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We have used ultrasensitive susceptibility techniques and scanning Hall probe microscopy to
study arrays of electrically isolated micron-sized superconducting rings. The magnetic moments
produced by the supercurrents in these rings are analogous to Ising spins, and neighboring rings
interact antiferromagnetically via their dipolar magnetic fields. We find that there are significant
antiferromagnetic correlations between rings, and effects due to geometrical frustration can be observed
Quenched disorder also plays a significant role, suppressing the development of true long-range order.
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The magnetic properties of an isolated superconduc
ring are well understood. As an external magnetic field
ramped up from zero, a circulating current develops in
ring to satisfy the requirement that the superconducting
der parameter be single valued. However, as the magn
flux threading the ring passesF0y2  shcy2edy2 (or any
half-integral fraction ofF0), it becomes energetically fa
vorable for the current to abruptly change its direction, a
then decrease towards zero as the flux is further increa
[1]. Exactly atF0y2, the two current directions are ene
getically degenerate, and are analogous to the two po
ble orientations of an Ising spin. Now consider two su
rings placed in close proximity. Suppose the flux throu
the first ring is slightlygreaterthanF0y2. This will break
the degeneracy and cause a current to circulate in the
which produces a magnetic dipole moment parallel to
applied field. Using the Ising analogy, we call this orient
tion “spin up.” The first ring’s dipole field will then point
down at the position of the second ring. The flux throu
that ring will thus be somewhatless than F0y2, and its
current will circulate in the opposite sense to that in t
first ring, leading to a “down spin.” The dipole field from
the second ring in turn stabilizes the first ring in the sp
up state. A similarly stable state occurs if the first ring
in the down state and the second is in the up state. T
two closely spaced rings nearF0y2 have anantiferromag-
netic (AFM) coupling. In this paper we present the fir
experimental results on the magnetic properties of arr
of closely spaced micron-sized superconducting rings.

Low-dimensional antiferromagnets are an area of mu
current interest in the field of magnetism, and there
important unanswered questions about the effects of
tice geometry, competing interactions, and disorder on
ordering and dynamic properties of such systems [2].
making our spin systems lithographically we have cons
erable freedom to tailor their properties, permitting dire
experimental comparison of bipartite systems such as
square and honeycomb lattices, which can support N
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order, with geometrically frustrated ones such as the tri
gular and kagomé lattices, which cannot. We have stud
lattices of these four types using a combination of SQU
magnetometry and scanning Hall probe microscopy. W
find that there are significant antiferromagnetic correlatio
in the arrays, and effects due to lattice geometry can
observed. However, because the magnetic coupling
tween rings is weak, disorder limits the development
long-range correlations.

Arrays containing between1.6 3 105 and 2.4 3 105

aluminum rings (inset, Fig. 1) were made on sapph
substrates at the Cornell Nanofabrication Facility (CN
by electron beam lithography and liftoff. Typical arra
dimensions were800 mm 3 800 mm. The rings had
linewidths of 0.4mm, and thicknesses of 0.23mm. The
square lattice arrays were composed of square rings w

FIG. 1. ac susceptibilityx vs T for a dense square lattice
of Al rings. The peak has a FWHM of 5.5 mK. The arrow
denote the critical temperaturesTc for (left to right) F  F0y2,
F  F0, and F  0. The inset shows SEM micrographs o
(clockwise from upper left) square, honeycomb, triangular, a
kagomé lattices of rings. Ring dimensions are given in the te
© 1996 The American Physical Society 815
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outside dimension 1.6mm, and center-to-center distanc
1.8 mm. The triangular, honeycomb, and kagomé la
tice arrays were composed of hexagonal rings with outs
side-to-side dimension 1.73mm and center-to-center spac
ing 1.93mm. Sparse arrays of square rings, with cente
to-center distances of 4.0mm, were made to test the effec
of varying the inter-ring coupling strength, which is pro
portional toM, the mutual inductance between rings. Fo
near neighbors, we calculateM  67 fH for the dense ar-
rays andM  4 fH for the sparse arrays.

