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Semiclassical Analysis of Energy Level Correlations for a Disordered Mesoscopic System
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A model for a mesoscopic system where hyperspherical impurities are placed at random in the interior
of hypercubical billiard is studied. The disorder is characterized by the elastic mean freé thath
ranges from the ballistic to the diffusive regime. The energy level correkoy and the form factor
K(r) are calculated and characterized by analyzing the analytic structure of the dynamical zeta function
of the corresponding classical system.

PACS numbers: 05.45.+b, 03.65.Sq

The fingerprints of the underlying classical chaoticspherical impurities is studied. The boundary conditions
dynamics on the quantal behavior of the correspondingre assumed to be periodic, so that the geometry is of a
system are explored in the field of “quantum chaos’D-dimensional torus. This model is a prototype system
[1]. In particular, it was found that the level statistics for integrable systems (where the motion in phase space
of a variety of chaotic systems are described by randons on tori) doped with impurities that scatter particles only
matrix theory (RMT) [2] over a certain energy domain within some finite range of their center. The trajectories
[1]. Examples of such systems are the Sinai and stadiurthat are not scattered by impurities are identical to those of
billiards. Beyond this energy domain there are deviationshe corresponding integrable system. The trajectories that
from the RMT universal behavior. For ballistic chaotic are scattered by impurities may be chaotic, and are such if
systems this time scale is of the order of the period othe impurities are rigid spheres. The calculations will be
the shortest periodic orbits [3]. For disordered metallicdone in the framework of the semiclassical approximation.
grains it is the Thouless time, namely, the time required-or the validity of this approximation it will be assumed
for the particle to diffuse across the system [4]. Thethat the energy is sufficiently high so that the wavelength
corresponding energy scale is the Thouless energy. of the particles is much smaller than the radius of the

In contrast with chaotic systems, the spectral statisticspheres. It will be assumed also that all the spheres have
of generic integrable systems, such as the rectanguldne same radius, that is, much smaller than the size of the
billiard, is Poissonian [5]. Since symmetry is crucial system. The classical motion for this prototype system
for such systems, it was considered for a long timeresembles the motion of a large variety of classical sys-
impractical to realize them in the mesoscopic domain. tems in angle-action variables. This similarity holds also

The advance in fabrication techniques enables us tm the framework of the semiclassical approximation [9]
manufacture mesoscopic systems that are relatively cleathat will be used here.
namely, their elastic mean free path can be larger than The specific quantity that will be explored in detail is
the size of the system. Such systems were prepared withe dimensionless density-density correlator that is related
boundaries of different shapes and used to explore th#® various physical quantities such as the conductivity. It
difference between transport in chaotic and integrablés defined to be
systems [6]. One can prepare nanostructure devices so a2
that their boundaries induce integrable classical dynamics K(s) = Ap(e)p(e + sA))e — 1, 1)
if there is no disorder, e.g., when the boundary is avhere p(e) is the density of states at energy, A
circle or a rectangle. Since the level statistics of generiés the mean level spacing, and--). represents an
integrable systems is Poissonian [5], one expects thaveraging over some interval of the energyfor a
the results of RMT cannot be applied directly for suchspecific realization of disorder. An ensemble average
systems. Yet, mesoscopic systems, even if prepared witbver realizations of disorder is denoted hereaftek-by).

a very high degree of cleanliness, inevitably containin what follows the ensemble averaged correldfo(s))
some impurities. This motivates the study of a modelwill be calculated. A related function commonly used
in which the amount of disorder can be controlled,in this context is the dimensionless form fact&i(z)
say, by fixing the number of impurities, and with the which is the Fourier transform ok (s), namely,K (1) =
property that without disorder the classical dynamics isf dsK(s)e~**’. The universal form o (¢) is especially
integrable. We mention here that such a system wasimple in the unitary case. It i&(r) = min (1, |¢]/27).
realized experimentally using microwave cavities [7]. Here we shall study the deviations from this universal

In earlier work, Altland and Gefen explored a relatedbehavior for the model described above.
model where pointlike impurities were introduced into  Throughout this Letter dimensionless quantities will be
an integrable system [8]. In the present LetterDa used. In particular, the length of the billiard and the mass
dimensional hypercubic billiard doped with rigid hyper- of the particle are chosen to be equal to unity; energy is
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measured in units of the mean level spacing= €/A), the quasi-one-dimensional caég(x,y) = y/(x* + y?).

and time is measured in units Bf A. Relation (3) together with the additive property K5 (s)
The density-density correlator may be represented asienply that the dynamical zeta function has the form
sum of two terms [10,11]: Z(z) = Z;(2)Z.(z). The termZ;(z) is associated with
K(s) = Kp(s) + Kow(s). ) grbits that are not scattered by impurities, and is given
Yy

