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Observation of Coexisting Upflow and Downflow Hexagons
in Boussinesq Rayleigh-Bénard Convection
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(Received 2 June 1995; revised manuscript received 16 October 1995)

We experimentally observed patterns consisting of domains of upflow hexagons coexisting
domains of downflow hexagons in Boussinesq Rayleigh-Bénard convection. The sequence of pa
as the control parametere ­ DTyDTc 2 1 is increased, is from ordered or disordered rolls at onset
extended targets and spirals ate , 1, to coexisting hexagons ate , 3. Hexagons occur for all values
of the Prandtl number2.8 # P # 28 investigated. Surprisingly, they appear in a range where on
rolls were known to be stable, and their wave number differs substantially from the roll wave num
they coexist with.

PACS numbers: 47.54.+r, 47.20.Lz, 47.27.Te
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One of the most intriguing recent discoveries in na
ral pattern formation in large aspect ratio Rayleigh-Béna
convection (RBC) is the observation of extended patte
[1–3] over a wide range of parameters where previou
only rolls were known to be stable [4]. Subsequently, bo
numerical simulation of the generalized Swift-Hohenbe
model [5] as well as integration of the full thermally drive
Navier-Stokes equations in the Boussinesq approxima
[6] accurately reproduced such spirals and targets.
though it has since been established that they are int
sic to RBC, there is still little understanding why this sta
develops or of its dynamic behavior. Recently, Cross a
Tu [7] introduced the notion of invasive defects as a fi
attempt to clarify the occurrence and characteristics of
tended patterns. Driven by the difference in wave num
selected by the focus and some background wave num
the defects expand to form spirals and targets, and ev
tually take over the entire system via their dynamics. E
perimentally, a clear transition to the spiral-defect chao
state was observed [8,9]. An obvious natural extension
these studies is the search for an upper stability limit of
spiral and the target chaotic state. In pursuing this goal
found that the extended pattern cores become unstab
defects of finite size and finite amplitude and of hexago
symmetry. Surprisingly, upflow and downflow hexago
can coexist, and interesting instabilities of spiral and tar
cores can be observed.

In RBC hexagons occur as the first, subcritical bifurc
tion when the up-down symmetry is broken [4]. The mo
common causes for such a symmetry breaking are de
tures from the Boussinesq approximation (BA). They c
be quantitatively estimated by the nondimensional param
terQ ­

P4
i­0 gipi , where thegi ’s are the nondimensiona

variations of densityr, isobaric thermal expansionbp,
kinematic viscosityn, thermal conductivityl, and isobaric
specific heatCp with respect to the top and bottom tem
peratures, respectively, normalized by some r
erence value. Thepi ’s are linear functions of
P21 of Os1d [4,10]. Here, P ­ nyk represents
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-
rd
ns
ly
th
rg

on
l-

in-
e
nd
st
x-
er
er,

en-
x-
ic
of
e
e
to

al
s
et

-
st
ar-
n
e-

-
f-

the Prandtl number andk ­ lyrCp . Although
the BA is valid for Q2 ø Rc [4] (Rc is the criti-
cal value of the Rayleigh number,R ­ bpgd3DTynk,
with d the fluid layer thickness andg the acceleration of
gravity), at Q , 1 deviations from the BA are alread
quite significant [1,11]. The system then chooses eit
hexagons with upflow at the center (upflow hexago
or hexagons with upflow at the boundaries (downflo
hexagons), depending on the relative strength of
thermal properties of the fluid and boundaries, as wel
the temperature dependence of various fluid properties

Here, we report reentrant hexagonal patterns (i.e.,
occurring near the threshold for convection) which app
via a core instability of spirals and targets inBoussinesq
RBC. The most striking feature of these hexago
planforms, however, is the fact that both upflow a
downflow hexagons coexist simultaneously (see Fig.
Reentrant hexagons have first been observed in reac
diffusion systems [12]. A recent theoretical study h
revealed that both upflow and downflow hexagons c
occur for different values of the control parameter [1
In RBC in a planar liquid crystal with a nematic-isotrop

FIG. 1. Typical reentrant upflow and downflow hexagon
The parameters aree ­ 3.4, P ­ 4.5, andQ ­ 0.16.
© 1996 The American Physical Society
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phase transition, reentrant hexagons of both types h
also been found [14]. Coexistence, on the other ha
of upflow and downflow hexagons has been observ
numerically by Hilali et al. in the generalized Swift-
Hohenberg model with a large quadratic nonlineari
[15]. Recently, Dewelet al. found coexisting hexagona
patterns through coupling of a basic bifurcation with
zero mode [16]. Meloet al. found coexisting hexagons
in the Faraday instability in a granular medium [17
Experimentally, both reentrant and coexisting hexago
have been observed in the CIMA reaction [12,18].