The ac susceptibilityxsH, Td of the arrays was mea-
sured as a function of dc fieldH and temperatureT with a
SQUID magnetometer mounted on a dilution refrigerato
With Hac  6 mG rms at frequencyf  3 Hz, the ac re-
sponse was linear for allH andT , and the total ac moment
produced by the arrays wasø 1 3 1029 emu forT ø Tc.

Figure 1 shows the temperature dependence of the
susceptibilityxsT d for a dense square array at thre field
H  0, 7.50, and 15.0 G, corresponding to an avera
applied fluxF  0, F0y2, andF0 per ring. x is shown
normalized tox0, the low-temperature limiting value at
H  0. At F  0 andF  F0, one finds a diamagnetic
response due to both the Meissner effect in the bo
of the rings and the development of flux quantization
low temperatures. ForF  F0y2, Tc is suppressed due
to the Little-Parks effect [3]. TcsF0d is less thanTcs0d
due to the finite width of the rings [4]. AtF  F0y2,
as T is lowered belowTc  1.176 K, the susceptibility
begins to rise dramatically. This paramagnetic response
analogous to the ac susceptibility of a spin system, beca
for T . Tc thermal fluctuations [5] allow the rings to flip
between their spin-down and spin-up states in response
the ac field. One important difference between a ring a
a true spin, however, is that for a ring the paramagne
rise is much faster than1yT because the ring’s momentm

increases asm ~ 1 2 TyTc [6]. As T is further reduced
the paramagnetic response peaks atTP  1.168 K, and
then drops rapidly. This rapid drop arises because
energy barrier between the up and down states gro
rapidly with falling temperature [5]. When the thermally
activated flipping rate drops belowf, the ac response is
suppressed. The residual paramagnetic response be
the peak and subsequent crossover to diamagnetic beha
arise because after the rings are frozen,x reflects the slope
of theMsHd curve for the up or down state [7]. All of the
arrays hadxsT d very similar to the curves shown in Fig. 1

We have also measured the field dependence ofx at
fixed temperature nearTP. These measurements illustrat
two crucial features of our system. First, there is disord
in the arrays that plays the role of a random field in a
Ising system. Second, there are AFM interactions betwe
the rings. Figure 2 showsxsFd both above and below
TP for the sparse [Figs. 2(a), 2(c)] and dense [Figs. 2(b
2(d)] square lattices. At each temperature the field w
swept up (open symbols) and down (filled symbols). Ea
sweep shows a sharp peak in a narrow range spann
F  F0y2. The width of this peak shows that there i
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a distribution of fieldsH1y2 needed to produceF0y2 in the
individual rings. Only those rings for whichH equalsH1y2
can flip between the up and down states and contrib
strongly tox. This spread inH1y2 arises from variations
in the effective areasA enclosed by the rings, and hence th
spread inA provides an effective random magnetic field
each site. xsHd at eachT is fit very well by a Gaussian
peak superimposed on a sloping background, as shown
the solid lines in Fig. 2. This background is the respon
of the nonflipping rings discussed above. Because
the rings’ finite width, up and down rings have differen
current distributions, and hence different susceptibilitie
leading to the field dependence of the background.

For the dense array only, asT is reduced the peak
in xsHd occurs at a lower field for increasing than fo
decreasingH. This splitting is a signature of the AFM
interaction between rings. At the start of the increasi
field sweep,H , H1y2 for all the rings, and they all are
in the down state. Each ring feels the net dipole fieldHd

of its neighbors, however, which is in the same directi
asH. This means that a smaller value ofH is needed to
reachH1y2 for each ring than for the noninteracting cas
and the peak inxsHd shifts to lower field. The reverse is
true when sweepingH down from above. We also note
that if the size of the splitting reflectsHd , it should be
proportional to the lattice coordination numberz. Indeed,
the ratio between the splittings for the triangular (z  6)
and honeycomb (z  3) lattices is 2.2.