The first one,Kp(s), is the smooth term given by the
. . . . 477'/7'

diagonal approximation [12] or calculated by dlagram-l/z'(z) _ <g>

matic perturbation theory [4]. In this approximation ! e

Kp = kY + k¥ is a sum of two terms, wherg and 2

Ky are the contributions of orbits that are scattered or X exp{—T(z —zn)ln@2 = z7) - 1]}' (7

not scattered by impurities, respectively. It can be repre-

sented in the form It is normalized such thatZ;(0) = 1. The second

term Z.(z), coming from orbits which are scattered by

2 . P .
Kp(s) = B IN[D(s)], (3)  impurities, is
472 952 _
where 8 equals 2 (1) for the orthogonal (unitary) en- 1/Z.(z) = l_[Bm[l — Gp2@Im|l, 1 — 72)]
semble. D (s) is a spectral determinant normalized such m
that lim_ s>D (s) = 1, and related to the dynamical zeta X exdGp2mlm|l, 1 — 72)]. (8)

function 1/Z(z) via D (s) = Z(is)Z(—is). The zeros of o _ _

1/Z(z) are the eigenvalues of the Perron-Frobenius oper-iere Bn are regularization factors which are introduced
ator of the corresponding classical system [13]. They ar& makg the produc_t converge, and to satisfy _the nor-
associated with the decaying modes of the probability distalization property lim_ozZ(z) = 1. In the quasi-one-
tribution of particles towards the ergodic distribution. ~ dimensional case the dynamical zeta function has the

The second termKo(s), cannot be calculated by usual Simple form
perturbation theory. It was obtained for hyperbolic sys- SiF(\/ZT - 1272/21> 2
sinH(1 — z7/20)] |’

tems in the limit of larges retaining the nonperturbative 1/Zc(z) = N

pcoti(1—zm)/21/21 |:
terms of the correlator [10]. It turns out th&t.(s) is

also governed by the same classical spectral determinant. )
For in the unitary case it takes the form where N is a normalization constant. In the two-
Kose(s) = [cog2ms)/272] D (s). (4) dimensional case it is straightforward to show that the

The result for the ensemble averaged perturbativénfinite product (8) can be regularized by choosing the
part of the form factor will be presented now, and theregularization factor$y, to satisfy
dynamical zeta function/Z(z) will be identified. The — p-1 — | — G,27Im|, 1)]exdG>(27|m]|l, 1)], (10)
calculations were performed using periodic orbit theory . _
in the framework of the diagonal approximation, and thewherem # 0, while By = 1. The analytic structure of
details will be published elsewhere [14]. The probability 1/Z.(z) is depicted in Fig. 1.
to find a long orbit that is not scattered by impurities The behavior of the density-density correlator is con-
decays exponentially with its length. The contributiontrolled by the elastic mean free path and the elastic
of such orbits to the form factor was therefore found tomean free timer. The elastic mean free path measures

decrease exponentia”y with time' name|y, the amount of disorder in the System. Whep 1, i.e.,
A () _
(Kp'(1)) = Be /7, ®)
wherer is the elastic mean free time. Imz Iz
The contribution of orbits that are scattered by impuri- o @ (b)
ties to the density-density correlator is . ) ¢
3 , o »
(K5 (s)) = % R D[l - GpQ@almli, 1 — is)] - g
T Js - ° o
+ Gpmimll, 1 — irs)}, (6) e U Re: [T Re:
where! is the elastic mean free patim| is the modulus ° * %
of a D-dimensional integer vector, and ° 8
(r.y) = 1 F 1D 1 D x? FIG. 1. The analytic structure of/Z.(z) for (a) quasi-one-
Gplx.y) = JxZ+ 2 \2°2 T20x2 +y2)° dimensional case and (b) two-dimensional case.and X

