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We study the effect of bias diffusion on the autocorrelation functions of the one-dimensional
annihilation reactionA 1 A ! inert. Exact results are given for a subset of transition probability
rates. Unlike equal-time functions, the interplay between hard-core interactions and the drift velocity
gives rise to a rich nonequilibrium behavior of autocorrelation and intermediate scattering functions.
Our results are supported and compared with Monte Carlo simulations.
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Reaction-diffusion (RD) processes have been ext
sively investigated in recent years, giving rise to a v
body of work [1]. In lower dimensions they provide rele
vant examples of strongly fluctuating systems which a
no longer describable by standard mean-field-like che
ical rate equations. These models are closely relate
coagulation processes [2], random sequential adsorp
problems [3], phase separation [4], and Glauber dynam
[5], posing both theoretical and experimental challeng
even ind ­ 1 . Particular emphasis has been placed
the one-species annihilation process of hard-core parti
A 1 A ! inert. Although many numerical, theoretica
[1], and experimental [6] results have been obtained,
the best of our knowledge the analysis ofunequal-timeor
autocorrelation functions is still lacking [7]. The unde
standing of the space and time evolution of these functi
plays a particularly important role because its Four
transform is directly proportional to the scattered inte
sity in any scattering experiment [8].

As a first step in this direction, we present an exa
solution of autocorrelation functions of driven RD pro
cesses. The inclusion of a drift velocity would be appr
priate for the description of the biased motion of particl
in the presence of a force field, a feasible experimen
scenario. Using periodic boundary conditions (PBC’
unlike equal-time or instantaneous many-body correlat
it will turn out that the presence of bias diffusion induc
rather unusual features in the behavior of autocorrelat
functions. As in most exact solutions of nonequilibriu
dynamics our analysis will be limited to one-dimension
lattices. Nonetheless, such exact solutions become m
valuable to elucidate the actual asymptotic dynamics
strongly fluctuation-dominated regimes, providing a ref
ence for more complicated and realistic systems.

The outline of this work is as follows. First, we buil
up the evolution operatorH resulting from to the mas-
ter equation [9] in terms of the action of a quantu
spin “Hamiltonian,” since any possible configurationj s l
can be expressed in a (pseudo)spin-1

2 representation. A
particle or vacancy at each of theN -lattice sites corre-
sponds to spin up or down, say. The hard-core ch
acter of theA particles prevents double occupancy p
0031-9007y96y76(5)y851(4)$06.00
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site. Second, notice thatH is entirely defined by the se
of transition probability rateshW ss ! s0dj , which in our
driven RD model is given by the following single-ste
processes. (i) Annihilation of two particles with rateR,
lying on a randomly chosen lattice bond, and (ii) rig
(left) particle hopping (exchange) with probabilityh (h0 )
within a given bond. Third,H can be cast in terms o
a non-Hermitian problem of interacting spinless ferm
ons via a Jordan-Wigner transformation [10]. In order
avoid difficulties with an otherwise singular Bogoliubo
[11] similarity transformation it is convenient to introduc
a fictitious single-step process, namely, (iii) attempts
createA -particle pairs with ratee on a randomly se-
lected bond. This artificial transition ratee will be set
to zero at the very end of the calculation. We refer
reader to Ref. [12] for a more detailed derivation. Four
we impose the special relationship between transit
ratesR 1 e ­ h 1 h0 (becomingR ­ h 1 h0 when the
original RD process is recovered undere ! 0 ). To our
knowledge no way of solving the general situation, i.e.,
bitrary R, h, and h0 is presently known. This constrain
removes many fermion terms from the Hamiltonian a
allows exact solution [13]. Finally, using PBC’s and a
ter Fourier transforming, we map our original evolutio
operator onto a quadratic form of running-wave fermio
which can be diagonalized by a Bogoliubov-type sim
larity transformation. Thus, finally we are left with th
following free fermion “Hamiltonian”:

H ­
X

q[Q

lq j1
q jq , lq ­ b 2 a cosq 1 i y sinq ,

(1)

whereQ ­ h6pyN , 63pyN , . . . , 6sN 2 1dpyN j, a ­
R 2 e , b ­ R 1 e , and y ­ h 2 h0 is the drift ve-
locity. Here thej operators satisfy standard fermion
anticommutation rules; however, it should be noticed t
j1

q fi jy
q , wherey denotes Hermitian conjugation (se

Ref. [12]). The limit e ! 0 is rather special in that i
gives rise to low-lying gapless modes which are ultimat
responsible for the slow asymptotic diffusive dynamics

