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Observation of Coexisting Upflow and Downflow Hexagons
in Boussinesq Rayleigh-Bénard Convection
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We experimentally observed patterns consisting of domains of upflow hexagons coexisting with
domains of downflow hexagons in Boussinesq Rayleigh-Bénard convection. The sequence of patterns,
as the control parameter= AT /AT, — 1 is increased, is from ordered or disordered rolls at onset to
extended targets and spiralseat- 1, to coexisting hexagons &t~ 3. Hexagons occur for all values
of the Prandtl numbeR.8 = P = 28 investigated. Surprisingly, they appear in a range where only
rolls were known to be stable, and their wave number differs substantially from the roll wave number
they coexist with.

PACS numbers: 47.54.+r, 47.20.Lz, 47.27.Te

One of the most intriguing recent discoveries in natuthe Prandtl number and« = A/pC,.  Although
ral pattern formation in large aspect ratio Rayleigh-Bénardhe BA is valid for Q> < R. [4] (R. is the criti-
convection (RBC) is the observation of extended patternsal value of the Rayleigh numbeR = B,gd*AT /v,
[1-3] over a wide range of parameters where previouslwith d the fluid layer thickness ang the acceleration of
only rolls were known to be stable [4]. Subsequently, bothgravity), at Q ~ 1 deviations from the BA are already
numerical simulation of the generalized Swift-Hohenbergquite significant [1,11]. The system then chooses either
model [5] as well as integration of the full thermally driven hexagons with upflow at the center (upflow hexagons)
Navier-Stokes equations in the Boussinesq approximatioar hexagons with upflow at the boundaries (downflow
[6] accurately reproduced such spirals and targets. Alhexagons), depending on the relative strength of the
though it has since been established that they are intrithermal properties of the fluid and boundaries, as well as
sic to RBC, there is still little understanding why this statethe temperature dependence of various fluid properties.
develops or of its dynamic behavior. Recently, Cross and Here, we report reentrant hexagonal patterns (i.e., not
Tu [7] introduced the notion of invasive defects as a firstoccurring near the threshold for convection) which appear
attempt to clarify the occurrence and characteristics of exvia a core instability of spirals and targets Boussinesq
tended patterns. Driven by the difference in wave numbeRBC. The most striking feature of these hexagonal
selected by the focus and some background wave numbeyanforms, however, is the fact that both upflow and
the defects expand to form spirals and targets, and evedownflow hexagons coexist simultaneously (see Fig. 1).
tually take over the entire system via their dynamics. Ex-Reentrant hexagons have first been observed in reaction-
perimentally, a clear transition to the spiral-defect chaotidiffusion systems [12]. A recent theoretical study has
state was observed [8,9]. An obvious natural extension ofevealed that both upflow and downflow hexagons can
these studies is the search for an upper stability limit of theccur for different values of the control parameter [13].
spiral and the target chaotic state. In pursuing this goal wén RBC in a planar liquid crystal with a nematic-isotropic
found that the extended pattern cores become unstable to
defects of finite size and finite amplitude and of hexagonal
symmetry. Surprisingly, upflow and downflow hexagons
can coexist, and interesting instabilities of spiral and target
cores can be observed.

In RBC hexagons occur as the first, subcritical bifurca-
tion when the up-down symmetry is broken [4]. The most
common causes for such a symmetry breaking are depar:
tures from the Boussinesq approximation (BA). They can
be quantitatively estimated by the nondimensional parame-
terQ = Z?:O vipi, Where they;’s are the nondimensional
variations of densityp, isobaric thermal expansiog,,
kinematic viscosity, thermal conductivity\, and isobaric
specific healC,, with respect to the top and bottom tem-
peratures, respectively, normalized by some ref-

erence value. Thep;’s are linear functions of F|G. 1. Typical reentrant upflow and downflow hexagons.
P! of O(1) [4,10]. Here, P = v/k represents The parameters are= 3.4, P = 4.5, andQ = 0.16.
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phase transition, reentrant hexagons of both types havia)
also been found [14]. Coexistence, on the other hand
of upflow and downflow hexagons has been observec
numerically by Hilali et al.in the generalized Swift-
Hohenberg model with a large quadratic nonlinearity
[15]. Recently, Dewekt al. found coexisting hexagonal
patterns through coupling of a basic bifurcation with a
zero mode [16]. Melcet al. found coexisting hexagons
in the Faraday instability in a granular medium [17].
Experimentally, both reentrant and coexisting hexagons
have been observed in the CIMA reaction [12,18]. (c)
We have studied RBC in SFin the vicinity of the

