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Using an asymptotically exact real space renormalization procedure, we find that the dim
spin-1y2 chain is extremely stable against bond randomness. For weak dimerization or, equiva
strong randomness, it is in a Griffiths phase with short-range spin-spin correlations and a div
susceptibility. The string topological order persists. We conjecture that random integer spin cha
the Haldane phase exhibit similar thermodynamic and topological properties.
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Extensive theoretical work on random quantum ma
netic systems has been carried out since the late 19
[1–4]. Systems that behave critically in the absence
randomness are unstable against weak randomness
flow to the random singlet (RS) phase [1,3]. In the R
phase, spins far apart in space form weakly bound sing
pairs in a more or less random manner. The low tempe
ture thermodynamic properties of these systems are do
nated by the weakly bound pairs and are universal [1–
For instance, the susceptibility of the undimerized rando
antiferromagnetic Heisenberg orXXZ spin-1y2 chain di-
verges asfT log2 T g21 at low T , independent of the details
of the randomness [3]. Universal power law behavior h
also been found in disorder averaged spin-spin correlat
functions [3]. Experiments, however, seem to find pow
law divergent susceptibilities with nonuniversal exponen
[5]. It is of interest to study if there exist relevant per
turbations at the RS fixed point that drive the system t
ward a state exhibiting the nonuniversal behavior foun
experimentally.

A related issue is the effect of randomness on sp
chains that have an excitation gap in the absence
randomness [6]. The most prominent examples of su
chains are integer spin chains in the Haldane phase
Other examples include dimerized spin-1y2 chains [8]
and spin chains with spontaneous dimerization [9]. A
of these systems have topologically ordered [10] grou
states. One might think that strong enough randomn
will inevitably destroy the topological order of the groun
state. However, Haldane has suggested [11] that th
exists a class of random perturbations for which the t
topological order in the ground state of integer spin chai
is stable, regardless of the strength of the perturbatio
We will show that the analog of this prediction for random
bond dimerized spin-1y2 chains is correct.

An explicit example that provides strong support t
Haldane’s above conjecture can be found in the rando
version of the AKLT model [12]:

H 
X

i

JifSi ? Si11 1 s1y3d sSi ? Si11d2g , (1)

where Ji . 0. The exact ground state of this random
model is identical to that of the pure model [12], i.e.,
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valence bond solid. Its excitation spectrum and therm
dynamic properties will certainly depend on the distrib
tion of Ji , yet the perfectly topologically ordered groun
state is completely unaffected by randomness.

Without randomness, the spin-1 chain and dimeriz
spin-1y2 chains exhibit similar physical properties [13
They both have a nondegenerate ground state with
excitation gap, and, more importantly, they both ha
string topological order [13]. Hida has shown that the
can be continuously connected to each other witho
closing the gap or removing the topological order; i.e
they are in the same phase [13]. It is natural to expect t
they also behave similarly in the presence of randomne

In this paper we study the random bond dimerize
spin-1y2 chain in detail. Using the asymptotically exac
real space decimation renormalization group introduc
by Dasgupta and Ma [1] and extended by Fisher [3], w
find that enforced dimerization is a relevant operator
the RS fixed point that drives the system to a rando
dimer (RD) phase. The low temperature thermodynam
properties of the RD phase arenonuniversal. For weak
dimerization, the spectrum of the RD phase is gapless a
the susceptibility diverges asx , T 211a with 0 , a ø

1 and dependent on the bond distribution (in agreem
with the behavior found experimentally and qualitative
similar to the RS thermodynamics), but the averag
spin-spin correlation function remains short ranged. Th
for weak dimerization the RD phase is an examp
of a Griffiths phase. More importantly, we find tha
the string topological order isnot destroyed by random
bonds. We conjecture that these results also apply
random bond integer spin chains in the Haldane gapp
phase. Comparison will also be made with spontaneou
dimerized spin chains which behave very differently upo
introducing disorder.