Susceptibility measurements demonstrate the prese
of magnetic interactions in the arrays, but provide no e
idence for ordering. To address this, we used a scann
Hall probe microscope (SHM) [8] to image specific ma
netic configurations of the arrays. The GaAsyAlGaAs Hall
probes had active areas of1 mm2, and a sensitivity of about
5mGy

p
Hz. The SHM was mounted on a closed cyc

3He cryostat, and the probe was scanned over the sam

FIG. 2. ac susceptibilityx vs F for sparse (a), (c), and dens
(b), (d) square lattices of superconducting rings. Open (so
symbols are for increasing (decreasing) dc field. The splitt
in the dense array at lower temperatures reflects inter-ring in
actions. The solid lines are Gaussian fits described in the te
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in a noncontact mode at a height of0.5 mm above the top
surface of the rings.

The magnetic field distribution above the arrays wa
imaged by field cooling from aboveTc to T ø 0.6Tc,
where the shielding currents in the rings have built u
enough to be measured by the Hall probe. We no
however, that the ringdynamicsbegin to freeze out only
some 7 mK belowTc (i.e., below the peak of Fig. 1).
Thus, these images reflect the spin configurations froz
in near TP, where the shielding is weak and the flu
through each ring is very nearly the applied flux. Th
arrays were typically cooled throughTc at a rate of 30–
50 mKys, but essentially identical results were obtained
cooling rates as low as 17mKys.

Figure 3 shows gray-scale images taken atT  0.66 K
of the magnetic field modulation produced by a hone
comb array in five different fields nearF0y2. These
images cover an area50 3 60 mm2 containing approxi-
mately 680 rings near the center of the array. The fu
scale magnetic field modulation in these images is 0.
G. These pictures illustrate the progression with increa
ing field of the distribution of flux quanta in the array
At FyF0  0.494, the great majority of the rings are
in the down state. The flux penetrates the array main
through the holes (i.e., the positions of the missing ring
of the honeycomb lattice, which appear as a faint triang
lar lattice of circular gray spots. A few rings are in th
up state, and these appear as bright spots. As the ar
are cooled in progressively larger fields, more and mo
rings go into the up state. ByFyF0  0.506 nearly all
of the rings are up, the holes appear darker than th
surroundings, and the remaining down rings appear
dark spots.

To determine the magnetic configuration of the ring
we first locate the position of each ring in these image
The magnetic field profile of each ring was found empir
cally to be well fit by a Gaussian. Thus we make an in
tial guess at the correct spin configuration, and constr
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the corresponding synthetic image by the superpositio
Gaussians of the appropriate sign at each site. Any er
in the spin configuration show up very clearly in thedif-
ferencebetween this synthetic image and the actual ima
In the rightmost image in Fig. 3, we show the synthe
image that models the data atFyF0  0.500. Below it
is the difference image formed by subtracting the mo
from the data. To demonstrate the effectiveness of
modeling procedure, one spin was deliberately flipped
the synthetic image. This error shows up very clearly
the difference image.

The spin configuration of each image determined
this manner is shown in the lower half of Fig. 3. Whi
hexagons indicate up spins and black hexagons indi
down spins. While the spin configurations are obviou
disordered, they arenot random; there are short-range a
tiferromagnetic correlations. A useful measure of sho
range correlations in disordered systems is the bond o
parameter [9]s  1 2 nAFy2x1x2, where nAF is the
fraction of bonds that are antiferromagnetic, andx1 and
x2 are the concentrations of up and down spins, resp
tively. s is proportional to the near-neighbor correlatio
function and ranges from11 for a ferromagnet, through 0
for a completely random arrangement of spins, to21 for
a Néel state atx1  0.5. Whens , 0, it gives the addi-
tional fraction of antiferromagnetic bonds as compared
a completely random configuration.

