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Numerical Evidence for Spontaneously Broken Replica Symmetry in 3D Spin Glasses
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Using numerical simulations of the 3D Ising spin glass we find evidence that spontaneous replica
symmetry breaking theory and not the droplet model describes with good accuracy the equilibrium
behavior of the system.
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The behavior of disordered spin models at equilibriumits shape does not depend on the volume. We will analyze
is well understood in the framework of the mean field(following a suggestion contained in the third reference
approximation [1,2]. The main prediction of the meanof [8]) sample to sample fluctuations of the spin-glass
field approach is the existence of a low-temperature glassyusceptibility, and find that they are incompatible with the
phase. Such a phase is characterized by the existendeoplet model, while their size is very well explained (even
of many different equilibrium states [spontaneous replican a quantitative manner) by SRSB theory. In order to
symmetry breaking (SRSB)]. show that the structure of the different equilibrium states

On the other hand, it is possible to define a differentis not compatible with a droplet structure we will compute
consistent theory [3] by starting from the Migdal-Kadanoff and analyze equal time correlation functions. From this
approach. We will refer to this approach in the following analysis we deduce the existence of many equilibrium
as the droplet model. Here one expects the equilibriunstates that cannot be described by a dropletlike structure.
state to be unique (apart from global inversions in zerdOn the contrary, we will show that even at a quantitative
magnetic field) and that the most relevant excitations aréevel SRSB theory explains very well the numerical data.
obtained by reversing large domains of spins (the droplets). Further evidence on the inadequacy of the droplet model

We have two different starting points. One is the infiniteto describe the 3D spin glasses and support for a SRSB
range approximation which leads to the replica symmetrynechanism is provided by analyzing the distribution of
breaking picture, and the other is the Kadanoff-Migdaloverlaps of boxes of sidR, gr(x) = R™° Y, oty Tery
approximation which leads to the droplet model. Although(wherey is an integer vector which takes all tR& values
each of the two pictures is correct in its range of validity,compatible with the condition8 = y, < R) and by dis-
we have to establish which qualitatively describes thecussing the behavior of the box overlap Binder cumulant
physics of real three-dimensional spin glasses. g(R,1) = % — {qr)/2qr)*

A physical model behaving as a droplet would be The model we will mainly consider is defined by the
reminiscent of a usual phase transition of the Curie typesimple Edwards-Anderson Hamiltonian on a 3D simple
On the contrary mean-field-like behavior would imply cubic latticeH = — Y, ;1 0J; ko, where the sum runs
new features. Experimentalists are working hard tryingover nearest neighbor couples of sites. The quenched
to detect or falsify such behavior, and the question is fadisordered couplings/ are distributed according to a
from settled [4]. Gaussian law. A study of the overlap susceptibility and

The main result of this work (which continues the inves-of the Binder cumulant shows that (under thepriori
tigation started in [5], and follows a long series of Monteassumption of the existence of a phase transition at a
Carlo simulations of spin-glass systems [6]) has been taonzero temperature with a power law divergence) the
gather new and strong evidence that in three dimensionsansition is located & = 1.00 + 0.05. In order to check
the SRSB picture (and not the droplet model) describesniversality of our results we have also studied a model [7]
correctly what is observed in numerical simulations. with integerJ = *1 variables, where each spin is coupled

Let us start by summarizing the evidence we will presentith equal strength to 26 neighboring sites (all the ones
in this Letter and the scheme of our reasoning (for a moreontained in a cube d® sites). The results we discuss
detailed exposition of these and more data see Ref. [7]are confirmed by our findings about this second model.
We will start by showing that the probability distribution ~ We have used an isotropic lattice of linear size
of the overlap among two systems at equilibriui(y), has and we have computed the probability distributi®p(g)

a nontrivial structure.P(g = 0) is different from zero, and of the overlapg = V~' Y, o;7; among two thermalized

