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Structure of a Moving Vortex Lattice
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(Received 17 August 1995)

Numerical solutions of the time-dependent Ginzburg-Landau equations show a new mechanism for
plastic motion of a driven vortex lattice in a clean superconductor. The mechanism, which involves the
creation of a defect superstructure, is intrinsic to the moving vortex lattice and is independent of bulk
pinning. Other structural features found in the solutions include a reorientation of the vortex lattice and
a gradual healing of lattice defects under the influence of a transport current.

PACS numbers: 74.60.Ge
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Recently, attention has focused increasingly on t
dynamic states of a vortex system. Much of the intere
concerns the type of motion of a vortex lattice under a
applied current [1–3]. It has been observed that, in
significant region of the phase diagram below the vort
lattice melting line, vortex motion is predominantly plasti
motion. The explanation given in [1,2] relies heavily o
the notion that the vortex interactions compete with
randomness in the driven vortex system [4,5]. In th
Letter, we present the results of a numerical study
the motion of a vortex lattice in a clean finite sampl
and find a different mechanism for plastic vortex motio
Past considerations excluded the effects of the curre
induced magnetic field. We show that a current increas
the vortex spacing in the direction of vortex motion an
enforces the formation offault lines to accommodate the
resulting strains. The fault lines serve as a source
plastic deformations. The mechanism is the result of t
intrinsic behavior of the vortex lattice and is independe
of bulk pinning. It may be responsible for plastic motio
in very clean superconductors.

The structure of a vortex lattice moving under the in
fluence of a transport current in a homogeneous sup
conducting sample depends on the relative strengths
the Lorentz force and the barrier forces associated w
the free surfaces [6]. Numerical solutions of the time
dependent Ginzburg-Landau (TDGL) equations [7] sho
that the barrier forces dominate at weak currents. Vo
tex motion is confined to the interior of the sample, an
the vortex lattice is essentially static. Its close-pack
rows align with the free surfaces. The lattice structu
may have defects whose origin can be traced to the tr
sient phase, but these defects disappear gradually, an
more or less uniform structure with isolated defects r
mains. When the Lorentz force dominates, vortices en
and leave through the free surfaces, and the entire v
tex lattice moves steadily. The lattice structure chang
in two ways. We see a change in the orientation of t
lattice, where the close-packed rows align with the dire
tion of the Lorentz force, and the development of a defe
superstructure, where one or several distinct “fault line
separate regions of approximately uniform structure.
fault line consists of several aligned dislocations and fin
0031-9007y96y76(5)y831(4)$06.00
e
st
n
a
x

a
s
f

.
t-

es

of
e
t

-
r-
of
th
-
w
r-
d
d
e
n-
d a
-

er
r-
s

e
-

ct
”

A
e

segments of a 30± boundary. The fault lines remain mor
or less stationary as the lattice moves. They provide
principal mechanism supporting the vortex density gra
ent induced by the self-field of the current and serve a
source of plastic deformations. Similar defect structu
have been observed in decorations of static vortex latti
with density gradients [8,9].

The computations, described in detail in [10,11], we
done for a rectangular homogeneous pin-free superc
ducting sample, infinite inz, periodic iny, and bounded
in x. The magnetic field is in the positivez direction. A
transport currentJ in the positivey direction is induced
by a field differential between the free surfaces:Hl 
H0 1 DH, Hr  H0 2 DH, whereDH 

1
2 J. The re-

sulting Lorentz force acts in the positivex direction.
Lengths are measured in units of the penetration de
l; time in units ofj2yD (j the coherence length,D the
normal diffusion coefficient); fields in units ofHc

p
2 (Hc

the thermodynamic critical field); and current densities
units ofcHc

p
2y4pl. Unless otherwise noted, all resul

refer to a standard configuration: cross section32 3 48 in
the sx, yd plane, Ginzburg-Landau parameterk  4, and
a magnetic field withH0  0.8 andDH  0 (no current),
0.125 (“weak” current),0.250 (“intermediate” current), or
0.500 (“strong” current). The corresponding current de
sities are approximately 0%, 2%, 4%, and 8% of the B
depairing-current density.

Starting from the Meissner state, we increase
applied field to H0  0.8, apply the transport curren
as appropriate, and let the system evolve through
transient phase before we begin recording data. T
average number of vortices in the steady state varies f
230 (no current) to 660 (strong current). The position
every vortex is determined from the solution of the TDG
equations. The structure and evolution of the vort
lattice are analyzed by means of a Delauney triangulat
[12], which is constructed at each recorded time st
Each vortex in the bulk with fewer or more than s
neighbors is identified with a defect in the lattice. Th
computational results for the standard configuration
summarized in Figs. 1 and 2.