thermodynamical critical point. This allows us to vary
the Prandtl number in a wide range and to achieve ex-
tremely large aspect ratios [19], while keepiggnegli-
gibly small, as described elsewhere [1,3]. In particula
we showed previously thax7, ~ 77*”, P ~ 77, and
Q. ~ AT.7 ~ 7v*»~1 along the critical isochore. Here,
AT, represents the onset of convection= (T — T.)/T.

is the reduced temperatuf®andT, (T. = 318.73 K) are

the average and critical temperatures, respectivelyis -
. G. 2. Route to coexisting hexagong, (P, and Q are
the value of the non-Boussinesq parameter at onset, a en in parentheses): (a) extended patterns (1.08, 9.8, 0.038);

y~124andv = 0.63 are the _critical exponents of the (b) onset of hexagons as core defects of extended patterns
response and correlation functions, respectively. All thg2.74, 4.5, 0.14); (c) coexisting hexagons (3.4, 4.5, 0.16);

results presented below have been obtained in a cell of réd) mainly one type of hexagon (4.2, 4.5, 0.19).

dial aspect ratid® = D/2d = 80, whereD is the diame-

ter, and thicknesd = 380 um. We varied the Prandtl

number in the rang@.8 = P = 28 by simply modify- Wwas previously implicitly assumed [6-9]. We would like

ing the reduced temperature and the reduced density to emphasize here again that our system is unique in

pr = p/pe (pe = 730 kg/m’ is the critical density). The that O can be varied in an extremely wide range. In

additional freedom in using off-critical densities allows particular, extremely small values not only fe@| but

to vary P while keepingAT, fixed. Our choice off =  also forQus = >.i_, |y:pil are readily obtained.

380 um stems from the compromise between the desire At € = 2.74 (for P = 4.5 and 0 = 0.138 [21]), ex-

for a negligible value of)., on the one hand, and the need tended states become unstable to core defects whose sizes

for a detectable value oAT, at the largest value oP  are ofO(d) [see Fig. 2(b)]. It can be seen that target cores

(where AT, is smallest), on the other hand. The largestare already unstable while spiral cores are not. Possibly

value of Q. = 0.048 occurred for the smallest value of at this value ofP ande spiral cores are more stable. Itis

P =28. The thermodynamic and kinetic parametersobvious that the cores become unstable to defects of hexag-

needed to evaluate all relevant quantities will be publishe@nal symmetry when the focus selected wave number be-

elsewhere [20]. comes small with respect to the average wave number.
Although hexagons appeared for all values Rfin

the range2.8 = P = 28, we will describe mainly the

results of our most detailed study &t =_4'5_' When TABLE I. The onsets of convection and of extended patterns
the control parametee = AT/AT. — 1 is increased and the non-Boussinesq parameter at the onset of extended
from zero the patterns found are nearly straight rollspattern formation as a function &f.

over the entire cell (for large values df domains B AT, A7 i

of straight rolls are obtained [1]). A& < 1, a clear B ¢ e

transition to extended patterns occurs [see Fig. 2(a)], & (X107 p,  (MK)  (mK)  Tg= — 1 |Qeul
was recently investigated in detail [8,9]. It is quite likely 2.8 31.9 1.306 143.8 270.7 0.882 0.086
that this transition is both aspect ratio and Prandtl number4.3  28.6 1.160 46.4  85.7 0.845  0.025
dependent. Consequently, we have determined the onséd.0 285 1.028 230 431 0.873  0.045
of the extended pattern state in the ralge= P = 28 9.7 156 1028 88 183 108  0.037
for our cell of I' = 80. The results are summarized 24 6.43 1028 33 138 33  0.061
in Table | and confirm that (i) the onset for extended 28 425 1028 10 32 21 0.0061
patterns occurs foe < 1 [8,9], and (ii) non-Boussinesq 2Possibly overestimated due to large used.