0031-900796/76(5)/843(4)$06.00 © 1996 The American Physical Society 843



VOLUME 76, NUMBER 5 PHYSICAL REVIEW LETTERS 29 ANUARY 1996

configurationso andr in a box of volumeV = L?. We  appears to be a very delicate issue, and many potential
have studied the behavior of the functi®tg) averaged systematic errors (even in the definition of the finite vol-
over a large number of realizations of the quenched distimegg,) are involved. Here we will not address in detalil
ordered couplingd [i.e., the average over therandom this point, and assume that we are working in conditions
variables ofP;(¢)]. We have used a maximum 86560  where the system is effectively frozen in a phase with
samples for the smallest lattice sizes and a minimum o& nonzero value ofjg4. A possible scenario [5] of a
512 samples for the largest sizes. It was already knowrtorrelation length diverging exponentially fér— 0 or of
(see, for example, [5] and references therein) thaly)  a Kosterlitz-Thouless-like transition would be compatible
is nontrivial and has a shape quite similar to the one prewith this approach, since on our finite lattice we would
dicted in the mean field model. Mainly thanks for the usebe measuring properties of a frozen system. It is also
of large computer resources (we have mainly used the APEnportant to note that this ambiguity only concerns the
parallel computer [9], which turns out to be very effective behavior of the higly peak of theP(g) (which could tend

for this kind of problem [7]: we flip abou? X 10® spins to ¢ = 0 on very large lattices), while on the contrary the
per second on thiswerversion of the machine) and of the P(g) for smallg values is nontrivial and does not depend
tempering(an annealinglike improved Monte Carlo tech- on the lattice size.

nique introduced in [10]) we have been able to study sys- The agreement with mean field theory becomes quantita-
tems of larger size than before (up 14°), and to bring tive if we study sample to sample fluctuations. Mean field
them to thermal equilibrium quite deep in the cold phasetheory tells us how much the functia®;(¢) for a given

In this case we have equilibrated the system up to distanaealization of the quenched disorder differs from the aver-
14. The tempering method allows one to check thermalage. For example, if we considér*); = [dq P;(¢q)q*,
ization by monitoring the distribution of the temperaturewe have in mean field

values dynamically selected by the system. We have also ) |
checked that for each individual sample the functiy) (@)lqm™ = 34" @™ + 34"y, (1)
is symmetric under the exchange— —g¢ (this is a very . -
strong thermalization check). We will see that this infor-Where by th? overline we mo!@ate an average over the
mation is complemented by our dynamical study, Wherquenched_ noise. We have.ve_rlfled that in the [Bwegion

we work on time scales on which we can equilibrate thethIS equality is very well Sat'Sf'eQ' For example, for- 2
system on distances up to order This gives a good con- andm = 2atT = 0.7 andL ranging from to 10 the ratio

trol over the fractal geometry of the typical excitations andOf tlhg Ieftr-]hand side to thelright-h?]r;dmside_rﬁf (1)Iis'equal
of their boundaries. The number of points we are conl0 1.0 with an error never larger t - The relation.
sidering in an elementary cluster is, in other words, IargéNOUId be trivially satisfied by a delta function, but this is

enough to allow a characterization of the intrinsic geome!'°t OUr case. - .
g - Strictly speaking, the nontriviality of the functiab(q)

try. This is what we need in order to distinguish between e o :
SRSB theory and Migdal-Kadanoff droplets. Is not in violent contradiction with the droplet model. In

The first crucial comment is that the general form Oftheframework of the droplet approa_ch itis always p_ogsible
the function P(g) is size independent in our statistical to suppose that states where domains that_ tgke aﬂmte_ part
precision. We stress that the nonzerateauat low ¢ of Fhe whole system are reversed have a finite probabllllt.y.
values, down tg = 0, is size independent. For example,Th'.S _hypothe5|s 1S, however, rathgr unnatural,_ano! Itis
at T = 0.7 the Binder cumulant ofg is practically definitely wrong in the Kadanoff-Migdal approximation.
independent of the lattice size and it is equalt8s = Moreover, we have already seen that the ability of the

