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Microscopic Model of Upward Creep of an Ultrathin Wetting Film
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We propose a microscopic, analytically solvable model describing the growth of a thin wetting film
climbing on a solid wall (or a fiber) from the bath of liquid. We find analytically that both the length
and the mass of the film grow with timeas /7, in accord with experimental observations, and specify
the physical mechanism responsible for such behavior.

PACS numbers: 68.15.+e, 05.40.4j, 68.45.Gd

Spreading of liquid droplets on surfaces and fibersanalytical approaches. Continuum hydrodynamic theory
plays a crucial role in numerous technologies includingelaborated in [6] attributed the origin of thgr law
painting, coating, dyeing, gluing, and many others [1,2].to gradients of the disjoining pressure [1]. This theory
In all cases, efficient practical applications require pre-is, however, justified [6] only until the thickness of the
cise knowledge of the conditions and laws of spreadingfilm remains at least irmesoscopicange, and thus does
The behavior of themacroscopicproperties characteriz- not explain the growth of molecularly thin films. In
ing spreading drops, e.g., the radius of the macroscopid3], this approach was empirically generalized to the
liquid edge, the height, the profile, and contact angle, arenicroscopic scale, adopting a macroscopic description
presently well understood; these are described by univenf [6], but assuming a different origin of frictional
sal Tanner laws [1-8]. In contrast, current understandindorces. A different approach has been proposed in [18],
of remarkable universal spreading laws omi&roscopic, which viewed the liquid drop as an incompressible and
molecular level, evidenced by recent experiments [9], stillcompletely layered structure, transport of molecules being
remains tentative and controversial [10]. allowed only in a “permeation ribbon” near the edges of

The salient features at the microscopic scale is that auccessive layers. This picture yields the correct behavior
spreading drop is announced by a thin liquid film (pre-of the advancing monolayers at long times, when one
cursor [11]) which precedes the macroscopic liquid edgeexpects the difference between the radii of neighboring
The film’'s thickness may vary from several (molecularlayers to be large. However, it does not account for the
size) to a few hundreds of angstroms. Refined ellipsoshort-time regime. Besides, the validity of a macroscopic
metric measurements, carried out on different substratésydrodynamic description of dissipative forces, employed
and with various kinds of simple liquids, polymeric and in [18], requires a more detailed microscopic justification
surfactant melts, have scrutinized the growth of this film[1]. An alternative description [19] employed the solid-
and reached a rather surprising conclusion: The lengtbhn-solid model (SOSM) approximation and derived the
h, of film obeys a universal lavi, « /t [9,12], t being  spreading of a precursor film from the Langevin dynamics
time, regardless of the nature of the species involved. Thef a driven liquid-vapor interface. In [19], which ignored
same holds also for the capillary rise geometry, in whichthe molecular structure of the wetting film, the precursor
a vertical wall is put into a contact with a bath of liquid. was found, however, to advance at a constant speed, in
Here a film of microscopic thickness (or sometimes sevdisagreement with experimental observations.
eral monolayers) extracts from the macroscopic meniscus In this paper we present first a microscopic model
and creeps upwards along the wall. In this case, the lengithescribing growth of the molecularly thin films, focusing
of the film follows the\/7 law within an extended time do- on the capillary rise geometry, in which the solid immersed
main [13], until it gets truncated at very high altitudes dueinto the bath of liquid is either a flat plane or a cylidrical
to gravity. Additionally, spreading of macroscopic metal-fiber. In our model we consider the liquid bath as a
lic beads on a horizontal vibrating corrugated surface alsoeservoir of particles and view the wetting film as a two-
yielded the./r law [14]. Therefore, as far as only time dimensional hard-sphere fluid, enclosed by the SOSM-type
dependence is concerned, tfe law turns out to be in- interface, which stabilizes fluid and mimics the presence
dependent of the nature of the substrate and of the liquidhf attractive forces between the fluid molecules. The
as well as of the geometry, intermolecular interactionsfluid particles move under the action of random thermal
and size of molecules, which can be even macroscopiforces and attractive van der Waals forces exerted by
as in the case with beads: The prefactors in this law, ofhe solid. Besides, particles at the tip of the film [the
course, do depend on the system’s parameters. boundary particles (BP), Fig. 1], which are in contact with

Theoretical studies of this phenomenon have beethe interface, experience an action of the “restoring” force
largely numerical [10,15—-17], with the exception of a fewexerted by the interface. In this approach we establish
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FYY ) interval 7 between the consecutive hops, defined through
% Bulk liquid : - i
..<: ulk liqui the Arrhenius formula. To specify the wells’ positions,
..o Edoe of the Macroscopic we introduce a pair of perpendicular ax@s, Y), X be-
Y g meniscus P ing a vertical coordinate, which measures the altitude of a
e Particles Boundary iven well above the EMM, whil& defines the horizontal

.. d ) particle given .
% of the film position of this well along the EMM.

