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Semiclassical Analysis of Energy Level Correlations for a Disordered Mesoscopic System
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A model for a mesoscopic system where hyperspherical impurities are placed at random in the interior
of hypercubical billiard is studied. The disorder is characterized by the elastic mean free pathl that
ranges from the ballistic to the diffusive regime. The energy level correlatorKssd and the form factor
K̂std are calculated and characterized by analyzing the analytic structure of the dynamical zeta function
of the corresponding classical system.

PACS numbers: 05.45.+b, 03.65.Sq
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The fingerprints of the underlying classical chaot
dynamics on the quantal behavior of the correspond
system are explored in the field of “quantum chao
[1]. In particular, it was found that the level statistic
of a variety of chaotic systems are described by rand
matrix theory (RMT) [2] over a certain energy domai
[1]. Examples of such systems are the Sinai and stadi
billiards. Beyond this energy domain there are deviatio
from the RMT universal behavior. For ballistic chaoti
systems this time scale is of the order of the period
the shortest periodic orbits [3]. For disordered metal
grains it is the Thouless time, namely, the time requir
for the particle to diffuse across the system [4]. Th
corresponding energy scale is the Thouless energy.

In contrast with chaotic systems, the spectral statist
of generic integrable systems, such as the rectangu
billiard, is Poissonian [5]. Since symmetry is crucia
for such systems, it was considered for a long tim
impractical to realize them in the mesoscopic domain.

The advance in fabrication techniques enables us
manufacture mesoscopic systems that are relatively cle
namely, their elastic mean free path can be larger th
the size of the system. Such systems were prepared w
boundaries of different shapes and used to explore
difference between transport in chaotic and integrab
systems [6]. One can prepare nanostructure devices
that their boundaries induce integrable classical dynam
if there is no disorder, e.g., when the boundary is
circle or a rectangle. Since the level statistics of gene
integrable systems is Poissonian [5], one expects t
the results of RMT cannot be applied directly for suc
systems. Yet, mesoscopic systems, even if prepared w
a very high degree of cleanliness, inevitably conta
some impurities. This motivates the study of a mod
in which the amount of disorder can be controlle
say, by fixing the number of impurities, and with th
property that without disorder the classical dynamics
integrable. We mention here that such a system w
realized experimentally using microwave cavities [7].

In earlier work, Altland and Gefen explored a relate
model where pointlike impurities were introduced int
an integrable system [8]. In the present Letter aD-
dimensional hypercubic billiard doped with rigid hyper
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spherical impurities is studied. The boundary conditio
are assumed to be periodic, so that the geometry is o
D-dimensional torus. This model is a prototype syste
for integrable systems (where the motion in phase sp
is on tori) doped with impurities that scatter particles on
within some finite range of their center. The trajectorie
that are not scattered by impurities are identical to those
the corresponding integrable system. The trajectories t
are scattered by impurities may be chaotic, and are suc
the impurities are rigid spheres. The calculations will b
done in the framework of the semiclassical approximatio
For the validity of this approximation it will be assume
that the energy is sufficiently high so that the waveleng
of the particles is much smaller than the radius of t
spheres. It will be assumed also that all the spheres h
the same radius, that is, much smaller than the size of
system. The classical motion for this prototype syste
resembles the motion of a large variety of classical sy
tems in angle-action variables. This similarity holds als
in the framework of the semiclassical approximation [
that will be used here.

The specific quantity that will be explored in detail i
the dimensionless density-density correlator that is rela
to various physical quantities such as the conductivity.
is defined to be

Kssd ­ D2krsedrse 1 sDdle 2 1 , (1)

where rsed is the density of states at energye, D

is the mean level spacing, andk· · ·le represents an
averaging over some interval of the energye for a
specific realization of disorder. An ensemble avera
over realizations of disorder is denoted hereafter byk· · ·l.
In what follows the ensemble averaged correlatorkKssdl
will be calculated. A related function commonly use
in this context is the dimensionless form factorK̂std
which is the Fourier transform ofKssd, namely,K̂std ­R

dsKssde2ist . The universal form ofK̂std is especially
simple in the unitary case. It iŝKstd ­ min s1, jtjy2pd.
Here we shall study the deviations from this univers
behavior for the model described above.

Throughout this Letter dimensionless quantities will b
used. In particular, the length of the billiard and the ma
of the particle are chosen to be equal to unity; energy
© 1996 The American Physical Society
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measured in units of the mean level spacingss ­ eyDd,
and time is measured in units ofh̄yD.

The density-density correlator may be represented a
sum of two terms [10,11]:

Kssd ­ KPssd 1 Koscssd . (2)

The first one,KPssd, is the smooth term given by the
diagonal approximation [12] or calculated by diagram
matic perturbation theory [4]. In this approximatio
KP ­ K

sid
P 1 K

scd
P is a sum of two terms, whereK

scd
P and

K
sid
P are the contributions of orbits that are scattered

not scattered by impurities, respectively. It can be rep
sented in the form

KPssd ­ 2
b

4p2

≠2

≠s2
lnfD ssdg , (3)

where b equals 2 (1) for the orthogonal (unitary) en
semble. D ssd is a spectral determinant normalized suc
that lims!0 s2D ssd ­ 1, and related to the dynamical zet
function 1yZszd via D ssd ­ ZsisdZs2isd. The zeros of
1yZszd are the eigenvalues of the Perron-Frobenius op
ator of the corresponding classical system [13]. They a
associated with the decaying modes of the probability d
tribution of particles towards the ergodic distribution.