The open and solid circles in Fig. 4(a) shows vs x1

spanningFyF0  1y2, for two series of images taken i
different parts of the array. These data show a dist
dip in the order parameter asx1 increases from zero. A
x1 close to 0.5,s attains its maximally negative valu
of 20.18 6 0.03. We estimate this error from the pure
statistical fluctuation ins for 680 randomly oriented spins
The fact thats is less than zero for the entire rang
of x1 proves that there are short-range antiferromagn
correlations between rings. The next-nearest-neigh
correlations, however, were consistent with zero.
appear
ns of the

hexagons
frames of
FIG. 3. Top row: The magnetic field above the arrays as imaged by the scanning Hall probe microscope. “Up” spins
here as white spots, and “down” spins as black ones. The fainter circular spots seen at low spin densities are the positio
empty spaces of the honeycomb lattice. Bottom row: the spin configurations as deduced from the images. Here, white
represent up spins, and black hexagons down ones. Gray hexagons represent the holes of the lattice. The rightmost
the figure are the synthetic image (top) generated from the spin configuration deduced from theFyF0  0.500 image, and the
difference(bottom) between the real and synthetic images, when one spin is intentionally flipped.
817
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FIG. 4. (a) The bond order parameters vs concentration of
up spinsx1 for the honeycomb lattice forFyF0  1y2, 3y2,
5y2, 7y2, and 9y2. The open and filled circles at 1y2 were
measured at different places in the array. The sloped das
lines represent the theoretical minimum possible value ofs.
(b) The bond order parameters vs concentration of up spins
x1 at FyF0  0.5 for the honeycomb, triangular, and kagom
lattice arrays.

Using the SHM, we also explored the spin configura
tions at the higher fractionsFyF0  3y2, 5y2, 7y2, and
9y2. We find (not shown) that the concentrationx 1 sFd
spanning each fraction is well described by an error fun
tion, i.e., by an integral of a Gaussian, which again r
flects the distribution of flipping fields. The widths of thes
curves, or equivalently the effective disorder, grows esse
tially linearly with fraction. This result is expected sinc
the randomness in the flux through the rings,DF, equals
HDA and so is proportional toH. Thus the disorder in our
system is atunableparameter.s vsx1 for the honeycomb
lattice at the higher fractions is also shown in Fig. 4(a) f
the same region of the array as theF , F0y2 scan shown
by solid circles. The order parameter is clearly suppress
from its value atF0y2. This is due to the increased ef
fective disorder at higher fields. However, we see that
higher fractionss appears to saturate at a nonzero valu
which is surprising in view of the increasing disorder. W
suggest this is because the interaction strengthJ grows
with field H, keeping the ratio ofJ to disorder roughly
constant. AsH is increased,TcsHd falls [4], so that the
coherence lengthj , fTcs0d 2 TcsHdg21y2 falls as well.
The barrierD for flipping, which grows from zero asT is
reduced belowTcsHd, has a prefactor proportional toj,
and so will belessat higher fields. We expect the spin
to freeze into their low-temperature configuration whe
818
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D , kBTc, which implies the freeze-out temperatureTf

is further belowTcsHd at largerH. This gives the current
in the rings a greater chance to grow before the rings free
out. The result [10] is thatJ grows linearly with field for
largeH, while at smallH, J saturates.

To assess the effects of lattice geometry and frustrati
Fig. 4(b) showss vs x1 at FyF0  1y2 for honeycomb,
kagomé, and triangular lattice arrays. Despite the sca
in the data, it appears that the AFM correlations a
stronger in the honeycomb lattice than in the oth
lattices in the central range aroundx1  0.5, where
frustration effects become important. Thus we have dire
experimental evidence for geometrical frustration in 2
Ising antiferromagnets.

We have shown that an array of magnetically couple
superconducting rings form a novel realization of a
Ising antiferromagnet. There are measurable interactio
between rings that lead to hysteretic behavior inxsHd,
and to a finite value of the short-range order parame
s. We also emphasize that our arrays exhibit ve
different physics from apparently similar systems such
superconducting wire networks and arrays of Josephs
junctions where the coupling between sites is direct
through the phase of the superconducting wave functio
instead of the magnetic coupling present in our arrays.
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[10] D. Davidovićet al. (to be published).


