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We study the effect of bias diffusion on the autocorrelation functions of the one-dimensional
annihilation reactiomA + A — inert. Exact results are given for a subset of transition probability
rates. Unlike equal-time functions, the interplay between hard-core interactions and the drift velocity
gives rise to a rich nonequilibrium behavior of autocorrelation and intermediate scattering functions.
Our results are supported and compared with Monte Carlo simulations.

PACS numbers: 82.20.Mj, 05.50.+q

Reaction-diffusion (RD) processes have been extersite. Second, notice th&f is entirely defined by the set
sively investigated in recent years, giving rise to a vasbf transition probability rate$W (s — s’)}, which in our
body of work [1]. In lower dimensions they provide rele- driven RD model is given by the following single-step
vant examples of strongly fluctuating systems which argrocesses. (i) Annihilation of two particles with rake
no longer describable by standard mean-field-like chemlying on a randomly chosen lattice bond, and (ii) right
ical rate equations. These models are closely related tdeft) particle hopping (exchange) with probabiliky (4')
coagulation processes [2], random sequential adsorptionithin a given bond. ThirdH can be cast in terms of
problems [3], phase separation [4], and Glauber dynamica non-Hermitian problem of interacting spinless fermi-
[5], posing both theoretical and experimental challengesns via a Jordan-Wigner transformation [10]. In order to
even ind = 1. Particular emphasis has been placed oravoid difficulties with an otherwise singular Bogoliubov
the one-species annihilation process of hard-core particlgd1] similarity transformation it is convenient to introduce
A + A — inert. Although many numerical, theoretical a fictitious single-step process, namely, (iii)) attempts to
[1], and experimental [6] results have been obtained, t@reate A -particle pairs with ratee on a randomly se-
the best of our knowledge the analysisunfequal-timeor  lected bond. This artificial transition rate will be set
autocorrelation functions is still lacking [7]. The under- to zero at the very end of the calculation. We refer the
standing of the space and time evolution of these functioneeader to Ref. [12] for a more detailed derivation. Fourth,
plays a particularly important role because its Fouriewe impose the special relationship between transition
transform is directly proportional to the scattered inten-ratesR + € = h + h' (becomingR = h + k' when the
sity in any scattering experiment [8]. original RD process is recovered under 0). To our

As a first step in this direction, we present an exacknowledge no way of solving the general situation, i.e., ar-
solution of autocorrelation functions of driven RD pro- bitrary R, i, and /' is presently known. This constraint
cesses. The inclusion of a drift velocity would be appro-removes many fermion terms from the Hamiltonian and
priate for the description of the biased motion of particlesallows exact solution [13]. Finally, using PBC’s and af-
in the presence of a force field, a feasible experimentaier Fourier transforming, we map our original evolution
scenario. Using periodic boundary conditions (PBC’s),operator onto a quadratic form of running-wave fermions
unlike equal-time or instantaneous many-body correlatorsvhich can be diagonalized by a Bogoliubov-type simi-
it will turn out that the presence of bias diffusion induceslarity transformation. Thus, finally we are left with the
rather unusual features in the behavior of autocorrelatiofollowing free fermion “Hamiltonian”:
functions. As in most exact solutions of nonequilibrium
dynamics our analysis will be limited to one-dimensional H = Z A€ &g Ag=Db — acoy + ivsing,

lattices. Nonetheless, such exact solutions become most  9€¢ 1)
valuable to elucidate the actual asymptotic dynamics of

strongly fluctuation-dominated regimes, providing a referwhereQ = {+# /N, *37/N,..., *(N — D)@r/N }, a =
ence for more complicated and realistic systems. R—€e,b=R+ ¢e,andv =h — k' is the drift ve-

The outline of this work is as follows. First, we build |ocity. Here theé operators satisfy standard fermionic
up the evolution operatol resulting from to the mas- anticommutation rules; however, it should be noticed that
ter equation [9] in terms of the action of a quantumg; #+ ¢, wheret denotes Hermitian conjugation (see
spin “Hamiltonian,” since any possible configuratibn)  Ref. [12]). The limite — 0 is rather special in that it
can be expressed in a (pseudo)sbimepresentation. A givesrise to low-lying gapless modes which are ultimately
particle or vacancy at each of thé-lattice sites corre- responsible for the slow asymptotic diffusive dynamics.
sponds to spin up or down, say. The hard-core char- We are especially interested in understanding to what
acter of theA particles prevents double occupancy perextent the nonequilibrium correlations are affected by the
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interplay between hard-core on-site repulsion and the drifoperators (4) involve only tw@ fermions. Using the
velocity v. As is known [9], for a given initial state anticommutation rules of these latter operators the actual
| o), the conditional probability to observe a particle evaluation of (2) is straightforward albeit rather tedious
at timet + ¢, at site/, given that sitem was already and lengthy [17]. Taking the limit — 0 at theend of
occupied by another (or the same) particle at tinéi.e.,  the calculation, and after introducing the arguments

the autocorrelation function), is given by on(q) =ngqg — vising n=1-mez, (7)