We assume that all particles (except the BP) have

symmetric transition rates: a probability of hop in any
of four directions isi. Then, the diffusion coefficient is

D = a*/4r. Hard-core interactions constrain particles’
I P hopping motion; no two particles can simultaneously
@ 0 a 2a  hah X occupy the same well. Thus a hop is not fulfilled if the

- _ particle attempts to hop onto an occupied well.
FIG. 1. Upward creep of a thin liquid film on a solid wall. (c) Now we define dynamics of the BP, which among

all particles at a giverY are at the maximal altitudé,.

For the BP the hops down to the EMM and along the
analytically the+/r law for growth of the film and find Y axis are constrained by hard-core interactions, while
the dependence of the prefactor on pertinent parameterspward hops are unconstrained since wells above &,

We also determine thmicroscopicspreading parameter, are always vacant. The most important point is that for
which controls growth. Our results suggest the “vacancythe BP the choice of hopping direction is asymmetric
controlled” mechanism of the film growth; we show that along theX axis; we stipulate that upward hops occur with
the physical origin of the/7 law is due to the diffusive smaller probability(p) than downward hop&;), p < g.
transport of vacancies from the tip of the film to the edge Such an asymmetry may be roughly illustrated in
of the macroscopic meniscus (EMM), Fig. 1, where theyterms of standard the SOSM approximation [19]. Here,
are filled by fluid particles. the cost of interfacial energy for having a film of

More specifically, we define our model as follows. length h, (Fig. 1) is F = Jh,, where the prefactoy is

(a) We consider the liquid bath as a reservoir of par+elated to the surface tension of the liquid-vapor interface.
ticles, which maintains a constant particle concentratiofConsequently, the interface exerts a constant pressure on
Co at the EMM. We estimat€,, as follows: Suppose the film or, in other words, the BP experiences an action
that one has a vacancy directly at the EMM and denot®f a constant “restoring” forcef = —dF/oh, = —J,
as E, the energy gained by moving a particle from thewhich favors its hops downwards to the EMM.
volume of the macroscopic meniscus onto this vacancy. Here we will, however, phrase it differently. The
The value ofE| is determined by two factors—the energy microscopic origin of the asymmetric hopping rates stems
gained due to the motion in the direction of the van derfrom the particle-particle interactions in the film. Typical
Waals forces and the energy lost due to the breaking dfhteractions in real systems are characterized by a harsh
bonds with several fluid molecules, since for the particlegepulsion of a hard-core type at short scales and attraction
in the volume of the meniscus the number of neighbor&t longer distances. Now, upward and downward hops
is greater than that for particles directly on the solid. As-of the BP do not change the number of particles at a
sumingBE, > 1, whereg = 1/kT, and employing stan- given Y but result in stretching or shrinking of the film.
dard Langmuir-type detailed balance arguments we have;rhuj the ghan?e in tTe Iengtlh of tfrlle f”rzn compfrising a

ixed number of particles results in the change of energy.
Co~ 1 - exp(=pBE). (@ Stretching of the film (an upward hop of the BP) will

(b) Consider next particles’ dynamics on the solid surdead to an increase of energy. Conversely, shrinking of
face which can be either planar (solid wall) or cylindrical the film decreases, on average, the interparticle distances
(fiber). We view the motion of particles as an activatedand thus results in a decrease of energy. In other
random hopping, constrained by hard-core interactions, bevords, the presence of particle-particle attraction results in
tween the local minima (with typical separatia) of a  correlations between the local transition rates and spatial
waferlike array of potential wells (wavy line in Fig. 1). distribution of particles; these tend to move towards the
Such wells occur due to the mutual interactions of the parspatial regions in which the particle concentration is high.
ticles in the film (as for the motion in bulk liquids) and also Since the concentration is maximal at the EMM and
because these move in the domain of short-range forces edecreases with an increase of altitude, the particles in the
erted by the atoms of the solid. Without going into detailsfilm experience, on average, an action of a force which
of these interactions, we suppose that for the transition t@&s directed to the EMM. In our model this circumstance
one of neighboring potential wells a fluid particle has towill be taken into account by introducing an integral (over
overcome a potential barrier. This barrier does not createll particles of the film) force which acts on the BP
a preferential hopping direction, but results in a finite timeonly, which is equivalent to the presence of a SOSM-type
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interface with some effective surface enefffy.. Inview of hops up and down and all are indistinguishable. In
of previous discussion, we will defin@_, which is the consequence, a forbidden attempt of any particle to hop
difference of energies lost and gained due to the upwardnto an occupied well is equivalent to the event when
and downward hops of the BP, as the work required tdoth particles interchange their positions, which means
transport a vacancy from the tip of the film to the EMM. that hard-core exclusion is not important on this interval.