In the absence of a transport current, 230 vortices
ter the sample to form a dilute vortex structure with
© 1996 The American Physical Society 831



VOLUME 76, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JANUARY 1996

e
d

)
h

c

u

a

e

a
n

op
m

a-
in

tex
xit

has
ices
m-

on
the
n.
in

-O
ce

ve
at
es of
ur-
he
ent

as
FIG. 1. Magnetic induction profiles (averaged overy) ob-
tained from computations (solid lines) and theory (dash
lines); (a) no current, (b) weak current, (c) critical current, (
intermediate current, (e) strong current. Left inset: Stab
ity boundaries (see text) and computed values ofsHl , Bld and
sHr , Br d; dashed (solid) line: Stability boundary for left (right
free surface. Right inset: Magnetic induction profile near t
right edge of the sample for critical current.

average lattice spacinga0  2.58l. The average mag-
netic induction in the sample isB  0.27, considerably
less than the applied fieldH0  0.8. The lattice is static.
Its structure remains defective; the major types of defe
are isolated dislocations (pairs of defects—one with fiv
the other with seven neighbors) and finite segments of 3±

boundaries (strings of three or more contiguous disloc
tions). The vortex region is separated from the free s
faces by a vortex-free region,2.1l wide. The Meissner
current flows entirely within these vortex-free regions.

A weak current (DH  0.125) almost doubles the av-
erage number of vortices to 459. The vortices form
almost ideal crystal structure, witha0  1.88l. The lat-
tice is again static, but slightly displaced to the right edg
The supercurrent density at the left edge of the sample
approximately equal to the BCS depairing-current densi
The close-packed direction of the lattice is again align
with the free surfaces. The remaining defects are the re
nants of a misoriented grain in the center of the samp
whose origin goes back to the transient phase and wh
gradually heals during the recording period.

At the intermediate current (DH  0.250), the surface
barrier at the right edge is broken, and the lattice mov
steadily in the positivex direction. At the left edge, vor-
tices penetrate into the sample in a highly organized m
ner: A penetrating vortex triggers successive nucleatio
which propagate along the surface of the sample in the
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FIG. 2. Lattice structure in32 3 48 sample (bulk only);
H0  0.8; lattice defects are marked. Top left: no current, t
right: weak current, bottom left: intermediate current, botto
right: strong current.

rection of the current (“zipper” penetration). This mech
nism differs from the penetration mechanism observed
simulations of the Meissner state [13], where whole vor
“chains” are nucleated at the free surface. Vortices e
through the right surface, where the vortex-free region
disappeared completely. The average number of vort
in the sample increases to approximately 565; this nu
ber oscillates in time, but the amplitude of the oscillati
is always less than 1%. The close-packed direction of
moving lattice is oriented along the direction of motio
A reorientation of a moving vortex lattice was observed
early experiments [14] and, more recently, in Y-Ba-Cu
[15]. A mechanism for the reorientation in the presen
of bulk pinning was proposed in the context of collecti
pinning theory in [16]. Our investigation indicates th
the reorientation can also be caused by the free surfac
the sample. Approximately one-third of the transport c
rent now flows in the interior of the sample, supporting t
steady motion of the lattice. The resulting small gradi
in the vortex density leads to an expansion of the lattice
x increases.
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The critical current, at which the vortex lattice fir
moves, can be estimated. As long asHl . HmaxsBd
[Hr , HminsBd], vortices will break through the free sur
face at the left (right) edge and enter (leave) the sa
ple, thus increasing (decreasing) the magnetic induc
just inside the sample until it reaches the valueBl (Br )
for which Hl  HmaxsBld [Hr  HminsBr d]; see [17–19].
Approximate (dimensionless) expressions forHmaxsBd
andHminsBd in the rangeHc1 , B , Hc2 are

HmaxsBd ø sB2 1 H2
pd1y2, HminsBd ø B 2 B0 , (1)

whereB0  2p
p

3y48k [18]. Usually, it is assumed tha
Hp  Hc.

Figure 1 (left inset) shows the computed values
sHl , Bld and sHr , Br d for various currents. A best fi
of a curve H  HmaxsBd through the datasHl , Bld for
no current, weak current, and intermediate current yie
Hp ø 0.78; hence, our computations suggest that
penetration field in the Meissner state isHp ø 1.1Hc.
The dashed line is the graph ofHmax with Hp  0.78.
It represents the stability boundary for the left surfa
The datasHl , Bld for a strong current (discussed below
lie very close to the critical curveH  HmaxsBd—an
indication that the expression forHmaxsBd remains a good
approximation when the lattice moves faster. The so
line is the graph ofHmin for k  4. It represents the
stability boundary for the right surface. The datasHr , Br d
for no current and weak current lie below the graph—
indication that the surface barrier at the right edge
not been broken and the lattice is stationary. The d
sHr , Brd for the intermediate and strong current lie o
the lineB  H. The surface barrier at the right edge
the sample has been broken, and the barrier force ha
effect on the moving lattice.