Consider the model Hamiltonian

H 
X

i

JifSx
i Sx

i11 1 S
y
i S

y
i11 1 DSz

i Sz
i11g , (2)

whereSa
i are spin-1y2 operators,Ji are (random) positive

coupling constants, and0 # D # 1. Here we will con-
centrate on the casesD  0 (XX) andD  1 (Heisenberg
© 1996 The American Physical Society 839
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chain), since it has been shown that, for the case of r
dom bonds, the Ising coupling is irrelevant whenD , 1
[3]. We assume that the distribution functions of the co
plings Ji depend on whetheri is even or odd, which are
PesJ, J0d andPosJ, J0d, respectively. HereJ0 is the cutoff
in the distribution function corresponding to the stronge
bond in the system. As Fisher [3] has shown, in the a
sence of dimerization, i.e., whenPesJ, J0d  PosJ, J0d,
the low energy, long-distance behavior of Eq. (2) is un
versal, and theXX and Heisenberg chains behave in e
sentially the same way.

Following Fisher [3], we introduce a decimation reno
malization group procedure in which we pick the bon
in the system with the largestJ, sayJ2 between spins 2
and 3. Since this is such a strong bond, spins 2 and
are likely to form a singlet pair and become unimpo
tant at low energies (on scales much smaller thanJ2).
The major physical effect of the existence of spins
and 3 is to generate an induced coupling between th
neighboring spins 1 and 4. For theXX chain, H̃124 
J̃14sSx

1 Sx
4 1 S

y
1 S

y
4 d where J̃14  J1J3yJ2 1 Os1yJ2

2 d and
for the Heisenberg chain,̃H124  J̃14S1 ? S4 whereJ̃14 
n

m
x
le

le
le

-
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J1J3y2J2 1 Os1yJ2
2 d. The effect of this decimation pro-

cedure is to get rid of the strongest bond (and also
two neighbors) in the system, generate a weaker bo
between the spins neighboring the decimated ones,
lower the overall energy scale. This procedure becom
asymptotically exact in the low energy limit [3]. The
new energy cutoff is then lowered toV  maxhJ̃j [14].
Following Fisher and anticipating that the bond distribu
tion will become broad on logarithmic scales at low en
ergy [3], we transform to logarithmic variables and defin
G  2 logsVyJ0d andz  logsVyJ̃d, so that bothG and
z are positive and a largerG and a largerz correspond to a
lower energy scale and a weaker bond, respectively. T
recursion relations now become

z̃124  z1 1 z3 2 z2 1 k  z1 1 z3 1 k , (3)

where we used the fact thatz2  0 sinceJ2  V. The
constantk  0 for theXX chain and logs2d for the Heisen-
berg chain. The flow equations for the bond strength d
tribution functionsresz , Vd and rosz , Vd in terms ofz

are then
odel if
er to find
r [3,4],
≠re,osz , Gdy≠G  ≠re,oy≠z 1 fre,os0, Gd 2 ro,es0, Gdgre,o

1 ro,es0, Gd
Z Z

dz1 dz2 re,osz1, Gdre,osz2, Gddsz 2 z1 2 z2 2 kd . (4)

Whenk  0 (XX chain), these flow equations are identical to those encountered in the transverse field Ising m
we identify the even bonds as the bonds between Ising spins and odd bonds as the transverse fields [4]. In ord
fixed point solutions of the renormalization group (RG) flow, it is necessary to rescale variables. Following Fishe
we introduce the rescaled variableh  z yG and the new distribution functionQe,osh, Gd  GPe,osJ, Vd. The flow
equations forQ are

G ≠Qe,oy≠G  Qe,o 1 s1 1 hd≠Qe,oy≠h 1 fQe,os0, Gd 2 Qo,es0, GdgQe,o

1 Qo,es0, Gd
Z

dh1dh2Qe,osh1dQe,osh2ddsh 2 h1 2 h2 2 kyGd . (5)
e

re,

at
nds
s

on

ns
As Fisher has shown [3,4], the flow equations (5) have o
one generic fixed point [15]

Qe  Qo  Qpshd  e2hQshd . (6)

This fixed point distribution corresponds to the rando
spin-1y2 chain without dimerization, a model studied e
tensively before [3]. Going back to the original variab
z , we find the fixed point distribution corresponds to

rsz d  s1yGde2z yG ; (7)

i.e., the width of the distribution on the logarithmic sca
grows linearly with the logarithim of the energy sca
G. For small deviation away from the fixed pointQe 
Qp 1 qe andQo  Qp 1 qo, there is only onerelevant
eigenperturbation [4] behaving asqe,osh, Gd  qe,oshdGl

with eigenvaluel  1, and the eigenvector isqe  sh 2

1de2h and qo  2sh 2 1de2h . The relevant perturba
tion, like the fixed point distribution, is independent o
ly

-

f

k; hence, theXX and Heisenberg chains will behav
similarly.

