
VOLUME 76, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 1 JANUARY 1996

odel
on of

the
pare
l for

78
Exact Distribution of Energies in the Two-Dimensional Ising Model

Paul D. Beale*
Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80309
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The low-temperature series expansion for the partition function of the two-dimensional Ising m
on a square lattice can be determined exactly for finite lattices using Kaufman’s generalizati
Onsager’s solution. The exact distribution function for the energy can then be determined from
coefficients of the partition function. This provides an exact solution with which one can com
energy histograms determined in Monte Carlo simulations. This solution should prove usefu
detailed studies of statistical and systematic errors in histogram reweighting.

PACS numbers: 64.60.Cn, 75.10.–b, 02.70.Lq
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This paper describes an exact determination of the l
temperature series expansion for the partition function
the two-dimensional Ising model on a square lattice. T
expansion is based on Onsager’s exact solution [1] as
eralized by Kaufman [2]. The purpose of the calculati
is to determine the exact distribution function of energ
with which one can compare energy histograms gen
ated by Monte Carlo simulations. Previously only low
order cumulants of the distribution were known exac
[3], so Monte Carlo tests depended on comparing the
sults of the simulations with only the exactly known va
ues of the internal energy and the specific heat on fi
square lattices [3]. Knowledge of the full energy distrib
tion, however, is equivalent to knowing all cumulants f
the model exactly so it potentially contains much more
formation than is typically used for checking the validi
and convergence of new Monte Carlo methods. For
ample, subtle correlations in the pseudorandom num
cause very easily discernible deviations of the energy
togram from the exact distribution. Another potential u
of the exact solution for the energy distribution involv
testing the range of accuracy of the histogram reweigh
method [4]. Histogram reweighting is a widely used tec
nique because of the savings in computer time that res
from performing Monte Carlo simulations at one value
the applied fields (temperature, magnetic field, chem
potential, etc.) and reweighting the measured histogra
to determine the thermal averages at nearby field val
The energy distribution function provides an exact ben
mark for testing the evolution of statistical and systema
errors as a function of temperature.

The isotropic two-dimensional Ising model wit
nearest-neighbor interactions on a lattice withm rows
andn columns with periodic boundary conditions in ze
external field is defined by the Hamiltonian

H  2J
X
sijd

sisj , (1)

whereJ is the coupling energy andsi  61. The sum
is over pairs of nearest-neighbor sites on the lattice. T
partition function at any temperatureT can be written as
0031-9007y96y76(1)y78(4)$06.00
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a low-temperature series expansion,

Zn,msKd  e2nmK
nmX

k0

gkx2k , (2)

wheren is the number of columns,m is the number of
rows, K  JykBT is the coupling,kB is Boltzmann’s
constant, x  e22K is the low-temperature expansio
variable, and the coefficientgk is the number of config-
urations with energy4kJ above the two ground states (a
spins11 or all spins21). Only even orders appear in th
expansion. Ifm . 5 andn . 5, the first few terms in the
series are

Zn,msKd  e2nmK h2 1 s2mndx4 1 s4mndx6

1 fsmnd2 1 9mngx8

1 f4smnd2 1 24mngx10 1 · · ·j . (3)

If both m andn are even then ferromagnetic or antiferro
magnetic symmetry (J ! 2J andsi ! 2si on one sub-
lattice) gives

gk  gmn2k . (4)

[Due to the self-duality of the two-dimensional squa
lattice exactly the same coefficientsgk also appear in the
high-temperature series expansion where the expan
variable is tanhsKd.]

The energy distributionPk is the probability of finding
an equilibrium state with energy 4 kJ above the grou
state. It is given simply by

PksKd 
gkx2k

mnP
k0

gkx2k
. (5)

Onsager’s exact solution [1] of the two-dimensional Isin
model was extended by Kaufman [2] in 1949 to giv
the exact solution for the partition function on a finit
square lattice with periodic boundary conditions. O
can cast this solution in the form of a low-temperatu
© 1995 The American Physical Society
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series (2) thereby giving an exact determination ofPksKd.
Kaufman’s [2] solution for the partition function on
m 3 n square lattice is

Zm,nsKd  2mny221sY1 1 Y2 1 Y3 1 Y4d , (6)

where

Y1 
n21Y
k0

2 cosh

µ
m
2

g2k11

∂
sinhmy2s2Kd , (7a)

Y2 
n21Y
k0

2 sinh

µ
m
2

g2k11

∂
sinhmy2s2Kd , (7b)