The critical currentJcr , at which the surface barrier i
first broken, can be estimated from Eq. (1),

Jcr  2sDHdcr 
H2

p

2H0 1 B0
1 B0 . (2)

For H0  0.8, we find Jcr ø 0.42. Computations with
DH  0.175, 0.195, 0.200 show that vortices first brea
through the surface barrier whenDH  0.200. The
magnetic induction profile and the datasHl , Bld, sHr , Br d
for the critical current are included in Fig. 1. Als
included in Fig. 1 (right inset) is a blowup of the fiel
profile for the critical current near the right edge
the sample. As predicted by Eq. (1), the value ofBr

exceedsHr by the small positive quantityB0. This result
resolves the discrepancy about the sign of the correc
in Refs. [18,19].

When the lattice moves steadily across the sam
the total currentJ splits into a surface contributionJs

and a bulk contributionJb. The self-field of the bulk
current induces a gradient of the magnetic induct
and, therefore, a gradient of the vortex density, and
gradient leads in turn to a deformation of the lattice.
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The field profile in the bulk can be found from
the force balance equation for the overdamped stead
moving elastic vortex lattice. In the case of uniaxia
compression in thex direction, this equation reduces
to 2C11s1yBddBydx  gy8p , where g is a constant
and C11 is the bulk modulus,C11sBd ø sB2y4pds1 2

1y4kBd. The differential equation can be integrated, fo
example, from the right edge, whereB  Br , into the
bulk. The constantg is then determined by the condition
that the field at the left edge of the bulk isB  Bl .
Identifying the width of the bulk with the width of
the sample,d, we find the following expression for the
magnetic field in the bulk:

Bsxd 
1

4k
1

"√
Br 2

1
4k

!2

1 gd

√
1 2

x
d

!#1y2

,

(3)

wheregd  sBl 2 BrdsBl 1 Br 2 1y2kd. Substitution
of the expressionsBr  Hr  H0 2

1
2 J andBl  Hl 2

Js  H0 1
1
2 J 2 Js givesBsxd in terms ofH0, J, andJs.

The dashed lines in Fig. 1 show the excellent agreem
with the field profiles found in the computations.

We proceed to the case of the strong transport curre
DH  0.500. The self-field of the current inside the sam
ple induces a significant density gradient: The dens
near the left edge is approximately 3 times the dens
near the right edge. The lattice experiences a signific
strain in the left part of the sample. Slightly beyond th
center, it can no longer bear the strain, and plastic def
mation occurs. A defect boundary (“fault line”) appear
which consists of several aligned dislocations and fin
segments of a 30± boundary. The fault line remains more
or less stationary as the lattice moves across the sam
The critical straiń pl, at which the lattice yields, can be
estimated from the stretch in the horizontal bonds fro
the left edge to the fault line,́pl ø 0.35.

The current at which the lattice first shows plast
deformation,Jpl, can be estimated. As long as the stra
near the right edge of the sample,´xx  sBl 2 Br dyBl ,
is less than the plastic limit for uniaxial stretching
´pl, the lattice is deformed elastically throughout th
bulk. The fault line first appears at the right edge whe
Bl 2 Br  ´plBl. With Bl 2 Br  Jpl 2 Js andBl 
H0 1

1
2 Jpl 2 Js, we find

Jpl 
s1 2 ´pldJs 1 ´plH0

1 2 ´ply2
. (4)

At stronger currents, plastic deformations appear at a fin
distancexpl from the left edge. This distance can b
estimated from the relationBl 2 Bsxpld  ´plBl . Using
Eq. (3) for the field, we find

xpl

d
 ´plBl

s2 2 ´pldBl 2 1y2k

sBl 2 Br dsBl 1 Br 2 1y2kd
. (5)

HereBl 2 Br  J 2 Js andBl  H0 1
1
2 J 2 Js.
833
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FIG. 3. Lattic structure in48 3 32 sample (bulk only);H0 
1.05, DH  0.75; lattice defects are marked.

The development of a stationary defect superstruc
in a moving vortex lattice is one of the main finding
of our computations. Further computations have sho
that, in a wider sample, this superstructure is even m
developed. The lattice structure at the final time step
a sample whose cross section in the (x, y) plane measured
48 3 32 in a strong current (H0  1.05, DH  0.75)
is shown in Fig. 3. Several fault lines are necessary
support the large density differential across the sam
Note that the close-packed direction rotates each tim
fault line is encountered.

Summarizing, we have shown a new mechanism
plastic motion of a driven vortex lattice in a clean sup
conductor. The mechanism involves the creation of a
perstructure of lattice defects, which supports the grad
in the vortex density induced by the self-field of the cu
rent. Although the lattice moves across the sample,
defect superstructure remains static. We have also sh
a dynamic reorientation of the lattice. When the curren
weak, the lattice is essentially static, and its close-pac
direction is aligned with the free surfaces. When the c
rent exceeds a critical value, the lattice moves, and
close-packed direction is aligned with the direction of m
tion. Finally, we have shown a gradual healing of the l
tice defects under the influence of a transport current.
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