €3. Under

these conditions Eq. (12) becomes 04

dy(n + 1) = (A — BK")dy(n), (13)

0.2

whereA is a constant matrix taking the explicit form,

1—€ — € €] €3 A
A=2 €] 1 - €] — € € . -0.24
€3 € 1 — €) — €3

-0.4
For computation, we further fix; = 0.1, e, = 0.05,

and e3 = 0.15. With this choice of parametersA’s 06 : : :
eigenvalues are calculated to be 2.0, 1.57, and 1.23. 8 35 4 45 5
Thus the Lyapunov exponents for the original system are r

AINZ 0.69, /\Z.d: Ot.ﬁS, andb/|\3 N (}'21’§” pelng posr;tlve._ FIG. 3. The largest subsystem Lyapunov expongrfor the
Ow consider the problem of achieving sync ronlsmcoupled map lattice Eq. (10) plotted as a function of the

between Eq. (10) and Eq. (11) in the presence of thregarameterr. Synchronism is achieved for in the range
positive Lyapunov exponents by transmitting a scalar  3.51 < r < 4.75 over whichA is negative.
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wherez € R™, A is anm X m constant matrix,B is  these variables, and proves to be effective when applied

a column vector, angp(n) is a scalar control signal. to two typical examples of hyperchaos, one a differential

Relating p(n) to the current state of the systerfw) in  equation system and the other a coupled map lattice.

a feedback fashiom(n) = —K”z(n), Eq. (14) becomes This work is supported by a grant from the Office of
Naval Research. E.J. Ding’s research is also supported

zin + 1) = (A — BKD)z(n), (15) by the Natural Science Foundation of China.

which is in the same form as Eq. (13). The question for

control theory is how to design a vectrsuch thatz = 0

becomes an attracting fixed point with any desired degree *1o whom correspondence should be addressed.
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