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Exact Distribution of Energies in the Two-Dimensional Ising Model
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The low-temperature series expansion for the partition function of the two-dimensional Ising model
on a square lattice can be determined exactly for finite lattices using Kaufman's generalization of
Onsager’s solution. The exact distribution function for the energy can then be determined from the
coefficients of the partition function. This provides an exact solution with which one can compare
energy histograms determined in Monte Carlo simulations. This solution should prove useful for
detailed studies of statistical and systematic errors in histogram reweighting.

PACS numbers: 64.60.Cn, 75.10.—b, 02.70.Lq

This paper describes an exact determination of the lowa low-temperature series expansion,
temperature series expansion for the partition function of -
the two-dimensional Ising model on a square lattice. The Zom(K) = 2K Z gxk )
expansion is based on Onsager’s exact solution [1] as gen- o N
eralized by Kaufman [2]. The purpose of the calculation
is to determine the exact distribution function of energiesvheren is the number of columnsy is the number of
with which one can compare energy histograms generows, K = J/kzT is the coupling,kz is Boltzmann's
ated by Monte Carlo simulations. Previously only low- constant,x = ¢ X is the low-temperature expansion
order cumulants of the distribution were known exactlyvariable, and the coefficiert; is the number of config-
[3], so Monte Carlo tests depended on comparing the redrations with energykJ above the two ground states (all
sults of the simulations with only the exactly known val- spins+1 or all spins—1). Only even orders appear in the
ues of the internal energy and the specific heat on finitexpansion. Iz > 5 andn > 5, the first few terms in the
square lattices [3]. Knowledge of the full energy distribu-series are
tion, however, is equivalent to knowing all cumulants for
the model exactly so it potentially contains much more in- Z,»(K) = e**{2 + 2mn)x* + (4mn)x°
formation than is typically used for checking the validity + [(mn)? + 9mn]x®
and convergence of new Monte Carlo methods. For ex-
ample, subtle correlations in the pseudorandom numbers + [4(mn)* + 24mn]x"® + .-}, (3)
cause very easily discernible deviations of the energy his- . .
togram from the exact distribution. Another potential uself both m andn are even then ferromagnetic or antiferro-
of the exact solution for the energy distribution involvesmagnetic symmetry/(— —J ands; — —s; on one sub-
testing the range of accuracy of the histogram reweightinéattlce) gives
method [4]. Histogram reweighting is a widely used tech-
nique because of the savings in computer time that results 8k = 8mn—k - (4)

from performing Monte Carlo simulations at one value of Due to the self-duality of the two-dimensional square

the applied fields (temperature, magnetic field, chemic ttice exactly the same coefficients also appear in the
potential, etc.) and reweighting the measured histogra g y . nge PP .
igh-temperature series expansion where the expansion

to determine the thermal averages at nearby field valuev.ariable is tantk) ]
The energy distribution function provides an exact bench- The energy distributio; is the probability of finding

mark for testing the evolution of statistical and systematic o )
errors as a function of temperature. an equilibrium state with energy 4 kJ above the ground

The isotropic two-dimensional Ising model with state. Itis given simply by

k=0

nearest-neighbor interactions on a lattice with rows gux?k
andn columns with periodic boundary conditions in zero Pu(K) = i (5)
external field is defined by the Hamiltonian > grx2k
k=0
H = _]Zsis-f’ () Onsager’s exact solution [1] of the two-dimensional Ising

