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Diffusive Conductors as Andreev Interferometers

Yuli V. Nazarov and T. H. Stoof

Faculteit der Technische Natuurkunde, Technische Universiteit Delft, 2628 CJ Delft, The Netherlands
(Received 17 August 1995

We theoretically study phase-dependent electrical transport in diffusive normal metal—superconductor
structures, taking into account (a) the effect of electron-electron interaction in the normal metal and
(b) the previously known “thermal” effect caused by the energy dependence of the diffusivity. Both
effects cause changes in the resistance as a function of the phase between two superconductors, but
effect (a) is already present at zero temperature, in contrast to effect (b). A detailed theoretical
and numerical analysis demonstrates that the mechanism (b) can fully explain recent experiments by
Petrashowet al. [Phys. Rev. Lett74, 5268 (1995)].

PACS numbers: 74.50.+r, 74.80.Fp

What is the resistance of a small normal structure adtemperatures [6]. The authors doubt that their results can
jacent to a superconductor? Superconductivity penetratdse explained by existing theories.
the structure provided it is short enough. A naive sugges- Below we present a novel mechanism that provides
tion would be that the resistance vanishes. However, it igero-temperature phase-dependent resistivity. Because of
notso. The simplest way to see this is to relate the resistivelectron-electron interaction, a weak pair potential is
ity to the scattering in the structure [1]. Normal electronsinduced in the normal metal that leads to extra Andreev
traversing the structure should undergo scattering even ieflection occurring in the structure rather than in the
their wave functions are distorted by superconductivity. superconductors. The relative change of the resistivity

If the structure is connected to two superconductinggR/R = g, g being the interaction parameter, which may
terminals having different phases, the resistance of thbe of either sign depending on the signgof
structure will depend on the phase difference. This However, our numerical results show that for the con-
provides the physical background for what is calledcrete structure its magnitude is too small to explain the data
Andreev interferometry. There is an outburst of interesof Ref. [8]. Careful analysis allowed us to conclude that
in this topic. Different types of Andreev interferometers actually the more trivial thermal effect has been observed.
have been proposed theoretically [2—4] and realized@he data show excellent agreement with the results of our
experimentally [5-8]. simulations.

Andreev scattering reveals a significant difference be- The most adequate theoretical description of the system
tween diffusive conductors, from one side, and tunnelis provided in the framework of the Keldysh Green'’s func-
or quasiballistic junctions of the same resistance, frontion technique elaborated in [11] for superconductivity. In
another side. Optimal interferometers are composed dhe diffusive approximation, one first gets equations for the
tunnel junctions [4,5]. Ballistic and quasiballistic sys- advanced (retarded) Green’s function, which i8 & 2
tems also show a big effect [2,7]. In contrast to this,matrix, G(x, €), depending on coordinate and energy, with
the standard theory predicts that the zero-voltage, zerds? = 1, whereby
temperature resistance of a diffusive conductor is not af- N Aa
fected by penetrating superconductivity [9]. It is slightly 9(DGay) + i[H,G] =0, 1)
modified at finite temperature, when the s_ample Ieng.tlb being the diffusivity in the normal state anfl =
becomgs comparable to the superconductlrjg cqrrelanopaz + i[ReA(x)e, + IMA(x)o,]. We will assume that
length in the normal metak = D/« T, D being diffu- e temperature is low enough and the size of the nor-
sivity. At higher temp_er_atures, the resistance turns back,a| structure is large enough to satisfyD/L? < As,
to the same value. This is why the effect of Andreev scaty being the energy gap in the superconductors. The

tering on the diffusive resistivity is eventuallythermal boundary conditions fol; then take a simple formo(
effect. Although this fact is well established and has beerﬂ)eing Pauli matrices)f} — o in normal reservoirs and

confirmed in t_he framevvprks of sevgral independent_ apg = o, sing + o, cosp in a superconducting reservoir

proqches, a simple phy3|cal explanation of the fact _s_t|II iI$having phasep.