The relevant perturbation corresponds to thedifference
in the distributions for even and odd bonds. Therefo
we find that dimerization is arelevantperturbation near
the RS fixed point, with eigenvalue11.

For weak dimerization, the system barely knows th
there is a small difference between even and odd bo
in the early stages of the RG flow. Both distribution
initially flow toward the RS fixed point solution with a
small relevant perturbation reflecting the dimerization:

QosGd  Qp 1 dGsh 2 1de2h ,

QesGd  Qp 2 dGsh 2 1de2h ,
(8)

where d characterizes the strength of the dimerizati
(distance from criticality). In general,d depends in a
complicated way on the shape of the original distributio
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and at what energy scale it is defined. As the flow aw
from the RS point continues, the even (odd) bonds
much weaker than the odd (even) bonds if originally t
even (odd) bonds were only slightly weaker than the o
(even) bonds. The relevant perturbation grows linea
with G and becomes ofOs1d as G  G0 , 1yjdj. The
flow equation for the density of spins not yet decimated
energy scaleG is [3]

≠nsGdy≠G  22Qsh  0, Gd . (9)

Using the RS fixed point distribution Eq. (6) in Eq. (9
we find thatn , 1yG2 [3,4] so when the relevant per
turbation becomes large, the density of active spins
n , d2. The corresponding length scaleL, which is the
typical distance between the remaining spins, isL0 ,
G

2
0 , 1yd2. At this stage the existence of dimerizatio

becomes dominant and under RG most of the bonds d
mated are odd bonds.

The fact that a small difference in the bond distributio
grows as one lowers the energy is physically easy to s
Assume the odd bonds are slightly stronger than the e
bonds in general. Then, in the decimation procedure
is slightly more likely that an odd bond gets decimate
When that happens, typically two intermediate stren
neighboring even bonds also disappear, and amuch weaker
even bondis generated. Hence, the width of the even bo
distribution grows faster than the odd bond distributio
and its overall strength also decreases faster. Thus, in
low energy limit, the system can be viewed as a trivia
soluble collection of uncoupled spin pairs (isolated o
bonds). We refer to this phase as the RD phase.

After renormalization the distribution of odd bond
takes the formrosz d , s1yG0de2z yG0 Qsz d. In terms of
the original variables the odd bond distribution is

PosJd  sayV0d sJyV0d211aQs1 2 JyV0d , (10)

whereV0  J0 exps2G0d anda ~ d.
This effective independent pair Hamiltonian with

power law bond distribution is identical to that introduce
by Clark and Tippie [16] to explain the low-temperatu
thermodynamics of the random spin chains. Here we h
derived it using RG from the realistic model. [We not
in passing that dimerization does exist in some memb
of the R1sTCNQd2

2 compound family [5] studied experi
mentally, in the absence of disorder [17]; thus the rand
dimer model studied here may be relevant to some of th
systems in the presence of randomness.] The leading
perature dependence of thermodynamic properties ca
determined by assuming that all spins connected by bo
with energy greater than the temperature have paired
into singlets, and all spins connected by bonds with
ergy less than the temperature are essentially free. T
is a good approximation for broad bond distributions.
this way, the specific heat and susceptibility in the lo
temperature limit can be easily calculated. As the te
perature goes to zero, the the spin susceptibility (in a
direction, with possible direction dependent prefactors)
y
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verges likex , Ta21, and the specific heat goes to ze
like Cy , T a . The averaged spin-spin correlation fun
tion is short ranged, with the correlation length (distan
between spins)j , jdj2n , jdj22. The existence of a
divergent magnetic susceptibility away from the critic
point is characteristic of a Griffiths phase. The diverge
susceptibility arises from magnetically active gapless
citations. For the RS phase discussed by Fisher [3],
averaged spin-spin correlation function decays as1yR2 at
long distance so the system is critical and one expec
divergent susceptibility. The Griffiths phase in the ra
dom dimerized spin-1y2 chain is exactly analogous to th
Griffiths phase that appears in the random transverse fi
Ising chain [4]. If the initial dimerization is large, the flow
begins far from the RS phase, the bond distribution of
stronger bonds does not flow to a power law, and the
does not close up. When this happens, thermodyna
properties depend strongly on the initial distribution a
the susceptibility remains finite.