Y3 
n21Y
k0

2 cosh

µ
m
2

g2k

∂
sinhmy2s2Kd , (7c)

Y4 
n21Y
k0

2 sinh

µ
m
2

g2k

∂
sinhmy2s2Kd . (7d)
2

For 0 , k , 2n the quantitygk is the positive root of

coshsgkd 
cosh2s2Kd
sinhs2Kd

2 cos

µ
pk
n

∂
, (8)

Thek  0 case is

eg0  e2K tanhsKd . (9)

Equations (6) and (7) can be simplified to the point th
MATHEMATICA can be used to express the result (6)–(
in the form (2), i.e., a polynomial in the variablex. The
factors in Eqs. (7a)–(7d) can be simplified considerab
using the following definitions:
b  2xs1 2 x2d , (10a)

ak  s1 1 x2d2 2 b cos

µ
pk
n

∂
, (10b)

c0  s1 2 xdm 1 xms1 1 xdm, (10c)

s0  s1 2 xdm 2 xms1 1 xdm, (10d)

cn  s1 1 xdm 1 xms1 2 xdm, (10e)

sn  s1 1 xdm 2 xms1 2 xdm, (10f)

c2
k 

1
2m21

√
fmy2gX
j0

m!
s2jd! sm 2 2jd!

sa2
k 2 b2dja

m22j
k 1 bm

!
, (10g)

s2
k 

1
2m21

√
fmy2gX
j0

m!
s2jd! sm 2 2jd!

sa2
k 2 b2dja

m22j
k 2 bm

!
. (10h)
3)
er
l

The functionfzg denotes the largest integer less than
equal toz. The quantitiesc2

k ands2
k were expanded using

the binomial series in order to explicitly remove all squa
roots that hide the polynomial nature of the final result (
The partition function can then be written as

Zm,nsKd  e2mnK sZ1 1 Z2 1 Z3 1 Z4d . (11)
If n is even

Z1 
1
2

ny221Y
k0

c2
2k11 , (12a)

Z2 
1
2

ny221Y
k0

s2
2k11 , (12b)

Z3 
1
2

c0cn

ny221Y
k1

c2
2k , (12c)

Z4 
1
2

s0sn

ny221Y
k1

s2
2k . (12d)
or

re
).

If n is odd

Z1 
1
2

cn

sn23dy2Y
k0

c2
2k11 , (13a)

Z2 
1
2

sn

sn23dy2Y
k0

s2
2k11 , (13b)

Z3 
1
2

c0

sn21dy2Y
k1

c2
2k , (13c)

Z4 
1
2

s0

sn21dy2Y
k1

s2
2k . (13d)

For any chosen lattice size one can useMATHEMATICA to
expand the products of the polynomials in Eqs. (12) or (1
to give the form (2). If one is interested in the exact integ
values for the coefficientsgk , one must set the numerica
precision to aboutmn lns2dy lns10d decimal digits. The
79
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lattices.

ves the
calculation can be checked against the low-order result (3) or with an exact enumeration of the energies on small
The series for the32 3 32 Ising model is

Z32,32sKd  e2048 Ks2 1 2048x4 1 4096x6 1 1057792x8 1 4218880x10 1 371621888x12 1 2191790080x14

1 100903637504x16 1 768629792768x18 1 22748079183872x20 1 · · ·

1 4096x1018 1 2048x1020 1 2x1024d . (14)

The largest coefficient for the32 3 32 Ising model is

g512  6, 342, 873, 169, 001, 916, 568, 766, 443, 273, 025, 000,331, 593, 063, 924, 436, 135, 196, 680, 443, 689, 656,

478, 072, 741, 300, 511, 612, 123, 900, 652, 711, 596, 311,283, 701, 724, 071, 226, 144, 241, 851, 411, 641, 714,

893, 727, 789, 741, 510, 169, 213, 344, 005, 116, 385, 197,594, 692, 089, 556, 614, 547, 788, 150, 860, 200, 720,

413, 211, 442, 412, 355, 672, 291, 841, 364, 265, 145, 274,980, 444, 405, 423, 129, 672, 679, 584, 959, 498, 234,

944, 801, 613, 246, 300, 853, 599, 317, 229, 362, 316 ø 6.342873169 3 10306 .