The second term,Koscssd, cannot be calculated by usua
perturbation theory. It was obtained for hyperbolic sy
tems in the limit of larges retaining the nonperturbative
terms of the correlator [10]. It turns out thatKoscssd is
also governed by the same classical spectral determin
For in the unitary case it takes the form

Koscssd ­ fcoss2psdy2p2g D ssd . (4)

The result for the ensemble averaged perturbat
part of the form factor will be presented now, and th
dynamical zeta function1yZszd will be identified. The
calculations were performed using periodic orbit theo
in the framework of the diagonal approximation, and th
details will be published elsewhere [14]. The probabili
to find a long orbit that is not scattered by impuritie
decays exponentially with its length. The contributio
of such orbits to the form factor was therefore found
decrease exponentially with time, namely,

kK̂ sid
P stdl ­ be22tyt , (5)

wheret is the elastic mean free time.
The contribution of orbits that are scattered by impu

ties to the density-density correlator is

kK scd
P ssdl ­

b

2p2

≠2

≠s2
R

X
m

hlnf1 2 GDs2pjmjl, 1 2 itsdg

1 GDs2pjmjl, 1 2 itsdj , (6)

wherel is the elastic mean free path,jmj is the modulus
of a D-dimensional integer vector, and

GDsx, yd ­
1p

x2 1 y2
F

µ
1
2

,
D
2

2 1;
D
2

;
x2

x2 1 y2

∂
,

whereFsa, b; g; dd is the hypergeometric function. Fo
example, forD ­ 2, G2sx, yd ­ 1y

p
x2 1 y2, while for
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the quasi-one-dimensional caseG1sx, yd ­ yysx2 1 y2d.
Relation (3) together with the additive property ofKPssd
imply that the dynamical zeta function has the for
Zszd ­ ZiszdZcszd. The term Ziszd is associated with
orbits that are not scattered by impurities, and is giv
by

1yZiszd ­

µ
2
e

∂4pyt

3 exp

Ω
2

2p

t
s2 2 ztdflns2 2 ztd 2 1g

æ
. (7)

It is normalized such thatZis0d ­ 1. The second
term Zcszd, coming from orbits which are scattered b
impurities, is

1yZcszd ­
Y
m

Bmf1 2 GDs2pjmjl, 1 2 tzdg

3 expfGDs2p jmjl, 1 2 tzdg . (8)

Here Bm are regularization factors which are introduce
to make the product converge, and to satisfy the n
malization property limz!0 zZszd ­ 1. In the quasi-one-
dimensional case the dynamical zeta function has
simple form

1yZcszd ­ N ecothfs12ztdy2lgy2l

"
sin

≥p
zt 2 z2t2y2l

¥
sinhfs1 2 zty2ldg

#2

,

(9)

where N is a normalization constant. In the two
dimensional case it is straightforward to show that t
infinite product (8) can be regularized by choosing th
regularization factorsBm to satisfy

B21
m ­ f1 2 G2s2pljmj, 1dg expfG2s2pjmjl, 1dg , (10)

where m fi 0, while B0 ­ 1. The analytic structure of
1yZcszd is depicted in Fig. 1.

The behavior of the density-density correlator is co
trolled by the elastic mean free pathl, and the elastic
mean free timet. The elastic mean free path measur
the amount of disorder in the system. Whenl . 1, i.e.,

FIG. 1. The analytic structure of1yZcszd for (a) quasi-one-
dimensional case and (b) two-dimensional case.± and 3
represent zeros and singularities, respectively. In the tw
dimensional case there are also brunch cuts with brunch po
at the singularities.
727
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when the elastic mean free path is larger than the s
tem size, the dynamics is ballistic, while it is diffusiv
when l ø 1 [8]. The elastic mean free time determine
the classical time scales of the system, sincey ­ lyt,
wherey is the dimensionless velocity. Ast ! 0 other
time scales effectively increase relative tot, and the RMT
universal behavior is recovered.

The nonuniversal features that appear for finite sm
values oft decorate the RMT result of the form facto
mainly in two regions: near the origint ­ 0, and in
the vicinity of the Heisenberg timet ­ 2p. They are
appreciable over small intervals that scale witht. Thus as
t ! 0 these time domains shrink and the universal res
is reached. The nature of the nonuniversal behavior
the system is determined by the elastic mean free p
l. This behavior for a system with 2 degrees of freedo
belonging to the unitary ensemble will now be describ
in some detail. The figures that will be presented we
produced by fast Fourier transform ofKssd, where the
product (8) required forD ssd is calculated numerically by
including terms withjmi j # 1000 (i ­ 1, 2), and using
the regularization (10).