Apn(t,t0) = (Plage” " ane "™ @), (2)  along with the well-defined integrals
where(J| is the left steady or left vacuum state f[14], L (™ i)
whereasi; denotes the occupation number operator at site £ (£, 7o) = p fo e Yot cose,(q) dg,  (8)
j. Using the Bogoliubov transformation angles L[ q
2R e sing Gy (1, 10) = — f e~ et/ tan> sing.(q) dg.
taRf, = ——, 3 T Jo
bcoyg — a 9
it can be shown [12] that in thé representatior; can I —y, (to+1/2) q
be rewritten as Hy (1, 10) = )y € cot;, sin ¢nlq) dq,
1 i o (10)
i =~ Z e J(coYy & — sindy E—¢)
k,k'EQ the final result turns out to be
X (COSO & — SiNBp £74) . @) At 1) = Fult, ) [Fa(t, 10) = Fa(t,0)] = Gy(t, 10)
For the sake of simplicity we shall consider an initial
state | ¢o) corresponding to a full lattice, a common X [Ha(t, 10) = Ho(t,00] + piy prssy -
starting point within the context of RD processes; then (11)

Ajleo) =le@o) j=1,2,..,N. ltisasimple matter
to check that in terms of thé fermions this initial state
adopts the form

Here p, = e 2R [, (2R ¢') denotes the density at time
t', wheready(z) is a modified Bessel function of the first
kind. Because of the initial configuration, both density
| po) = l_[(l + cotf, €5, E7) 1), (5) and autocorrelation functions remain translationally in-
qEP variantV ¢ > 0, as expected. However, notice thgt #

where | ) is the right vacuum (steady) state &f A_, ifv #0. Our results are shown in Figs. 1(a) and
[14], and P denotes the set of positive values @fe 1(b), where we display, respectively, the self-correlation

0. From Egs. (1) and (5) it follows that the stochastic(* = 0) and autocorrelation functions.
evolution of| ¢ ) at timez, then yields We have conducted Monte Carlo simulations to test our

: . theoretical expectations in a periodic chainf= 10°
e H | ¢O>:[1 + Z o Z Z (l‘[ e Yai'to sites. The minimum attainable time step measurement
n

Vyer qep is thereforel/N. Using the microscopic single-step

=1
! rules described above (witle = 0), we obtained an
X cotl,, fqu §;>:|I<,/;>, Y¢=2ReA,. excgllent agreement vyith Eq. ('11'). by averaging over
(6) 10° independent histories of an initially full lattice (see
Fig. 1). Similar numerical results were obtained starting
This expansion entails immediate consequences for iffom an initially random distribution with densityp,, .
stantaneoust (= 0) k-point correlation functions of the For v # 0 the self-correlations exhibit a nonmonotonic
form (| nj -~ 7;, e H | py). Since the drift velocity crossoverfrom an exponential regime to a diffusive
enters neither the form (4) nor (6), it is clear that thedominated asymptotic kinetics. More specifically, for
k-point correlators aréndependentof the bias. Actu- Ry > 1, Aoz, 1) behave as
ally, this observation is of rather general character [15].

Hence, for random initial conditions the instantaneous 4 _ pye X+ 0@, Rt <1,
. . olt, t0) JATR1 3/2
correlations of the system cannot develop any kind of pi/NATRt + O(to/t7?), 1> 19.
shock wave, though it should be noticed that this situation
changes dramatically dpenboundary conditions are im- 12)

posed [16]. However, the biased diffusion does affect th@he self-correlations of the isotropic RD system= 0)
time development of autocorrelation functions in a rathedo not show such a crossover, and decay diffusively in a
involved way, even using PBC'’s. monotonic form.

For the initially full state|¢q), the calculation of To understand the space and time development of au-
Eqg. (2) requires taking into account at most the secondbcorrelations ¢ # 0), we have carried out an asymp-
order contribution of Eq. (6) as the occupation numbetrotic expansion of the integrals (8), (9), and (10), in which
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the smallg regime of integration dominates and which is fj—’f In(zp/t*). Notice thatconnectedutocorrelations, i.e.,
valid if any one (or more) oR ¢, R #y, orn is large. It C,(t,t0) = A,(t,10) — p: pi+1, , decay asymptotically as
turns out that therG < F ~ H so the middle term in ¢, (¢, 1)) = to/(2@R t2) e~V /Rt [7].

Eq. (11) is negligible, and Rather than considering the autocorrelation functions
o~ (n—vD/4R T in real space, it is often more convenient to focus atten-
Fo(t, 1) = ——F———, (13) tion on the Fourier transform components of the connected

2VmRT autocorrelations, namely(g,t) = X ,cz Cn(t, t9) e'".