We are especially interested in understanding to w
extent the nonequilibrium correlations are affected by
© 1996 The American Physical Society 851
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interplay between hard-core on-site repulsion and the d
velocity y . As is known [9], for a given initial state
j w0 l , the conditional probability to observe a partic
at time t 1 t0 at site l , given that sitem was already
occupied by another (or the same) particle at timet0 (i.e.,
the autocorrelation function), is given by

Al,mst, t0d ­ k c̃j n̂l e2 H t n̂m e2 H t0 j w0 l , (2)

wherekc̃j is the left steady or left vacuum state ofH [14],
whereaŝnj denotes the occupation number operator at
j. Using the Bogoliubov transformation angles

tan2uq ­
2

p
R e sinq

b cosq 2 a
, (3)

it can be shown [12] that in thej representation̂nj can
be rewritten as

n̂j ­
1
N

X
k, k0[Q

ei sk02kd jscosuk j1
k 2 sinuk j2kd

3 scosuk0 jk0 2 sinuk0 j1
2k0d . (4)

For the sake of simplicity we shall consider an initi
state j w0 l corresponding to a full lattice, a commo
starting point within the context of RD processes; th
n̂j j w0 l ­ j w0 l, j ­ 1, 2, ... , N . It is a simple matter
to check that in terms of thej fermions this initial state
adopts the form

j w0 l ­
Y
q[P

s1 1 cotuq j1
2q j1

q d j c l , (5)

where j c l is the right vacuum (steady) state ofH
[14], and P denotes the set of positive values ofq [
Q . From Eqs. (1) and (5) it follows that the stochas
evolution ofj w0 l at timet0 then yields

e2H t0 j w0 l ­

"
1 1

X
n

1
n!

X
q1[P

· · ·
X

qn[P

√
nY

j­1

e2 gqj t0

3 cotuqj j1
2qj

j1
qj

!#
jc l , gq ­ 2 Re lq .

(6)

This expansion entails immediate consequences for
stantaneous (t ­ 0 ) k-point correlation functions of the
form kc̃j n̂j1 · · · n̂jk

e2 H t0 j w0 l . Since the drift velocity
enters neither the form (4) nor (6), it is clear that t
k-point correlators areindependentof the bias. Actu-
ally, this observation is of rather general character [1
Hence, for random initial conditions the instantaneo
correlations of the system cannot develop any kind
shock wave, though it should be noticed that this situat
changes dramatically ifopenboundary conditions are im
posed [16]. However, the biased diffusion does affect
time development of autocorrelation functions in a rath
involved way, even using PBC’s.

For the initially full state j w0 l , the calculation of
Eq. (2) requires taking into account at most the sec
order contribution of Eq. (6) as the occupation numb
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operators (4) involve only twoj fermions. Using the
anticommutation rules of these latter operators the ac
evaluation of (2) is straightforward albeit rather tedio
and lengthy [17]. Taking the limite ! 0 at theend of
the calculation, and after introducing the arguments

wnsqd ­ n q 2 y t sinq , n ­ l 2 m [ Z , (7)

along with the well-defined integrals

Fn st, t0d ­
1
p

Z p

0
e2 gq st01ty2d coswnsqd dq , (8)

Gn st, t0d ­
1
p

Z p

0
e2 gq st01ty2d tan

q
2

sinwnsqd dq ,

(9)

Hn st, t0d ­
1
p

Z p

0
e2 gq st01ty2d cot

q
2

sinwnsqd dq ,

(10)

the final result turns out to be

Anst, t0d ­ Fnst, t0d f Fnst, t0d 2 Fnst, 0d g 2 Gnst, t0d

3 f Hnst, t0d 2 Hnst, 0d g 1 rt0 rt1t0 .

(11)

Here rt0 ­ e22 R t0

I0s2 R t0d denotes the density at time
t0 , whereasI0szd is a modified Bessel function of the firs
kind. Because of the initial configuration, both densi
and autocorrelation functions remain translationally i
variant; t . 0 , as expected. However, notice thatAn fi

A2n if y fi 0 . Our results are shown in Figs. 1(a) an
1(b), where we display, respectively, the self-correlati
(n ­ 0 ) and autocorrelation functions.

We have conducted Monte Carlo simulations to test o
theoretical expectations in a periodic chain ofN ­ 105

sites. The minimum attainable time step measurem
is therefore1yN . Using the microscopic single-ste
rules described above (withe ; 0 ), we obtained an
excellent agreement with Eq. (11) by averaging ov
103 independent histories of an initially full lattice (se
Fig. 1). Similar numerical results were obtained starti
from an initially random distribution with densityrt0 .
For y fi 0 the self-correlations exhibit a nonmonoton
crossover from an exponential regime to a diffusiv
dominated asymptotic kinetics. More specifically, fo
R t0 ¿ 1 , A0st, t0d behave as

A0st, t0d .