lacking. Apart from this thermal effect, a small modifica-  The Green's functio; determines the characteristics of

tion may arise from the weak localization correction [10]. the energy spectrum of the quasiparticles in the structure.
However, the recent experiment [8] demonstrates &g solve the transport problem, we must know how this

significant phase modulation of the resistivity in the gnectrum s filled by extra quasiparticles. The equation
small' diffusive structures at very low temperatures. Theg; ihe even-in-energy part of the filling factor reads
amplitude of modulation exceeds by several orders of

magnitude the one observed in bigger structures at higher d:[D(€,x)d,f(e,x)] + v(x)f(e) = 0. 2
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The first term here describes diffusion of quasiparticles
with a diffusion coefficient that is changed by the penetrat-
ing superconductivityD(e) = DTI[(G + G1)?]/8. At
zero energy, this corresponds to zero temperatdires
G* andD remains unchanged. The second term describes
absorption of quasiparticle excitations into the supercon-
ducting condensate, or, in other words, conversion of the
normal current into the superconducting one. The coeffi-
cienty is proportional to the local value of the pair poten-
tial, y(x) = A(x) Tr(ia'y[é(e,x) + G(—e,x))).

In a normal reservoir biased at voltagewith respect
to superconductorg(e) = eV /4T cosh ?(e/2T). This
provides boundary conditions for (2). The current into
a reservoir is determined by the local gradieny of

The common theoretical approach (see, for instance,
[1,4,12]) disregards interactions in the normal metal that
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FIG. 1. The structure under consideration.

leads toA, y = 0. Since for diffusive conductors at zero

temperature the common noninteracting picture does not

give the resistance change, we concentrate on the effect i the symmetry of the structure, the voltage ghdis-

A in the normal metal. This value can be calculated withtributions are antisymmetric with respect to the supercon-
ducting branch, whereaA(x) and G(x) are symmetric.

Superconductivity in the structure gets completely sup-

pressed whed approachesr.

This is the novel feature of the present approach. One-dimensional differential equations (1) and (2) shall
Let us first make a simple estimation of the magnitude obe solved for each branch and then matched in the crossing

the effect. Since itis expected to be small, we solve Eq. (2points. First we calculaté () in all points of the struc-

to first order iny. This gives a relative resistance changeture. Because of the boundary conditions, it depend® on

8R/R = yL?/D. At zero energy,y = A. In normal in each point, thus providing the origin of the phase depen-

metal the energies in the windowD /L? contribute toA,  dent effect. We obtain (x) by integratingG; over energy.

thereforeA = gD/L?. This results in a simple estimation Then we calculate/(x) and make use of an analytical for-

for the resistance change, mula that relates the resistance change(to. Details of

SR/R = gc(®), (4)  the calculations will be reported elsewhere [13].

¢ being a dimensionless number depending on the geome- N Fig. 2 we have shown the calculated phase de-

try of the structure and on the distribution of the resistivityPendence normalized by its maximal value&p = 0,
therein. It is important to note thatdepends neither on  ¢(¢)/¢(0), contrasted with the experimental data for

the structure size nor on the absolute value of the resistiA9- The phase dependencies look similar, but the mag-
ity, provided the temperature is low enough< D /L>. nitude _of the effect cann_ot be satisfactorily explained.
The effect depends on the normal metal material by mearfa¢cording to the calculation¢(0) = 0.14. If we take

of g and can be of either sign depending on the sigg.of an expected valug = 0.04 [14] for silver, we would

If the geometry of the structure is well defined, the effect

can be used for the direct measurement of interaction in
normal metal.

At a qualitative level, the effect seems to explain
the results of Ref. [8]. Indeed, the phase modulation
of the resistance they observed at low temperatures wa
of the order of several percent and appeared materia
dependent, including the sign of the resistance change_®®
This prompted us to make a detailed numerical calculatior®®ma! -0
of the resistance of a concrete structure (Fig. 1) which is
very similar to the one used in Ref. [8].

The structure consists of the current branch, the su-
perconducting branch connected to superconducting rese
voirs biased at the phasesd /2, ®/2, respectively, and
the extra branch made for technological reasons. The cur ¢

rent flows as it is shown in Fig. 2 and the voltage differ-FiG. 2. Normalized phase dependence of the novel effect.
ence between the points and A’ is measured. Owing Squares correspond to the experimental data of Ref. [6].