() model was extended by Kaufman [2] in 1949 to give
whereJ is the coupling energy and = *1. The sum the exact solution for the partition function on a finite
is over pairs of nearest-neighbor sites on the lattice. Thequare lattice with periodic boundary conditions. One
partition function at any temperatufe can be written as can cast this solution in the form of a low-temperature
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series (2) thereby giving an exact determinatio®PgfK ).
Kaufman’s [2] solution for the partition function on a

m X n square lattice is

Zna(K) = 2" N Y + Y + Y3 + V4),  (6)
where

n—1

Y, = l_[2cosk<%y2kﬂ> sini/?(2K),  (7a)
k=0
n—1 m

Yo =[] 2sinr<7mﬂ> sinH*/?2(2K),  (7b)
k=0
n—1 m

;=] 2COS"<7’)’2k> sinh"/2(2K), (7¢)
k=0
n—1 m

va=1]] 2sinl<772k> sinh"/2(2K) . (7d)
k=0

B =2x(1 — x?),
ap = (1 + x%)? — BCOS(WTIC>

co=(1—x)"+x"(1 + x)",

so = (1 —x)" = x™(1 + x)™,

Cn

Sn

ci

(r+x)"

(2
i 2

For0 < k < 2n the quantityyy is the positive root of

_ cosh(2K) ki3
costiyx) = sinh(2K) CO< n > ®)
Thek = 0 case is
e” = ¢* tanhK). 9

Equations (6) and (7) can be simplified to the point that
MATHEMATICA can be used to express the result (6)—(9)
in the form (2), i.e., a polynomial in the variahle The
factors in Eqgs. (7a)—(7d) can be simplified considerably
using the following definitions:

The function[z] denotes the Iar%est integer less than oif » is odd

equal toz. The quantities:; and:s;
the binomial series in order to explicitly remove all square
roots that hide the polynomial nature of the final result (2).

The patrtition function can then be written as

Zun(K) = &*™K(Z) + Zo + Z3 + Z4).

(10a)
, (10b)
(10c)
(10d)
=0+ x)"+ "1 - x)", (10e)
- x"(1 = x)", (10f)
[m/2] ' .
m. i om—2 m
m(ai - BV T+ B ) (109)
= ! !
[m/2] | ,
m! iom—2 m
m(ai - a7 - B ) (10h)
= ! !
I
were expanded using T
2
Z] = Ecn l_[ Cok+1 (138.)
k=0
| 2
(11) Zy = s | (13b)
k=0
1 (n-1)/2
(123) Z3 = —Co C%k 5 (130)
2 k=1
1 (’171)/2
(12b) Zi = —so s (13d)
2 k=1
(12¢) For any chosen lattice size one can WBEGHEMATICA to
expand the products of the polynomials in Egs. (12) or (13)
to give the form (2). If one isinterested in the exact integer
(12d) values for the coefficientg,, one must set the numerical

If nis even
1 n/2—1
2
zZ, = 2 l_[ Cok+1>
k=0
1 n/2—1
_ 2
Z, = 3 l_[ S2k+1 >
k=0
1 n/2—1
Z3 = ~ C0Cn l_[ 3,
k=1
1 n/2—1
Zy = 3sosn l_[ s%k.
k=1

precision to aboutnn In(2)/In(10) decimal digits. The
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calculation can be checked against the low-order result (3) or with an exact enumeration of the energies on small lattices.
The series for th82 X 32 Ising model is

Z332(K) = e® ™8 K(2 + 2048x* + 4096x® + 1057792x% + 4218880x'° + 371621888x'> + 2191790080x'*
+ 100903637504x ' + 768629792768x'8 + 22748079183872x%° + ...
+ 4096x 018 + 2048x1020 4 2x1024) (14)

The largest coefficient for th#2 X 32 Ising model is
gs12 = 6,342,873,169,001, 916,568, 766,443,273, 025,000,331, 593, 063, 924, 436, 135, 196, 680, 443, 689, 656,
478,072,741,300,511,612, 123,900, 652,711,596, 311,283,701, 724,071,226, 144,241,851,411, 641,714,
893,727,789,741,510, 169,213, 344,005, 116, 385, 197,594, 692, 089, 556, 614, 547,788, 150, 860, 200, 720,
413,211,442,412,355,672,291, 841, 364,265, 145,274,980, 444, 405,423, 129, 672, 679, 584, 959, 498, 234,
944, 801,613,246, 300, 853,599, 317, 229,362,316 ~ 6.342873169 X 10°% .