The dimer phase has a novel kind of topological ord
that measures the dimerization of the chain. The “strin
topological correlation function” is [13]

Tij  kC0jS
z
i exp

"
ip

X
i,k,j

Sz
k

#
Sz

j jC0l , (11)

where jC0l is the ground state.Tij is similar to the
topological correlation function for the spin-1 chain [10
For a completely dimerized ground state,Tij  21y4 if
i is a left spin of a dimer andj is the right spin of a
(possibly different) dimer. This is because every sp
betweeni and j in the completely dimerized model i
paired up with another spin betweeni and j. Tij  0
otherwise. Therefore, this special topological correlati
function is long ranged although there is only short-ran
spin-spin correlation, a situation similar to the spec
kind of off-diagonal long-range order (ODLRO) in th
fractional quantum Hall effect (FQHE) [18].

For a general spin-1y2 chain with randomness, w
introduce a topological order parameter

T  lim
j2i!`

sT2i,2j21 2 T2i11,2jd , (12)

where the overbar stands for average over randomness
the absence of dimerization,T vanishes. For a random
system, T measures the probability that the two en
spins survive decimation until the dimerization becom
large, and the low energy physics becomes that of
completely dimerized chain. This probability is just th
square of the density of spins at the dimerization crosso
scale. Therefore, for smalld, T scales like

T , 2jdj2bsgnsdd , (13)

with b  n  2, and sgnsdd is 1 if even bonds are
stronger and2 if odd bonds are stronger. In the absen
of randomness,b is found to be1y12 [13].

The topological order described here is not a spon
neous order like the spontaneous magnetization of a fe
magnetic Ising chain in the absence of magnetic field; i
841
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dynamicallyenforcedby the Hamiltonian. Its sign is de
termined by the sign of the dimerization, unlike the spon
neous magnetization which can take any direction allow
by the symmetry. In this sense it is more like the magne
zation of an Ising chain in thepresenceof a magnetic field.
The existence of the topological order simply reflects t
fact that the Hamiltonian favors singlet pairs to be form
over even bonds, if the even bonds are stronger in gene
In the absence of odd bond couplings, the ground stat
a trivial collection of singlet pairs over even bonds and t
dimer or topological order is perfect. In the presence
odd bond couplings (but weaker than even bonds in g
eral), quantum and statistical fluctuations generate reg
where singlet pairs are formed over odd bonds. Betw
regions of different topological structures there has to
a spin unpaired to its neighbors (a soliton). In the pr
ence of dimerization, the energy cost of the “wrong regio
(the area having singlets formed over the odd bonds in
case) is proportional to its length (at least at long enou
length scales); hence the unpaired spins are confined
linear confining potential [19]. This is similar to the con
finement of domain walls of the Ising chain in thepresence
of a magnetic field. The confinement length in the we
dimerization limit is the length scale at which dimerizatio
becomes significant under RG, which is also the spin-s
correlation length. We hence find that although the g
vanishes in the presence of strong randomness, the d
phase is stable and the topological order persists du
the confinement of unpaired spins [20]. This should
contrasted with the case of spontaneous dimerization.
that case the two degenerate ground states also have
topological order, but it is aspontaneousorder associated
with the spontaneously broken translation symmetry. T
spinons carried by the domain walls separating the two
ferent ground state configurations areunconfined, just as
the unconfined domain walls in the Ising chain without
magnetic field. In this case, the state is unstable aga
weakrandomness, and both the gap and topological or
immediately disappear upon introducing randomness [2

We have shown that the dimerized spin-1y2 chain is
stable against disorder. This can be seen as due to
confinement of unpaired spins. When the dimerization
weak or the randomness is strong, the system is in a G
fiths phase, in which the spin-spin correlation function
short ranged yet the susceptibility diverges. The susc
tibility and specific heat follow simple power laws wit
nonuniversal exponents at low temperatures. The str
topological order is not destroyed by randomness.
conjecture that these results apply to other systems w
dynamically generated topological order, such as the s
1 chain in the Haldane phase. A detailed analysis us
a real space RG procedure that is proper for the rand
spin-1 chain will be presented elsewhere [21]. We a
conjecture that spontaneously generated topological o
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is unstable against randomness [21]. The relevance of
random dimer model studied here to the experiments
deserves further investigation. Experimentally there h
been some work on effects of hole doping in the spin
chains [22]. The effect of hole doping is probably differ
ent from random bonds because it introduces unconfin
topological defects into the system [21].
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