Where 7 = i+ 1/2. The “balisic’ n — v factor (15 1€ usuall saled Intermediale scatierng unclons
arises frome,(¢) [Eq. (7)] and the form of (13), which cattering inreal RD systems [6]. Our analysis suggests

is analogous to wave packet spreading for a free particg1 e :
: ; : : at sufficiently diluted RD system®{, > 1) could ex-
In quantum mechanics. Equation (13) explains for larg ibit modulated liquidlike structures within nonequilib-

n the peak seen 1f0r positive_in Fig. 1(b) atr = rium regimes, particularly at early evolution stages. This
n/v ‘3?% 'LT‘( W'dthd?vl;.(to 1+b"./v]2 (mttlme ). tThe is illustrated in Fig. 2. Th@haseperiodicity of ISF func-
§m(éo 1TC g'rA(\)lun '23 9. I(d) '? rlte)m mfﬁ” '?rm tions decreases with the bias in a rather complex form as is
'Q ,? (h' )H th S%’. (13) yie 'S qu tf > el '”le shown in Figs. 2(a) and 2(b). However, thmplitudesof

- at whic e dip occurs in Fig. 1(a), namely, ISF are independent of the bi¥st, 1y, g [see Fig. 2(c)].
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FIG. 1. Autocorrelation functions starting from an initially d

full lattice. Solid lines refer to Eqg. (11) in the text using FIG. 2. Intermediate scattering functions f& =1, 2 =

R =h=1. Dotted lines (slightly observable) denote our 10, andt = 50. (a) Real and (b) imaginary parts for= 0.3
numerical results averaged ovéd® Monte Carlo runs, for a (dashed lines) ands = 0.7 (solid lines). The dotted lines
periodic lattice of10° sites. (a) Self-correlation functions for in (a) denote the undriven case. (c) Amplitudes of ISF for
different initial relaxation times. (b) Results for autocorrelation#, = 10> and+ = 5, 8, 15, 30, and 60 (from top to bottom).
functions using, = 10°. The amplitudes are drift independent.
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Because of the lattice inversion symmetry, it is clear [2] D. ben-AvrahamNonequilibrium Statistical Mechanics in
that A,(v) = A_,(—v), VY t, 1y, and thereforeS(v) = One Dimensiongdited by V. Privman (Cambridge Uni-
S*(—v). What is more interesting here is the observation  versity Press, Cambridge, 1995), and references therein.
that |So(¢, )| is preserved regardless the actual current[3] For review, see J.W. Evans, Rev. Mod. Phg§, 1281
present in the system. (1993); J.J. Ramsden, J. Stat. Ph§8. 853 (1993).

In summary, we have constructed an exact solution for[# M- Bramson and J.L. Lebowitz, J. Stat. Phys5, 941

X ! . X PP (1991); see also Ref. [1].
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process, for a partigular relat.ionship of tra_nsition rates. "~ 1 Kotrla and A. C. Levi. J. Stat. Phys4, 579 (1991).
Monte Carlo simulations confirm the analytic work, and (6] R. Kroon, H. Fleurent, and R. Sprik, Phys. Rev. E
suggest that the results are not substantially changed on ~ 47, 2462 (1993); R. Kopelman, C.S. Li, and R. Sprik,
relaxing the constraint (see [12] and [13]). A general ar-  J. Lumin.45, 40 (1990).
gument has been given which shows that instantaneou$7] After finishing this work a recent analysis of autocorre-
correlations are unaffected by the bias. On the other hand, lation functions by G.M. Schiitz was sent to us. Report
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tion functions, leading to propagating structures and otherl8] J. P. Hansen and I. R. McDonal@heory of Simple Liquids
interesting modulations in nonequilibrium regimes. Ina  (Academic Press, London, 1986), 2nd ed.; L. van Hove,
recent work [18], it has been shown that different stochas- Phys. Reva5, 249 (1954). o
tic systems can be treated on an equal footing by means OP] K. Kawasaki,Phase Transitions and Critical Phenomena,
ST - edited by C. Domb and M.S. Green (Academic Press,
similarity transformations. _Therefpre our resu!ts could be London, New York, 1972), Vol. 2.
extended to other equally interesting stochastic processggg) p. Jordan and E. Wigner, Z. Phy&, 631 (1928).
Finally, we have also calculated intermediate scattering11] N.N. Bogoliubov, Nuovo Cimentd, 794 (1958); J.G.
functions, which capture modulated structures, in the hope  Vvalatin, Nuovo Cimentc, 843 (1958).
that this will stimulate experimental work which could be [12] M.D. Grynberg, T.J. Newman, and R.B. Stinchcombe,
compared to this theoretical study. Phys. Rev. E50, 957 (1994); M.D. Grynberg and R.B.
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We would also like to thank G. M. Schiitz and M. Henkel situation indicate, however, that our approach captures the
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