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Two separated observers, by applying local operations to a supply of not-too-impure entangled states
(e.g., singlets shared through a noisy channel), can prepare a smaller number of entangled pairs of
arbitrarily high purity (e.g., near-perfect singlets). These can then be used to faithfully teleport unknown
quantum states from one observer to the other, thereby achieving faithful transmission of quantum
information through a noisy channel. We give upper and lower bounds on the yieldDsMd of pure
singletssjC2ld distillable from mixed statesM, showingDsMd . 0 if kC2jMjC2l .
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The techniques of quantum teleportation [1] and qua
tum data compression [2,3] exemplify a new goal of qua
tum information theory, namely, to understand the kin
and quantity of channel resources needed for the tra
mission of intact quantum states, rather than classical
formation, from a sender to a receiver. In this approac
the quantum sourceS is viewed as an ensemble of pur
statesci, typically not all orthogonal, emitted with known
probabilities pi. Transmission of quantum information
through a channel is considered successful if the ch
nel outputs closely approximate the inputs as quant
states. Because nonorthogonal states, in principle, can
be observed without disturbing them, their faithful tran
mission requires that the entire transmission processes
carried out by a physical apparatus that functions obli
ously, that is, without knowing or learning whichci are
passing through.

Just as classical data compression techniques allow d
from a classical source to be faithfully transmitted using
number of bits per signal asymptotically approaching t
source’s Shannon entropy,2

P
i pi log2pi, quantum data

compression [2,3] allows quantum data to be transmitt
with asymptotically perfect fidelity, using a number of 2
state quantum systems orqubits (e.g., spin-12 particles)
asymptotically approaching the source’s von Neuma
entropy

Ssrd ­ 2Trr log2r, wherer ­
X

i

pijcil kcij . (1)

Quantum teleportation achieves the goal of faithf
transmission in a different way, by substituting classic
communication and prior entanglement for a direct qua
tum channel. Using teleportation, an arbitrary unknow
qubit can be faithfully transmitted via a pair of maximall
entangled qubits (e.g., two spin-1

2 particles in a pure singlet
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state) previously shared between sender and receiver,
a 2-bit classical message from the sender to the receiv

Both quantum data compression and teleportation
quire a noiseless quantum channel—in the former case
the direct quantum transmission and in the latter for shar
the entangled particles—yet available channels are ty
cally noisy. Since quantum information cannot be clon
[4], it would perhaps appear impossible to use redunda
in the usual way to correct errors. Nevertheless, quant
error-correcting codes have recently been discovered
which operate in a subtler way, essentially by embedd
the quantum information to be protected in a subspace
oriented in a larger Hilbert space as to leak little or no i
formation to the environment, within a given noise mod
We describe another approach in which the noisy ch
nel is not used to transmit the source states directly,
rather to share entangled pairs (e.g., singlets) for use
teleportation. But before they can be used to teleport
liably, the entangled pairs must be purified—converted
almost perfectly entangled states from the mixed ent
gled states that result from transmission through the no
channel. We show below how the two observers can
complish this purification, by performing local unitary op
erations and measurements on the shared entangled p
coordinating their actions through classical messages,
sacrificing some of the entangled pairs to increase the
rity of the remaining ones. Once this is done, the resulti
almost perfectly pure, almost perfectly entangled pairs c
be used, in conjunction with classical messages, to te
port the unknown quantum statesci from sender to re-
ceiver with high fidelity. The overall result is to simulat
a noiseless quantum channel by a noisy one, suppleme
by local actions and classical communication.

Let M be a general mixed state of two spin-1
2 par-

ticles, from which we wish to distill some pure en
tanglement. The stateM could result, for example,
© 1996 The American Physical Society
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when one or both members of an initially pure sing
stateC2 ­ s"# 2 #"dy

p
2 are transmitted through a nois

channel to two separated observers, whom we shall
Alice and Bob. The purity ofM can be conveniently ex-
pressed by its fidelity [2]

F ­ kC2jMjC2l (2)
relative to a perfect singlet. Though nonlocally define
the purityF can be computed from the probabilityPk of
obtaining parallel outcomes if the two spins are measu
locally along the same random axis: One finds th
F ­ 1 2 3Pky2.

