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Numerical Evidence for Spontaneously Broken Replica Symmetry in 3D Spin Glasse
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Using numerical simulations of the 3D Ising spin glass we find evidence that spontaneous replica
symmetry breaking theory and not the droplet model describes with good accuracy the equilibrium
behavior of the system.
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The behavior of disordered spin models at equilibriu
is well understood in the framework of the mean fie
approximation [1,2]. The main prediction of the mea
field approach is the existence of a low-temperature gla
phase. Such a phase is characterized by the exist
of many different equilibrium states [spontaneous repl
symmetry breaking (SRSB)].

On the other hand, it is possible to define a differe
consistent theory [3] by starting from the Migdal-Kadano
approach. We will refer to this approach in the followin
as the droplet model. Here one expects the equilibri
state to be unique (apart from global inversions in ze
magnetic field) and that the most relevant excitations
obtained by reversing large domains of spins (the drople

We have two different starting points. One is the infin
range approximation which leads to the replica symme
breaking picture, and the other is the Kadanoff-Migd
approximation which leads to the droplet model. Althou
each of the two pictures is correct in its range of validi
we have to establish which qualitatively describes t
physics of real three-dimensional spin glasses.

A physical model behaving as a droplet would b
reminiscent of a usual phase transition of the Curie ty
On the contrary mean-field-like behavior would imp
new features. Experimentalists are working hard tryi
to detect or falsify such behavior, and the question is
from settled [4].

The main result of this work (which continues the inve
tigation started in [5], and follows a long series of Mon
Carlo simulations of spin-glass systems [6]) has been
gather new and strong evidence that in three dimensi
the SRSB picture (and not the droplet model) describ
correctly what is observed in numerical simulations.

Let us start by summarizing the evidence we will prese
in this Letter and the scheme of our reasoning (for a m
detailed exposition of these and more data see Ref. [
We will start by showing that the probability distributio
of the overlap among two systems at equilibrium,Psqd, has
a nontrivial structure.Psq . 0d is different from zero, and
0031-9007y96y76(5)y843(4)$06.00
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its shape does not depend on the volume. We will analy
(following a suggestion contained in the third referenc
of [8]) sample to sample fluctuations of the spin-glas
susceptibility, and find that they are incompatible with th
droplet model, while their size is very well explained (eve
in a quantitative manner) by SRSB theory. In order
show that the structure of the different equilibrium state
is not compatible with a droplet structure we will comput
and analyze equal time correlation functions. From th
analysis we deduce the existence of many equilibriu
states that cannot be described by a dropletlike structu
On the contrary, we will show that even at a quantitativ
level SRSB theory explains very well the numerical data

Further evidence on the inadequacy of the droplet mod
to describe the 3D spin glasses and support for a SR
mechanism is provided by analyzing the distribution o
overlaps of boxes of sideR, qRsxd ; R2D

P
y sx1ytx1y

(wherey is an integer vector which takes all theRD values
compatible with the conditions0 # yn , R) and by dis-
cussing the behavior of the box overlap Binder cumula
gsR, td ; 3

2 2 kq4
Rly2kq2

Rl2.
The model we will mainly consider is defined by th

simple Edwards-Anderson Hamiltonian on a 3D simp
cubic latticeH ; 2

P
hi,kj siJi,ksj, where the sum runs

over nearest neighbor couples of sites. The quench
disordered couplingsJ are distributed according to a
Gaussian law. A study of the overlap susceptibility an
of the Binder cumulant shows that (under thea priori
assumption of the existence of a phase transition a
nonzero temperature with a power law divergence) t
transition is located atT  1.00 6 0.05. In order to check
universality of our results we have also studied a model [
with integerJ  61 variables, where each spin is couple
with equal strength to 26 neighboring sites (all the on
contained in a cube of33 sites). The results we discus
are confirmed by our findings about this second model.