A plot of the coefficients for thé2 X 32 Ising model is shown in Fig. 1.
A final verification of the correctness of the calculation is to ensure that the reduced free energy per spin gives the
same power series as the thermodynamic limit series

log(3Z
im 2902V oy i o0 g Don g0 ¢ M2 gy 1900 gy SBTO s, 4O0TL o
N—x» N 2 3 4 3 5
23084692 77637922
+ 35302x%% + 156740x%* + 712052x% + 5 x® o+ s 20+ (15)

Equation (15) is derived by expanding the integrand ingood test of the convergence of new Monte Carlo meth-
Onsager’s solution for the free energy per spin in the thereds. As an example, we show results for the now famous
modynamic limit as a power seriesirmand evaluating the case of incorrect Monte Carlo results arising from using
resulting integrals term by term usiMpTHEMATICA . The  the R250 feedback shift-register pseudorandom number
expansion of the logarithm of Eq. (14) USIRGATHEMAT- generator in conjunction with the Wolff cluster update
ICA gives the same series as (15) up to ord€r
The histograms of energies generated from Monte

Carlo simulations can be compared with this exact distri- 32x32 Ising K=K,
bution function (5) in order to ensure that the Monte Carlo -2~ =~~~
results converge to the exact solution. This provides a

32x32 Ising coefficients
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FIG. 2. The exact distribution of energies for the x 32
' ] Ising model at the critical temperature (solid line) and the distri-
0 . ; . bution calculated from 10configurations using the Wolff algo-
0 256 512 768 1024 rithm [6] with the R250 feedback shift-register pseudorandom
K number generator [5] (error bars). The distribution calculated
from 5 X 107 configurations using the Wolff algorithm [6] with
FIG. 1. The base-10 logarithm of the partition function a double precision version ™umerical Reciped[7] ran2() is
coefficients of the&2 X 32 Ising model. The largest coefficient also shown, but is almost indistinguishable from the solid curve
iS gs12 =~ 6.342873169 X 10306, at this scale.
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Deviation of Monte Carlo from Exact Distribution results are-0.95¢ from the expected value of 209.5 and
T the feedback shift-register results atd3000 from the
expected value of 216.5. The small but perhaps signifi-
cant deviation of the ran2() results from the expeciéd
value is probably attributable to the residual correlations
in the configurations that survive after 20 cluster updates.
The exact distribution function (5) should also prove
useful for more detailed studies of statistical errors in
histogram reweighting [4]. Using the exact distribution,
one can easily draw samples from the exact distribution

N
o

o

(@}

|
o

deviation/uncertainty

X
£
%
%
X
+ Numerical Recipes' ran2() %(
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aoF x feed-back shift—register o5 at one temperature [7] without resorting to Monte Carlo
%? simulations. The deviation of the reweighted histogram
from the exact distribution at another temperature is then
-30 L L L e trivial to calculate. Using the full energy distribution
50 100 150 200 250 300

" rather than just the first two moments of the distribution
FIG. 3. This plot shows the deviation of the Monte Carlo will also provide much more information for use in

results in Fig. 2 from the exact distribution in units of the monitoring Fhe evolutlpn of stat_ls.tlcal errors. .
statistical uncertainty of each point. The’s indicate the The partition function coefficients for several lattice
ran2() results and the’s indicate the feedback shift-register Sizes and theiaTHEmATICA code that performs the calcu-
results. They? for the two cases are 190 for 210 nonzero |ation of those coefficients can be found at the anonymous
points and 28000 for 217 nonzero points, respectively. Thg, sjte bly.colorado.edu in director /pub/cml_pubs/beale.
ran2() results are-0.950 from the expected value and the Log in using ftp with the login namanonymous. Use

feedback shift-register results arel3000 from the expected . .
value. your full e-mail or login address as your password.
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