0.01. This means that the system has a nontrivial structur RSB theory o predict quantitatively the fluctuations of

of equilibrium states with a continuous distribution of the' if?n;t_:onP(q) IS retmark_ablteih ibility di di
allowed overlap values (even if one should be careful urther argument against the possibliity diSCUSsed in

; - : the last paragraph comes from considerng correlation
about possible dangerous finite size effects bely . ; X : ; .
P d unctions restricted to those pairs of configuration which

By using our measurements of equal time correlatiorL Il val Th vsis of h lati
functions we will argue in the following that such states ave a small value Qj'. € analysis ol such correlation
nctions, together with the nontriviality of th@(q),

cannot be described by the droplet approach, while thegj ) . !

have all features predicted by the SRSB approach. onstitute an ultimate test of the failure of the droplet
In this Letter we do not answer a very importantmOdel' . .

question: whether if in the infinite volume limit a low- More precisely we cons@er a system of sidend we

temperature phase characterized by the existence gpfme the relevant correlation function as

a nonzero order parametet;, exists. On the lattice

volumes we are able to investigate the highpeak of Clx,L) = V1<Z 0'i+x7'i+x0'i7'i>s 2)

the P(q) is very slowly shifting toward loweg values, i

even if, as we already said, the shape of f@) does where the brackets indicate the thermal average. The

not change. The extrapolation to the infinite volume limitdroplet model predicts thaf(x,) goes to the constant
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value gz, for largex. In the SRSB approacti(x, ») «
|x|~%, wherea is an exponent which has been computed ]
in less than six dimensions for thg = 0 correlation 06 [ 1
functions [11]. ]
We have studied this problem by considering large sys-
tems, withL = 64. In this case we are always very far s
from equilibrium. We have run numerical simulations
starting from two random configurations selected indepen-
dently (for four realizations of the quenched couplings).
We have verified thag? stays small in the whole run so
that the difference in the initial configurations, for not too
large times, enforces the conditign= 0. Eventually in
a finite system global equilibrium will be reached agpd ]
will become of orderl. However, if we letl. — o« first, e b .
we can use this approach to study the equilibrium value of 1
the correlation function with the constraint of having zero
overlap. So, we practically never impose the constraint, 1.6
but just check that our run is short enough (even if very log(x)
long) not to create anonzero overlap: IG. 1. lodG(x)] log(x), where log is the natural logarithm
. In order to.do that we cons_|der the time dependent equ he upper %i[newgs);rong(cg’oling, the ?ower one from thge normal
time correlation function at time dynamics (see the text for details).

log G, (x)

1 L L s s |

=)
=)
o
o

Gx,1) = V_IZ<CTi+xTi+xtTiTi>z, )
i experiment we slowly cool down the system frdfn=
where the average is done at timei.e., afterr Monte 1.5 > T. to the final temperature. To perform the cooling
Carlo cycles after the random start. We find that forwe use a number of steps proportionalstathe waiting
large times the correlation functiorG (x, 7) is essentially time we want to look at the correlation function. After
different from zero for distances not too much larger tharthat the system evolves at the fixed temperature of interest
a dynamic correlation lengtkf(s) which increases (and T for r more time steps before measurement. In this
maybe diverges) with time. Our numerical data are wellway one can obtain a much better equilibration. As a

represented with the functional form matter of principle, in this case one does not expect a pure
A(T) x \° power law but a combination of different powers generated
G(x,t) = o exp{—<m> } (4) by different temperature contributions. However, a fit