We have used an isotropic lattice of linear sizeL,
and we have computed the probability distributionPJsqd
of the overlapq ; V 21

P
i siti among two thermalized
© 1996 The American Physical Society 843



VOLUME 76, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JANUARY 1996

r

P
e

r

n
g

e

tial
l-
il
ns
th

le
d
so
e

e
d

ita-
ld

r-

he

al

s

le
part
ty.
is

.
e
f

in

h

t

he
configurationss andt in a box of volumeV  L3. We
have studied the behavior of the functionPsqd averaged
over a large number of realizations of the quenched d
ordered couplingsJ [i.e., the average over theJ random
variables ofPJ sqd]. We have used a maximum of2560
samples for the smallest lattice sizes and a minimum
512 samples for the largest sizes. It was already know
(see, for example, [5] and references therein) thatPJsqd
is nontrivial and has a shape quite similar to the one p
dicted in the mean field model. Mainly thanks for the us
of large computer resources (we have mainly used the A
parallel computer [9], which turns out to be very effectiv
for this kind of problem [7]: we flip about2 3 108 spins
per second on thetowerversion of the machine) and of the
tempering(an annealinglike improved Monte Carlo tech
nique introduced in [10]) we have been able to study sy
tems of larger size than before (up to143), and to bring
them to thermal equilibrium quite deep in the cold phas
In this case we have equilibrated the system up to distan
14. The tempering method allows one to check therma
ization by monitoring the distribution of the temperatur
values dynamically selected by the system. We have a
checked that for each individual sample the functionPsqd
is symmetric under the exchangeq $ 2q (this is a very
strong thermalization check). We will see that this info
mation is complemented by our dynamical study, whe
we work on time scales on which we can equilibrate th
system on distances up to order6. This gives a good con-
trol over the fractal geometry of the typical excitations an
of their boundaries. The number of points we are co
sidering in an elementary cluster is, in other words, lar
enough to allow a characterization of the intrinsic geom
try. This is what we need in order to distinguish betwee
SRSB theory and Migdal-Kadanoff droplets.

The first crucial comment is that the general form o
the function Psqd is size independent in our statistica
precision. We stress that the nonzeroplateau at low q
values, down toq  0, is size independent. For example
at T  0.7 the Binder cumulant ofq is practically
independent of the lattice size and it is equal to0.85 6

0.01. This means that the system has a nontrivial structu
of equilibrium states with a continuous distribution of th
allowed overlap values (even if one should be caref
about possible dangerous finite size effects belowTc).
By using our measurements of equal time correlatio
functions we will argue in the following that such state
cannot be described by the droplet approach, while th
have all features predicted by the SRSB approach.

In this Letter we do not answer a very importan
question: whether if in the infinite volume limit a low-
temperature phase characterized by the existence
a nonzero order parameterqEA exists. On the lattice
volumes we are able to investigate the highq peak of
the Psqd is very slowly shifting toward lowerq values,
even if, as we already said, the shape of thePsqd does
not change. The extrapolation to the infinite volume lim
844
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appears to be a very delicate issue, and many poten
systematic errors (even in the definition of the finite vo
umeqEA) are involved. Here we will not address in deta
this point, and assume that we are working in conditio
where the system is effectively frozen in a phase wi
a nonzero value ofqEA. A possible scenario [5] of a
correlation length diverging exponentially forT ! 0 or of
a Kosterlitz-Thouless-like transition would be compatib
with this approach, since on our finite lattice we woul
be measuring properties of a frozen system. It is al
important to note that this ambiguity only concerns th
behavior of the highq peak of thePsqd (which could tend
to q  0 on very large lattices), while on the contrary th
Psqd for small q values is nontrivial and does not depen
on the lattice size.

The agreement with mean field theory becomes quant
tive if we study sample to sample fluctuations. Mean fie
theory tells us how much the functionPJsqd for a given
realization of the quenched disorder differs from the ave
age. For example, if we considerkqklJ ;

R
dq PJsqdqk ,

we have in mean field

kqklJ kqmlJ 
2
3 kqklJ kqmlJ 1

1
3 kqk1mlJ , (1)

where by the overline we indicate an average over t
quenched noise. We have verified that in the low-T region
this equality is very well satisfied. For example, fork  2
andm  2 atT  0.7 andL ranging from4 to 10 the ratio
of the left-hand side to the right-hand side of (1) is equ
to 1.0 with an error never larger than0.1. The relation
would be trivially satisfied by a delta function, but this i
not our case.