behavior is irrelevant for the extended pattern state, a¥alculated from critical scaling; too small to be measured.
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When the control parameter is increase slightly furthetween~3 and 6 times larger than the average wave num-
to e = 2.88, spiral cores also become unstable. Figure der (see Fig. 4). It is interesting that the cross roll wave
shows the typical dynamics of a spiral core close to thevumber is smallest midway between two extended pattern
onset of its instability. Then, there are only few hexagongores, while it is largest in their cores. At still higherla
present in the core. The local core instability choosesurbulent state free of any pattern is observed.
either upflow or downflow hexagons. We have accurately measured the wave number in

Upon further increase of (3 < € < 4) the hexagonal regions where large domains of rolls and hexagons coexist
core defects completely invade the system, mainly by celle.g., Fig. 2(c)] by analyzing the azimuthally averaged
division, as shown in Figs. 1 and 2(c). At this stagestructure function of the respective domains (see Fig. 5).
both interactions between upflow and downflow hexagon8y Gaussian fitting the peaks, we foukd; = (1.89 +
in the cores as well as in the bulk can be observed).24)d™! (rolls only), while kpe, = (1.56 + 0.12)d™!
Ising walls separate regions of upflow from domains of(both upflow and downflow hexagons). We have also
downflow. Although the dynamics is complex and theseparately determined the average wave number of upflow
system never reaches a stationary state, it seems that Isingd downflow hexagons and found differences of at
walls tend to straighten out by a phase jump mechanismmost 5%. By varying the focalization distance of the
By shadowgraph microscopy, we observed that even ishadowgraph, we obtained a consistent wave number ratio
frustrated polygons angles of 128re preserved. of kwo11/knex = 1.2 to 1.3. Consequently, we argue that

A further increase td < € < 5 gives way to a pattern the differences in roll and hexagon wave numbers are
of preferably one type of hexagon. We have not verifiechot caused by shadowgraph nonlinearities. A direct fit
whether this is due to a particular combinationffand  of the azimuthally averaged structure function, using a
e. We have let the system equilibrate for as long as twesum of two Gaussians, averaged over 30 frames &t
horizontal diffusion times, but a completely defect free3.4, on the other hand, gives,; = (1.962 + 0.044)d ™!
hexagonal lattice never formed [see Fig. 2(d)]. In par-and ky.x = (1.561 + 0.038)d~'. Although we have no
ticular, wall foci continued to form, whose cores usually explanation, it is interesting to note that,/khex =
became unstable to hexagonal defects. Remarkably, how/3/2 to within about 2.5%, independent ef in accord
ever, spontaneous formation of islands of single hexagonsith [22].
of the other type (and isolated rolls) always occurred. Of- Since the observation of nonequilateral hexagons
ten such a formation was induced by wave number gradif12,18], recent theories have derived amplitude equations
ents caused by various defects in the near vicinity. that allow for their existence, even within the BA [18,23—

At the largest values oP, where AT, is small, we 25]. We have Fourier transformed small regions of at
could easily reach the upper stability limit of the hexago-least 60 hexagons (so that long wavelength curvature
nal patterns. In the range = 15, the pattern consisting would not interfere) of Fig. 2(d) and found occasionally
mostly of spirals, targets, and hexagons becomes unstaléd@gular deviations between the peaks665° + 0.20°,
to cross rolls, in agreement with Ref. [4], superimposing60.60° + 0.20°, and 58.75° = 0.20°, respectively. Al-
themselves onto the pattern. Their wave number is bethough this deviation from equilaterality is not as striking
as in [18], it falls outside of our error bars. The regions
of interest were always defect free, and the nearest

W‘

FIG. 3. A typical sequence showing the competition between
hexagonal core defects and spirals near onset for hexagonal
defects. The parameters aee= 2.88, P = 4.5, and Q =

0.14. Time progresses from left to right and top to bottom FIG. 4. Global cross rolls superimposed onto the basic pattern
in steps of27, (7, is the vertical diffusion time). ate =22 andP = 17.
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