similar to the previous one (5) works very well with a
where we have definef(T, ) = B(T)t*™). Inthe whole  slightly larger value ofA. At T = 0.7 one obtains the
range of distanced = x = 8 for Monte Carlo times results shown in Fig. 1. The data obtained with the two
which range from 02 to 10° full lattice sweeps and a large techniques behave in a very similar way. The « data
range of temperatures < 7. (we have done measure- are well described by a power decay” with @ = 0.50 +
ments at different temperatures, downTg;, = 0.37.)  0.03, as predicted by the replica theory and in variance with
we get good fits. The exponents and 5 are weakly the droplet model predictions.
dependent orf’. For example, al” = 0.70 we get the The value of the correlation function at distarids par-
best valuesr = 0.50 = 0.02 andé = 1.48 = 0.02. The ticularly interesting. Indeed in the model with Gaussian
correlation length exponent(T) is approximately given quenched disorder one can easily prove by a simple in-
by 0.167. Such power law growth of the correlation tegration by part thak = —g[1 — C(1)], whereE is the
length was already observed by Rieger [12]. In order taenergy per link and’(x) is the overlap correlation function
study the limitr — « in a safe way it is even better to of the fully equilibrated system (i.e., summed over differ-
avoid global fits and to fit the data at fixed distancas ent ergodic components). Only if replica symmetry is bro-
o~ B —NT ken does it differ by our correlation functiat where the
Gx,1) = Golx) expl=A@) 7). ) two replicas have been kept (by their own will) in two dif-
In this way the extrapolation to infinite time (with the ferent ergodic components with zero mutual overlap. The
self-implemented constraint of = 0 always satisfied) is energy can be computed with high accuracy and from its
performed in a very safe way. We plot in Fig. 1 the value we can deduc€(1). The equality
correlationsG..(x) (computed atf = 0.7) as a function c(l) = G.(1) ©6)
of the distance in double logarithmic scale. *
We have also computed the same quantities by usinghould be violated as soon as replica symmetry is broken,
a different temperature scale. In this second numericah the same way in which the equality = —8(1 —
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g+4)/2 is violated in the Sherrington-Kirkpatrick model for largeR the data will collapse as
at low temperature. e

The value of the energy per link is very well fitted by gR,1) = f(REW))°). (7)
the form E.. + Ar=2). The exponentA(7) turns out

to be quite large; i.e., we find(T) = 0.447, so that it 4 The scaling law we are proposing works very well.
is not difficult to extrapolate the value of the energy torpg ginger cumulant extrapolates to something definitely
infinite time. If we use the computation of the interface yittarent from 1. which would be the prediction of the
energy done by using SRSB theory [13], we expect tha&roplet model, since in that case the distribution should be

A(T)hT 2.5 )‘f(.T()j’ V;]'hicz is verylyvell satisfied by otl)” data. (ASymptotically a pair of delta functions. The data obtained
V\é le we Iln that the equa_ltr)]/ |(6) IS (r:]orrect al 0\1/e anCyith the alternative temperature scheduling, by relatively

at the critical temperature (with less than a relatie g, cooling, give similar results for the extrapolated value

error), itis definitely V|oIateg beloW,; atT = 0.7 we find of the Binder cumulant.

C(1) = 0.612 = 0.001 andG(1) = 0.56 = 0.01, atT = We can summarize by saying that none of our findings

0.35 we findC(l) = 0.802 = 0'_001 ar?ng?(l) - 0'6_7 - gives support to the predictions of the droplet model, while
0.01. The failure of the equality (6) implies the existence e proken replica approach is able to predict qualitatively

of different ergodic components. The-g correlation 514 in a few cases even quantitatively) the behavior of the
function depends on the choice of the component, ip spin-glass systems.

agreement with the main prediction of the SRSB theory.  \va thank J.P. Bouchaud for pointing out to us the

As final ewdence_yve d,'SC_USS_ the valueqfix). We potential relevance of local overlaps, and the APE group
evaluate the probability distributioR(gx). In the mean ¢4 continuous assistance and support.
field SRSB limit the functionP(gz) is Gaussian, but in
a finite (not too large) number of dimensions it is quite
natural to expect deviations from the Gaussian limit.
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