Strictly speaking, the nontriviality of the functionPsqd
is not in violent contradiction with the droplet model. In
the framework of the droplet approach it is always possib
to suppose that states where domains that take a finite
of the whole system are reversed have a finite probabili
This hypothesis is, however, rather unnatural, and it
definitely wrong in the Kadanoff-Migdal approximation
Moreover, we have already seen that the ability of th
SRSB theory to predict quantitatively the fluctuations o
the functionPsqd is remarkable.

A further argument against the possibility discussed
the last paragraph comes from consideringq-q correlation
functions restricted to those pairs of configuration whic
have a small value ofq. The analysis of such correlation
functions, together with the nontriviality of thePsqd,
constitute an ultimate test of the failure of the drople
model.

More precisely we consider a system of sideL and we
define the relevant correlation function as

Csx, Ld  V 21

*X
i

si1xti1xsiti

+
, (2)

where the brackets indicate the thermal average. T
droplet model predicts thatCsx, `d goes to the constant
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value q2
EA for large x. In the SRSB approachCsx, `d ~

jxj2ã , whereã is an exponent which has been comput
in less than six dimensions for theq  0 correlation
functions [11].

We have studied this problem by considering large s
tems, withL  64. In this case we are always very fa
from equilibrium. We have run numerical simulation
starting from two random configurations selected indep
dently (for four realizations of the quenched coupling
We have verified thatq2 stays small in the whole run so
that the difference in the initial configurations, for not to
large times, enforces the conditionq ø 0. Eventually in
a finite system global equilibrium will be reached andq
will become of order1. However, if we letL ! ` first,
we can use this approach to study the equilibrium value
the correlation function with the constraint of having ze
overlap. So, we practically never impose the constra
but just check that our run is short enough (even if ve
long) not to create a nonzero overlap.

In order to do that we consider the time dependent eq
time correlation function at timet

Gsx, td  V 21
X

i

ksi1xti1xsitilt , (3)

where the average is done at timet; i.e., after t Monte
Carlo cycles after the random start. We find that f
large timest the correlation functionGsx, td is essentially
different from zero for distances not too much larger th
a dynamic correlation lengthjstd which increases (and
maybe diverges) with time. Our numerical data are w
represented with the functional form

Gsx, td 
AsT d
xa

exp

Ω
2

µ
x

jsT , td

∂
d
æ

, (4)

where we have definedjsT , td ; BsT dtlsTd. In the whole
range of distances1 # x # 8 for Monte Carlo times
which range from102 to 106 full lattice sweeps and a large
range of temperaturesT , Tc (we have done measure
ments at different temperatures, down toTmin . 0.3Tc)
we get good fits. The exponentsa and d are weakly
dependent onT . For example, atT  0.70 we get the
best valuesa  0.50 6 0.02 andd  1.48 6 0.02. The
correlation length exponentlsT d is approximately given
by 0.16T . Such power law growth of the correlatio
length was already observed by Rieger [12]. In order
study the limit t ! ` in a safe way it is even better to
avoid global fits and to fit the data at fixed distancex as

Gsx, td  G̃`sxd exph2Asxdt2lsTdj . (5)

In this way the extrapolation to infinite time (with th
self-implemented constraint ofq  0 always satisfied) is
performed in a very safe way. We plot in Fig. 1 th
correlationsG̃`sxd (computed atT  0.7) as a function
of the distance in double logarithmic scale.