We have studied RBC in SF6 in the vicinity of the
thermodynamical critical point. This allows us to var
the Prandtl number in a wide range and to achieve e
tremely large aspect ratios [19], while keepingQ negli-
gibly small, as described elsewhere [1,3]. In particula
we showed previously thatDTc , tg1n , P , t2n , and
Qc , DTct , tg1n21, along the critical isochore. Here
DTc represents the onset of convection,t ­ sT 2 TcdyTc

is the reduced temperature,T andTc sTc ­ 318.73 Kd are
the average and critical temperatures, respectively,Qc is
the value of the non-Boussinesq parameter at onset,
g ø 1.24 and n ø 0.63 are the critical exponents of the
response and correlation functions, respectively. All t
results presented below have been obtained in a cell of
dial aspect ratioG ­ Dy2d ­ 80, whereD is the diame-
ter, and thicknessd ­ 380 mm. We varied the Prandtl
number in the range2.8 # P # 28 by simply modify-
ing the reduced temperaturet and the reduced density
rr ­ ryrc (rc ­ 730 kgym3 is the critical density). The
additional freedom in using off-critical densities allow
to vary P while keepingDTc fixed. Our choice ofd ­
380 mm stems from the compromise between the des
for a negligible value ofQc, on the one hand, and the nee
for a detectable value ofDTc at the largest value ofP
(whereDTc is smallest), on the other hand. The large
value of Qc ­ 0.048 occurred for the smallest value o
P ­ 2.8. The thermodynamic and kinetic paramete
needed to evaluate all relevant quantities will be publish
elsewhere [20].

Although hexagons appeared for all values ofP in
the range2.8 # P # 28, we will describe mainly the
results of our most detailed study atP ­ 4.5. When
the control parametere ­ DTyDTc 2 1 is increased
from zero the patterns found are nearly straight ro
over the entire cell (for large values ofP domains
of straight rolls are obtained [1]). Ate & 1, a clear
transition to extended patterns occurs [see Fig. 2(a)],
was recently investigated in detail [8,9]. It is quite likel
that this transition is both aspect ratio and Prandtl numb
dependent. Consequently, we have determined the o
of the extended pattern state in the range2.8 # P # 28
for our cell of G ­ 80. The results are summarized
in Table I and confirm that (i) the onset for extende
patterns occurs fore & 1 [8,9], and (ii) non-Boussinesq
behavior is irrelevant for the extended pattern state,
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FIG. 2. Route to coexisting hexagons (e, P, and Q are
given in parentheses): (a) extended patterns (1.08, 9.8, 0.0
(b) onset of hexagons as core defects of extended patte
(2.74, 4.5, 0.14); (c) coexisting hexagons (3.4, 4.5, 0.1
(d) mainly one type of hexagon (4.2, 4.5, 0.19).

was previously implicitly assumed [6–9]. We would like
to emphasize here again that our system is unique
that Q can be varied in an extremely wide range. I
particular, extremely small values not only forjQj but
also forQabs ­

P4
i­0 jgipij are readily obtained.

At e ­ 2.74 (for P ­ 4.5 and Q ­ 0.138 [21]), ex-
tended states become unstable to core defects whose
are ofOsdd [see Fig. 2(b)]. It can be seen that target cor
are already unstable while spiral cores are not. Possi
at this value ofP ande spiral cores are more stable. It i
obvious that the cores become unstable to defects of hex
onal symmetry when the focus selected wave number
comes small with respect to the average wave number.

TABLE I. The onsets of convection and of extended patter
and the non-Boussinesq parameter at the onset of exten
pattern formation as a function ofP.

t DTc DText
c eext

P s31023d rr (mK) (mK) DText
c

DTc
2 1 jQextj

2.8 31.9 1.306 143.8 270.7 0.882 0.086
4.3 28.6 1.160 46.4 85.7 0.845 0.025
5.0 28.5 1.028 23.0 43.1 0.873 0.045
9.7 15.6 1.028 8.8 18.3a 1.08a 0.037

24 6.43 1.028 3.3 13.8a 3.3a 0.061
28 4.25 1.028 1.0b 3.2 2.1 0.0061

aPossibly overestimated due to largeDe used.
bCalculated from critical scaling; too small to be measured.
757
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When the control parameter is increase slightly furth
to e ­ 2.88, spiral cores also become unstable. Figure
shows the typical dynamics of a spiral core close to t
onset of its instability. Then, there are only few hexago
present in the core. The local core instability choos
either upflow or downflow hexagons.