(
rt0 e2 R t 1 Ost2d , R t ø 1 ,

rt0 y
p

4pR t 1 Ost0yt3y2d , t ¿ t0 .

(12)

The self-correlations of the isotropic RD system (y ­ 0 )
do not show such a crossover, and decay diffusively in
monotonic form.

To understand the space and time development of
tocorrelations (n fi 0 ), we have carried out an asymp
totic expansion of the integrals (8), (9), and (10), in whic
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the smallq regime of integration dominates and which
valid if any one (or more) ofR t, R t0, or n is large. It
turns out that thenG ø F , H so the middle term in
Eq. (11) is negligible, and

Fnst, t0d .
e2 sn2y td2y4 R t

2
p

pRt
, (13)

where t ; t0 1 ty2 . The “ballistic” n 2 y t factor
arises fromwnsqd [Eq. (7)] and the form of (13), which
is analogous to wave packet spreading for a free part
in quantum mechanics. Equation (13) explains for lar
n the peak seen for positiven in Fig. 1(b) at t ­
nyy and its width 1

y

p
R st0 1 nyyd (in time t). The

smooth background in Fig. 1(b) is from thert0 rt1t0 term
in Eq. (11). Also, (13) yields forRt0 ¿ 1 the time
tp at which the dip occurs in Fig. 1(a), namely,tp ,

FIG. 1. Autocorrelation functions starting from an initiall
full lattice. Solid lines refer to Eq. (11) in the text usin
R ­ h ­ 1 . Dotted lines (slightly observable) denote o
numerical results averaged over103 Monte Carlo runs, for a
periodic lattice of105 sites. (a) Self-correlation functions fo
different initial relaxation times. (b) Results for autocorrelatio
functions usingt0 ­ 102.
le
e

r

3R
y2 ln st0ytpd . Notice thatconnectedautocorrelations, i.e.,
Cnst, t0d ­ Anst, t0d 2 rt rt1t0 , decay asymptotically as
Cnst, t0d . t0ys2pR t2d e2sn2y td2yR t [7].

Rather than considering the autocorrelation functio
in real space, it is often more convenient to focus att
tion on the Fourier transform components of the connec
autocorrelations, namely,S0sq, td ­

P
n[Z Cnst, t0d e iqn .

These are usually called intermediate scattering functi
(ISF) [8] and are closely related to measurements of li
scattering inreal RD systems [6]. Our analysis sugges
that sufficiently diluted RD systems (Rt0 ¿ 1 ) could ex-
hibit modulated liquidlike structures within nonequilib
rium regimes, particularly at early evolution stages. Th
is illustrated in Fig. 2. Thephaseperiodicity of ISF func-
tions decreases with the bias in a rather complex form a
shown in Figs. 2(a) and 2(b). However, theamplitudesof
ISF are independent of the bias; t, t0, q [see Fig. 2(c)].

FIG. 2. Intermediate scattering functions forR ­ 1, t0 ­
102, andt ­ 50 . (a) Real and (b) imaginary parts fory ­ 0.3
(dashed lines) andy ­ 0.7 (solid lines). The dotted lines
in (a) denote the undriven case. (c) Amplitudes of ISF
t0 ­ 102 and t ­ 5, 8, 15, 30, and 60 (from top to bottom).
The amplitudes are drift independent.
853
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Because of the lattice inversion symmetry, it is cle
that Ansyd ­ A2ns2yd, ; t, t0 , and therefore,Ssyd ­
Sps2yd . What is more interesting here is the observati
that jS0sq, tdj is preserved regardless the actual curre
present in the system.

In summary, we have constructed an exact solution
autocorrelation functions of a biased reaction diffusi
process, for a particular relationship of transition rat
Monte Carlo simulations confirm the analytic work, an
suggest that the results are not substantially changed
relaxing the constraint (see [12] and [13]). A general
gument has been given which shows that instantane
correlations are unaffected by the bias. On the other ha
the bias strongly affects the time-developed autocorre
tion functions, leading to propagating structures and ot
interesting modulations in nonequilibrium regimes. In
recent work [18], it has been shown that different stoch
tic systems can be treated on an equal footing by mean
similarity transformations. Therefore our results could
extended to other equally interesting stochastic proces
Finally, we have also calculated intermediate scatter
functions, which capture modulated structures, in the ho
that this will stimulate experimental work which could b
compared to this theoretical study.
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