FIG. 2. (a) The perturbative part of the form factor forl ­
10. The inset is a magnification of the region0.7 # t # 1.3
for the caset ­ 0.7 and l ­ 10. (b) The full form factor for
the same parameters as in (a). The inset is a magnificatio
the vicinity of the Heisenberg time.
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The typical structure of the form factor in the ballisti
regimel ¿ 1 is depicted in Fig. 2. Fort , t it is dom-
inated by the contribution,e22tyt, of periodic orbits that
are not scattered by impurities (5). Near the Heisenb
time jt 2 2pj , t, the RMT singularity is smoothed out
The typical line shape of the form factor in this regime
characterized by a minimum in the vicinity oft ­ t. It
is not clear if in this case (4) applies. Figure 2(b) shou
be therefore considered as a conjecture.

The form factor, in the intermediate regimel ­ 0.5, is
depicted in Fig. 3. Here the contribution from period
orbits that are not scattered by impurities is negligib
and the behavior is determined by orbits that do scat
Near the origin, (see the inset in Fig. 3) the form fact
exhibits a singular behavior. These singularities can
associated with short orbits that are scattered from a v
small number of impurities, and therefore still preser
the topology of the orbits of the clean system. Th
amplitudes of the singularities decay exponentially
e2tyt , since the probability for the existence of such orb
decreases exponentially with time. The behavior near
Heisenberg time is oscillatory with a period of order
the time of flight across the systemtf .

Moving towards the diffusive regime wherel , 1y2p,
the nonuniversal features change their character as
sented in Fig. 4, forl ­

p
5y6p . 0.12. The singular

behavior near the origin almost disappears, and the os
lations near the Heisenberg time transform into an ove
smooth curve. The situation does not change much w
l is even smaller.

An understanding of the scenario described abo
can be obtained by analyzing the classical dynami
zeta function of the system,1yZszd. A crucial role is
played by the singularities and the zeros of this functio
since, up to constants, the perturbative part of the fo
factor, kK̂Pstdl, and nonperturbative part,kK̂oscstdl, are

FIG. 3. The form factor for the parametersl ­ 0.5 and t ­
0.25. The inset is a magnification of the domain0.3 # t # 1.8.
The times indicated by arrows are the periods of the orb
which are not scattered by impurities. The pairsMx , Myd
above each arrow represents the winding numbers, namely,
topology.
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FIG. 4. The form factor for the parametersl ­ 51y2y6p and
t ­ ly2. The inset is for the time domain0 , t , 0.9.

the Fourier transforms (ins ­ 2iz) of ≠2fln Zszd 1

ln Zs2zdgy≠z2 and ZszdZs2zd coss2i2pzd, respectively.
Therefore the zeros and singularities that are closest to
imaginaryz axis dominate the behavior of the form facto

The analysis of1yZszd in the two dimensional case
shows that its zeros associated with orbits which
scattered from impurities appear in the intervalf0, 2ytg
with Iz ­ 0, and on the lineRz ­ 1yt [see Fig. 1(b)].
Whenl . 1y2p all of them except two zeros, one at th
origin and the second atz ­ 2yt, lie on the lineRz ­
1yt. The singularities are located only along this lin
Rz ­ 1yt. The part of1yZszd associated with orbits tha
are not scattered has a cut and a brunch point atz ­ 2yt.
Since except the zero at the origin all these zeros
singularities scale as1yt, their contribution tokK̂stdl is
expected to fall off exponentially with an exponent th
scales as1yt. It therefore vanishes rapidly in the limi
t ! 0, and only the RMT term associated with the ze
at the origin survives.

In the ballistic regimel ¿ 1, the contribution from all
zeros and singularities that lie atRz ­ 1yt is negligible.
Thus for jtj , t, kK̂stdl is dominated by the contribution
(5) of periodic orbits that are not scattered by impuritie

As l becomes of order unity, the contribution o
nonscattered orbits becomes negligible and the beha
is governed by orbits which do scatter. If alsol . 1y2p,
then all the zeroszn of 1yZszd, except those at the
origin and at2yt, are complex and located along th
line Rz ­ 1yt. The nonuniversal features are therefo
oscillatory, because the contribution of a zero,zn, to
kK̂Pstdl and kK̂oscstdl is proportional to exps2zntd and
exps2znjt 2 2pjd, respectively [11].

Zeros of1yZszd start to appear on the realz axis, when
l becomes smaller than1y2p. Some of them dominate
the behavior of the form factor, since they are closer to
imaginaryz axis than the complex zeros. In particula
the nonuniversal features of the form factor becom
nonoscillatory. This change of behavior is demonstra
in Figs. 3 and 4.
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The diffusive limit is reached whenl ø 1y2p. The
real zeros in this limit concentrate near the origin. B
summing over them one recovers the Altshuler a
Shklovskii result for the perturbative part of the form
factor kK̂Pstdl ø bty4p2l2 sD ­ 2d [4], which applies
for times smaller thantcy4p2, wheretc ­ Dtyl2 is the
Thouless time.

The form factor of a disordered system which is int
grable in the ballistic limit was calculated. Its nonun
versal features near the origin and in the vicinity of t
Heisenberg time were characterized. These are de
mined by properties of the classical dynamics over sh
time scales.
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