We have also computed the same quantities by us
a different temperature scale. In this second numer
d
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FIG. 1. logfG̃`sxdg logsxd, where log is the natural logarithm
The upper line is from cooling, the lower one from the norm
dynamics (see the text for details).

experiment we slowly cool down the system fromT 
1.5 . Tc to the final temperature. To perform the coolin
we use a number of steps proportional tot, the waiting
time we want to look at the correlation function. Afte
that the system evolves at the fixed temperature of inte
T for t more time steps before measurement. In th
way one can obtain a much better equilibration. As
matter of principle, in this case one does not expect a p
power law but a combination of different powers generat
by different temperature contributions. However, a
similar to the previous one (5) works very well with
slightly larger value ofl. At T  0.7 one obtains the
results shown in Fig. 1. The data obtained with the tw
techniques behave in a very similar way. Thet  ` data
are well described by a power decayx2a with a  0.50 6

0.03, as predicted by the replica theory and in variance w
the droplet model predictions.

The value of the correlation function at distance1 is par-
ticularly interesting. Indeed in the model with Gaussia
quenched disorder one can easily prove by a simple
tegration by part thatE  2bf1 2 Cs1dg, whereE is the
energy per link andCsxd is the overlap correlation function
of the fully equilibrated system (i.e., summed over diffe
ent ergodic components). Only if replica symmetry is br
ken does it differ by our correlation functionG where the
two replicas have been kept (by their own will) in two di
ferent ergodic components with zero mutual overlap. T
energy can be computed with high accuracy and from
value we can deduceCs1d. The equality

Cs1d  G̃`s1d (6)

should be violated as soon as replica symmetry is brok
in the same way in which the equalityE  2bs1 2
845
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II
q2
EAdy2 is violated in the Sherrington-Kirkpatrick mode

at low temperature.
The value of the energy per link is very well fitted b

the form E` 1 At2DsTd. The exponentDsTd turns out
to be quite large; i.e., we findDsTd . 0.44T , so that it
is not difficult to extrapolate the value of the energy
infinite time. If we use the computation of the interfa
energy done by using SRSB theory [13], we expect t
DsT d  2.5lsT d, which is very well satisfied by our data

While we find that the equality (6) is correct above a
at the critical temperature (with less than a relative1%
error), it is definitely violated belowTc; atT  0.7 we find
Cs1d  0.612 6 0.001 andG̃`s1d  0.56 6 0.01, atT 
0.35 we findCs1d  0.802 6 0.001 andG̃`s1d  0.67 6

0.01. The failure of the equality (6) implies the existen
of different ergodic components. Theq-q correlation
function depends on the choice of the component,
agreement with the main prediction of the SRSB theor

As final evidence we discuss the value ofqRsxd. We
evaluate the probability distributionPRsqRd. In the mean
field SRSB limit the functionPRsqRd is Gaussian, but in
a finite (not too large) number of dimensions it is qu
natural to expect deviations from the Gaussian limit.

On the contrary in the droplet model the functio
PRsqRd should have two peaks atqR ø qEA, and should
become the sum of two delta functions in the limitR ! `

(at least forR ø L). Indeed here the quantityqR is
different from qEA with a probability that goes to zer
as a power ofR.

We have measured the Binder cumulantgsR, td after t
Monte Carlo steps. At a given temperature we expect

FIG. 2. The logarithm of the Binder cumulant for the bo
overlap versus rescaled ratio of time and distance. Stars ar
R  2, hexagons are forR  3, and asterisks forR  4. The
straight line is only to guide the eye.
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for largeR the data will collapse as

gsR, td  fssssRjstd21ddddd . (7)

In Fig. 2 we show data forT  0.7 from R  3 and
4. The scaling law we are proposing works very we
The Binder cumulant extrapolates to something definit
different from 1, which would be the prediction of the
droplet model, since in that case the distribution should
asymptotically a pair of delta functions. The data obtain
with the alternative temperature scheduling, by relativ
slow cooling, give similar results for the extrapolated val
of the Binder cumulant.

We can summarize by saying that none of our findin
gives support to the predictions of the droplet model, wh
the broken replica approach is able to predict qualitativ
(and in a few cases even quantitatively) the behavior of
3D spin-glass systems.

We thank J. P. Bouchaud for pointing out to us t
potential relevance of local overlaps, and the APE gro
for continuous assistance and support.
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