Upon further increase ofe s3 & e & 4d the hexagonal
core defects completely invade the system, mainly by c
division, as shown in Figs. 1 and 2(c). At this stag
both interactions between upflow and downflow hexago
in the cores as well as in the bulk can be observe
Ising walls separate regions of upflow from domains
downflow. Although the dynamics is complex and th
system never reaches a stationary state, it seems that I
walls tend to straighten out by a phase jump mechanis
By shadowgraph microscopy, we observed that even
frustrated polygons angles of 120± are preserved.

A further increase to4 & e & 5 gives way to a pattern
of preferably one type of hexagon. We have not verifie
whether this is due to a particular combination ofP and
e. We have let the system equilibrate for as long as tw
horizontal diffusion times, but a completely defect fre
hexagonal lattice never formed [see Fig. 2(d)]. In pa
ticular, wall foci continued to form, whose cores usual
became unstable to hexagonal defects. Remarkably, h
ever, spontaneous formation of islands of single hexago
of the other type (and isolated rolls) always occurred. O
ten such a formation was induced by wave number gra
ents caused by various defects in the near vicinity.

At the largest values ofP, where DTc is small, we
could easily reach the upper stability limit of the hexag
nal patterns. In the rangee * 15, the pattern consisting
mostly of spirals, targets, and hexagons becomes unst
to cross rolls, in agreement with Ref. [4], superimposin
themselves onto the pattern. Their wave number is b

FIG. 3. A typical sequence showing the competition betwe
hexagonal core defects and spirals near onset for hexag
defects. The parameters aree ­ 2.88, P ­ 4.5, and Q ­
0.14. Time progresses from left to right and top to bottom
in steps of2ty (ty is the vertical diffusion time).
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tween,3 and 6 times larger than the average wave num
ber (see Fig. 4). It is interesting that the cross roll wav
number is smallest midway between two extended patte
cores, while it is largest in their cores. At still highere a
turbulent state free of any pattern is observed.

We have accurately measured the wave number
regions where large domains of rolls and hexagons coex
[e.g., Fig. 2(c)] by analyzing the azimuthally average
structure function of the respective domains (see Fig.
By Gaussian fitting the peaks, we foundkroll ­ s1.89 6

0.24dd21 (rolls only), while khex ­ s1.56 6 0.12dd21

(both upflow and downflow hexagons). We have als
separately determined the average wave number of upfl
and downflow hexagons and found differences of
most 5%. By varying the focalization distance of th
shadowgraph, we obtained a consistent wave number r
of krollykhex ­ 1.2 to 1.3. Consequently, we argue tha
the differences in roll and hexagon wave numbers a
not caused by shadowgraph nonlinearities. A direct
of the azimuthally averaged structure function, using
sum of two Gaussians, averaged over 30 frames ate ­
3.4, on the other hand, giveskroll ­ s1.962 6 0.044dd21

and khex ­ s1.561 6 0.038dd21. Although we have no
explanation, it is interesting to note thatkrollykhex ­p

3y2 to within about 2.5%, independent ofe, in accord
with [22].

Since the observation of nonequilateral hexago
[12,18], recent theories have derived amplitude equatio
that allow for their existence, even within the BA [18,23
25]. We have Fourier transformed small regions of
least 60 hexagons (so that long wavelength curvatu
would not interfere) of Fig. 2(d) and found occasionall
angular deviations between the peaks of60.65± 6 0.20±,
60.60± 6 0.20±, and 58.75± 6 0.20±, respectively. Al-
though this deviation from equilaterality is not as strikin
as in [18], it falls outside of our error bars. The region
of interest were always defect free, and the near

FIG. 4. Global cross rolls superimposed onto the basic patt
at e ­ 22 andP ­ 17.
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FIG. 5. The azimuthally averaged structure function
Fig. 2(b). The inset displays the structure function itself.

dislocations were at least severald away. Most regions
of the pattern had peaks separated by60.00± 6 0.20±,
however.

In conclusion, we have studied large aspect ra
Boussinesq RBC, and for the first time observed
coexistence of domains of reentrant upflow and downfl
hexagons. Just as for extended target and spiral sta
the discovery of this state is particularly interesting, sin
it exists in a region where other structures were kno
to be stable [4]. The hexagons have a wave num
that is substantially different from the average roll wa
number they coexist with. A plausible explanation for t
coexistence of upflow and downflow hexagons at high
values of the bifurcation parameter might be related to
coupling of the basic pattern to a zero mode, as sugge
by a recent theory [16]. This zerok drifting mode could
be caused by curved rolls, in particular at highere, even
at largeP. The observed ratio of roll to hexagon wav
numbers, which agrees remarkably well with numeric
simulations based on the model [22], strongly suppo
our suggestion.
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