A plot of the coefficients for the32 3 32 Ising model is shown in Fig. 1.
A final verification of the correctness of the calculation is to ensure that the reduced free energy per spin gi

same power series as the thermodynamic limit series

lim
N!`

logs 1
2 ZN d
N

 2K 1 x4 1 2x6 1
9
2

x8 1 12x10 1
112

3
x12 1 130x14 1

1961
4

x16 1
5876

3
x18 1

40871
5

x20

1 35302x22 1 156740x24 1 712052x26 1
23084692

7
x28 1

77637922
5

x30 1 · · · . (15)
e

n
t
r
s

n
t

th-
us
g

ber
e

ri-

m
ed

ve
Equation (15) is derived by expanding the integrand
Onsager’s solution for the free energy per spin in the th
modynamic limit as a power series inx and evaluating the
resulting integrals term by term usingMATHEMATICA . The
expansion of the logarithm of Eq. (14) usingMATHEMAT-

ICA gives the same series as (15) up to orderx30.
The histograms of energies generated from Mo

Carlo simulations can be compared with this exact dis
bution function (5) in order to ensure that the Monte Ca
results converge to the exact solution. This provide

FIG. 1. The base-10 logarithm of the partition functio
coefficients of the32 3 32 Ising model. The largest coefficien
is g512 ø 6.342873169 3 10306.
80
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good test of the convergence of new Monte Carlo me
ods. As an example, we show results for the now famo
case of incorrect Monte Carlo results arising from usin
the R250 feedback shift-register pseudorandom num
generator in conjunction with the Wolff cluster updat

FIG. 2. The exact distribution of energies for the32 3 32
Ising model at the critical temperature (solid line) and the dist
bution calculated from 107 configurations using the Wolff algo-
rithm [6] with the R250 feedback shift-register pseudorando
number generator [5] (error bars). The distribution calculat
from 5 3 107 configurations using the Wolff algorithm [6] with
a double precision version ofNumerical Recipes’[7] ran2( ) is
also shown, but is almost indistinguishable from the solid cur
at this scale.
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FIG. 3. This plot shows the deviation of the Monte Carl
results in Fig. 2 from the exact distribution in units of th
statistical uncertainty of each point. The1’s indicate the
ran2( ) results and the3’s indicate the feedback shift-registe
results. Thex2 for the two cases are 190 for 210 nonzer
points and 28 000 for 217 nonzero points, respectively. T
ran2( ) results are20.95s from the expected value and the
feedback shift-register results are11300s from the expected
value.

algorithm [5,6]. The deviation of the energy histogram
from the exact energy distribution (5) for the32 3 32
Ising model at the critical point caused by subtle correl
tions present in the pseudorandom numbers is very cl
in Fig. 2. The results are derived from 107 independent
configurations. By comparison, the energy distributio
that results from5 3 107 configurations generated by the
Wolff [6] algorithm with a double precision version of
Numerical Recipes’ran2( ) pseudorandom number gene
ator [7] gives a histogram that is almost indistinguishab
from the exact distribution on the scale in this figure. (I
both cases the energy correlation factor [8] for the mod
is 2t 1 1 ø 8 so only every 20th configuration was use
in order to assure approximate statistical independence
configurations used in the calculation of the histogram
The deviation of the Monte Carlo results from the exa
distribution of energies is shown in Fig. 3. Thex2 for the
two cases are 190 for 210 nonzero points using ran2( ) a
28 000 for 217 nonzero points using R250. The ran2
e

-
ar

n

-
e

el

of
.)
t

nd
)

results are20.95s from the expected value of 209.5 an
the feedback shift-register results are11300s from the
expected value of 216.5. The small but perhaps sign
cant deviation of the ran2( ) results from the expectedx2

value is probably attributable to the residual correlatio
in the configurations that survive after 20 cluster update

The exact distribution function (5) should also prov
useful for more detailed studies of statistical errors
histogram reweighting [4]. Using the exact distribution
one can easily draw samples from the exact distributi
at one temperature [7] without resorting to Monte Car
simulations. The deviation of the reweighted histogra
from the exact distribution at another temperature is th
trivial to calculate. Using the full energy distribution
rather than just the first two moments of the distributio
will also provide much more information for use in
monitoring the evolution of statistical errors.

The partition function coefficients for several lattic
sizes and theMATHEMATICA code that performs the calcu-
lation of those coefficients can be found at the anonymo
ftp site bly.colorado.edu in director /pub/cml_pubs/bea
Log in using ftp with the login nameanonymous. Use
your full e-mail or login address as your password.
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