A= gf de tanh(e/2T)Trlio,(G* — G)]/8. (3)

-2n - 0 n 2n 3n 4n
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obtain §Rn.x/R = 0.003, whereas the experiment gives and obtained a perfect match. The maximal values of the
8Rmax/R = 0.1. If we do it the other way around and change are also very close to each oth&R .1 /R )theor =

try to fit g from the experiment, we end up wigh= 0.7. —0.097 VS (6 Rmax/R)exp = —0.11. From the estimations
That would bring silver to the rank of high temperaturegiven in [8] we obtain, indeed./é =25 -3 atT =
superconductors. 20 mK. As we can see in Fig. 3, the thermal effect per-

This prompted us to check the possibility that seemed taists at rather high temperature, in agreement with the long
be rejected by the authors of Ref. [8]. We have calculatediigh temperature tail observed in [8]. Unpublished data
the effect of Andreev reflection on the resistivity neglect-of the authors of [8] show an excellent agreement with the
ing interaction corrections. This arises from the energy<urves plotted in Fig. 3 [15].
dependent change of the diffusion coefficient in Eq. (2). All this allows us to conclude that the experiment [8]
The calculation goes as follows. First, we compute usingan be perfectly described by existing semiclassical theory
Eq. (1) and the definition of the renormalized diffusion co-of superconducting proximity effect and thus to remedy
efficient the actual energy-dependent diffusion coefficienthe seeming discrepancy between theory and experiment.
throughout the structure. As we mentioned above, the The remaining discrepancy for metallic samples can be
zero-energy diffusion coefficient coincides with the one aieasily understood if one takes into account the sensitivity
high energy. Energy dependence of diffusion coefficienbf the effect to a concrete geometry and to the inevitable
in a point separated by the distandefrom the nearest inhomogeneity of these ultrasmall structures. This point
superconductor has a maximum at energp/d>. The of view is supported by large sample-to-sample fluctua-
maximum value exceeds zero or high energy valuesBy.  tions of the magnitude of the effect [8]. For instance,
Owing to boundary conditions for Eq. (1), the diffusion co-the understanding of the results for Sb samples having
efficient also depends on the phase of the superconductotsgh resistivity presents a certain difficulty. However, we
Second, we solve Eg. (2) neglecting The temperature notice that all essential features for these samples, such
enters (see above) the boundary condition for this equatioas small magnitude of the effect, sinusoidal phase depen-
and determines the energy interval in which the energy andence, positive sign, and the long high temperature tail,
the phase dependence of the diffusion coefficient are actwan be well understood if the structures are not completely
ally felt by the propagating quasiparticles. Therefore wediffusive but contain tunnel junctions [4].
expect the effect to level off at both low and high tempera- We are ready to present several conclusions.

tures giving minimal resistance at temperatued /L>. We have shown that the results of [8] can be perfectly
In general, for a given geometry, the relative resistancexplained within the existing theoretical framework and
changeSR/R is a function ofL /& and ¢. be attributed to the thermal effect, provided a concrete

Our numerical results are presented in Fig. 3. As exexperimental geometry is taken into account.
pected, the effect vanishes at both low and high tempera- We present a novel mechanism of phase-dependent re-
tures. The resistance dt = 0 reaches the minimum at sistance in hybrid normal metal—-superconductor struc-
L = 3¢£. We have plotted the normalized phase depentures that works at zero temperature. The observation of
dence atL = 3¢ in Fig. 4 along with experimental data this effect would allow a direct measurement of the inter-
action parameter in a normal metal.

Our results show that the observation of the weak
localization correction [10] is a more difficult task than
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FIG. 3. The temperature and the phase dependence of the ¢
thermal effect. The temperature is incorporated igto= FIG. 4. Normalized phase dependence of the thermal effect
D/#T. The phase difference changes from 0 for the lowermosat L. = 3¢. Squares correspond to the experimental data of
curve tor for the uppermost one with stegp/20. Ref. [6].
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