. . . represent zeros and singularities, respectively. In the two-
whereF (e, B;v; §) is the hypergeometric function. For gimensional case there are also brunch cuts with brunch points
example, forD = 2, Go(x,y) = 1/4/x2 + y2, while for  at the singularities.
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when the elastic mean free path is larger than the sys- The typical structure of the form factor in the ballistic
tem size, the dynamics is ballistic, while it is diffusive regimel > 1 is depicted in Fig. 2. For < 7 itis dom-
when! <« 1 [8]. The elastic mean free time determinesinated by the contributiorg ~2/7, of periodic orbits that
the classical time scales of the system, simce= /7,  are not scattered by impurities (5). Near the Heisenberg
wherev is the dimensionless velocity. As— 0 other time|r — 27| < 7, the RMT singularity is smoothed out.
time scales effectively increase relativertoand the RMT  The typical line shape of the form factor in this regime is
universal behavior is recovered. characterized by a minimum in the vicinity of= 7. It
The nonuniversal features that appear for finite smalls not clear if in this case (4) applies. Figure 2(b) should
values of 7 decorate the RMT result of the form factor be therefore considered as a conjecture.
mainly in two regions: near the origimn = 0, and in The form factor, in the intermediate regine= 0.5, is
the vicinity of the Heisenberg time = 27r. They are depicted in Fig. 3. Here the contribution from periodic
appreciable over small intervals that scale withThus as  orbits that are not scattered by impurities is negligible,
7 — 0 these time domains shrink and the universal resuland the behavior is determined by orbits that do scatter.
is reached. The nature of the nonuniversal behavior oNear the origin, (see the inset in Fig. 3) the form factor
the system is determined by the elastic mean free patbxhibits a singular behavior. These singularities can be
I. This behavior for a system with 2 degrees of freedomassociated with short orbits that are scattered from a very
belonging to the unitary ensemble will now be describedsmall number of impurities, and therefore still preserve
in some detail. The figures that will be presented werdghe topology of the orbits of the clean system. The
produced by fast Fourier transform &f(s), where the amplitudes of the singularities decay exponentially as
product (8) required fofD (s) is calculated numerically by ¢~*/7, since the probability for the existence of such orbits
including terms with|m;| = 1000 (i = 1,2), and using decreases exponentially with time. The behavior near the
the regularization (10). Heisenberg time is oscillatory with a period of order of
the time of flight across the system.
Moving towards the diffusive regime whete< 1/2,
the nonuniversal features change their character as pre-
T T - T - T sented in Fig. 4, for = +/5/67 = 0.12. The singular
' ' T behavior near the origin almost disappears, and the oscil-
lations near the Heisenberg time transform into an overall
smooth curve. The situation does not change much when
[ is even smaller.
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P~ An understanding of the scenario described above
\*i& Q can be obtained by analyzing the classical dynamical
X e zeta function of the system,/Z(z). A crucial role is
) o _ played by the singularities and the zeros of this function,
HN -—--T =04 i since, up to constants, the perturbative part of the form
R =01 | factor, (Kp(1)), and nonperturbative partKo. (1)), are
o L ! . ! . !
0, _2 4 _86
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FIG. 3. The form factor for the parametefs= 0.5 and =
FIG. 2. (a) The perturbative part of the form factor for= 0.25. The inset is a magnification of the domaid = ¢ = 1.8.
10. The inset is a magnification of the regiot7 < r = 1.3 The times indicated by arrows are the periods of the orbits
for the caser = 0.7 and! = 10. (b) The full form factor for ~ which are not scattered by impurities. The paM,,M,)
the same parameters as in (a). The inset is a magnification @bove each arrow represents the winding numbers, namely, the
the vicinity of the Heisenberg time. topology.
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L L The diffusive limit is reached wheh <« 1/27. The
real zeros in this limit concentrate near the origin. By
summing over them one recovers the Altshuler and
Shklovskii result for the perturbative part of the form
factor (Kp(¢)) = Br/4m2% (D = 2) [4], which applies
for times smaller tharr. /472, wherer. = D7/1? is the
Thouless time.

The form factor of a disordered system which is inte-
grable in the ballistic limit was calculated. Its nonuni-
o '012'014'0‘6'0.8' | versal features near the origin and in the vicinity of the

S T T T Heisenberg time were characterized. These are deter-
0 5 ¢ 10 mined by properties of the classical dynamics over short
time scales.
FIG. 4. The form factor for the parameters=5'/6 and It is our great pleasure to thank B.L. Altshuler, A.V.
7 =1/2. The insetis for the time domain < 1 < 0.9. Andreev, B. Simons, A. Altland, and Y. Gefen for
informative and stimulating discussions on this problem.
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Therefore the zeros and singularities that are closest to the
imaginaryz axis dominate the behavior of the form factor.

The analysis ofl/Z(z) in the two dimensional case

shows that its zeros associated with orbits which are

0.5

(K(t))

0 0.05 0.1 0.15

scattered from impurities appear in the interf@al2/7] *Present address: NECI, 4 Independence Way, Princeton,
with Iz = 0, and on the linéliz = 1/7 [see Fig. 1(b)]. NJ 08540.

When! > 1/27 all of them except two zeros, one at the "Member of the Minerva Center for Nonlinear Physics of
origin and the second at = 2/, lie on the linefz = Complex Systems.
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