Using detailed balance arguments we obtain Thus, as a reasonable approximation we suppose that
p/q = exp—BW._). (2) C(X,1)obeys (fort > 7) the diffusion equation

Note thatW., by definition, equals the difference of the IC(X, 1) 9°C(X,1) B a_2 4

potential energy of vacancy placed at the EMM and the ar ax2 T4 )

potential energy of vacancy at the tip of the film, and Finaly, the dynamics ofc(X,r) at X = h, — a, for
hence is independent of the length and mass of film.  which effects of the hard-core exclusion do matter be-

Next, we turn to the mathematical description of cayse of the asymmetry induced by the BP, is governed
the film’s growth defined by (a) to (c). We introduce

C(X,Y,t) the time-dependent occupation variable of the

well with coordinategX, Y). We note that the origins of ac, _ _a w _Cidhy , (5)
the X andY dependences a@f(X, Y, r) are quite different. dt 4r X |y, _, a di

Along the X axis we have a fixed boundary condition yhere the gradient term accounts for the exchange of
at X = —a and well-defined “restoring” force acting on particles between the sitds — 2a and i, — a. The

the BP. Consequently, we may expect a regular shapgacond term describes the “birth” of vacanciesXat=

of C(X,Y,) along theX axis. In contrast, there is no 1, — ; due to the motion of the BP away from the EMM.
regular Y dependence; despite the uniform boundary afrhe factorcC, arises due to the fact that occupation of the
the EMM, the particle dynamics may cause fluctuationssiie x = 1, — a4 is changed (in the moving frame) only if
along theY axis. Here we ignore these fluctuations [20] this site was occupied before the BP’s hop.

and suppose that the particle concentration varies along Now we have a complete, coupled system of Egs. (3)—
the X axis only, C(X,Y,1) = C(X,7). Then, C(X,1)  (5) describing particles’ dynamics and evolution Jof

is a variable describing occupation of the sXein a e expressC(X,t) in terms of a scaled variable =
stochastic process in which hard-core particles performy 1 4)/n,. Then Eq. (4) takes the form

hopping motion, with the time intervat between the 5 5

consecutive hops, on a one-dimensional lattice of spacing &(;") dC(w) =0, A,= 1 %_ (6)
a. All particles, except the BP, have probabilitiésfor w ] do ) 2D dr ]

hops fromX to X *+ 4, and probability% to stay atX Hence,A,, IS the key pa'ramet'er which determlnes: the
(arising from the hops along the axis). The BP, being growth of the film. To find it we first solve Eq. (6) subject

at X, may jump toX + a with probability p and to  © boundarie<’(w = 0) = Co andC(w = 1) = Cu:

+ A,

X — a with probabilityg (p + g = 5), provided that this Clw) = Co + (Cy — Co) erflw/A,/2) @
site is vacant; and may remain At with probability . erf(y/An/2)

Finally, a source ak = —a maintains a fixed occupation \here erfx) denotes the error function. Then, inserting
of this site. This process is a generalization of a “directectq. (7) into Eq. (5) and employing Egs. (3) and (6) we
walk in a lattice gas” model, studied analytically and fing
numerically in [21] and here we will extend the previously
elaborated continuous space and time description to the /WA’” eX,{ﬂ) en(\/&) = w (8)
process under study. 2 2 2 9-7p

We start with the dynamics of the BP. Its meanFrom Eq. (8) we infer tha#i,, is a well-defined constant

displacement:, obeys the following exact equation: (except for the casep = ¢ which will be studied sepa-
T@ —ap — ag(l - C)) (3) rately). Hence, Eq. (6) yields
dt v hi = 24,,DT, 9)

whereC, = C(X = h; — a,t), i.e., the mean occupation . _

of the site adjacent to the position of the BP. Equation (3}-€-» the experimentally observed behavior [9,13].
shows that hops away from the EMM occur at rate Now, we estimate from Eq. (8) the form af, in the
ap/7 and are unconstrained, while hops in the directior@Symptotic limits whem,, is small or large. We find that
to the EMM have a rateig/r and are constrained by When either3W._ > 1 or Bs < 1, where

factor 1 — Cy, i.e., the probability that sit&d = h, — a s=E — W_, (10)
is vacant. .

Consider now the evolution of’(X.7) on sitesx € parameted,, is small and follows
of the interval[0, h; — 2a]. The particles, which may 1 — exp(—Bs) 1"
be present at this interval, all have equal probabilities m expBW_) — 1° (11)
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