The recovery of entanglement fromM is best under-
stood in the special case thatM is already a pure state o
the two particles,M ­ jYl kYj for someY. The quantity
of entanglement,EsYd, in such a pure state is naturall
defined by the von Neumann entropy of the reduced d
sity matrix of either particle considered separately:

EsYd ­ SsrAd ­ SsrBd , (3)
whererA ­ TrBsjYl kYjd, and similarly forrB. For pure
states, this entanglement can be efficiently concentra
into singlets by the methods of [6], which use loc
operations and classical communication to transformn
input statesY into m singlets with a yieldmyn approach-
ing EsYd asn ! `. Conversely, givenn shared singlets,
local actions and classical communication suffice to p
pare m arbitrarily good copies ofY with a yield myn
approaching1yEsYd asn ! `.

Returning now to the problem of obtaining single
from mixed states, the first step in our purification prot
col is to have Alice and Bob perform arandom bilateral
rotation on each shared pair, choosing a random SU
rotation independently for each pair and applying it l
cally to both members of the pair (the same result co
also be achieved by choosing from a finite set of rotatio
hBx , By, Bz , Ij defined below). This transforms the initia
general two-spin mixed stateM into a rotationally sym-
metric mixture,

WF ­ FjC2l kC2j 1
1 2 F

3
jC1l kC1j

1
1 2 F

3
jF1l kF1j 1

1 2 F
3

jF2l kF2j , (4)

of the singlet stateC2 and the three triplet state
C1 ­ s"# 1 #"dy

p
2 and F6 ­ s"" 6 ##dy

p
2. Because

of the singlet’s invariance under bilateral rotations, t
symmetrized stateWF , which we shall call a Werner stat
[7] of purity F, has the sameF as the initial mixed state
M from which it was derived.

At this point, it should be recalled that two mixed stat
having the same density matrix are physically indist
guishable, even though they may have had different pre
rations. Therefore, subsequent steps in the purifica
can be carried out without regard to any properties of
original mixed stateM, or of the noisy channel(s) tha
may have generated it, except for the purityF.

Mixtures of the four statesC6 andF6 —known as the
four Bell states—are particularly easy to analyze, beca
t
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the Bell states transform simply under several kinds
local unitary operations. Besides the random bilate
rotation already described, several other local operati
will be used in entanglement purification.

(i) Unilateral Pauli rotations (that is, rotations b
p rad about thex, y, or z axis) of one particle in an
entangled pair. These operations map the Bell sta
onto one another in a 1:1 pairwise fashion, leaving
state unchanged; thussx maps C6 $ F6, sz maps
C6 $ C7 andF6 $ F7, while sy mapsC6 $ F7.
We ignore overall phase changes because they do
affect our arguments.

(ii) Bilateral py2 rotations Bx , By, and Bz of both
particles in a pair about thex, y, or z axis, respectively.
Each of these operations leaves the singlet state
a different one of the triplets invariant, interchangin
the other two triplets, withBx mapping F1 $ C1,
By mapping F2 $ C1, and Bz mapping F1 $ F2.
Again we omit phases.

(iii) The quantum-XOR or controlled-NOT operation
[8] performed bilaterally by both observers on corr
sponding members of two shared pairs. Theunilateral
quantum XOR is an operation on two qubits held b
the same observer which conditionally flips the second
“target” spin if the first or “source” spin is up, and doe
nothing otherwise. As a unitary operator it is expresse

UXOR ­ j " S " T l k" S # T j 1 j " S # T l k" S " T j

1 j # S # T l k# S # T j 1 j # S " T l k# S " T j . (5)

The bilateral XOR (henceforth, BXOR) operates in
similar fashion on corresponding members of two pa
shared between Alice and Bob: If Alice holds spins
and 3, and Bob holds spins 2 and 4, a BXOR, with sp
1 and 2 as source and spins 3 and 4 as target, wo
conditionally flip spin 3 if and only if spin 1 was up, while
conditionally flipping spin 4 if and only if spin 2 was up
A BXOR on two F1 states leaves them both invarian
The results of applying BXOR to other combinations
Bell states is shown below, omitting phases.

Before Aftersn.c. ­ no changed
Source Target Source Target

F6 F1 n.c. n.c.
C6 F1 n.c. C1

C6 C1 n.c. F1

F6 C1 n.c. n.c.
F6 F2 F7 n.c.
C6 F2 C7 C2

C6 C2 C7 F2

F6 C2 F7 n.c.

(6)

(iv) Besides these unitary operations, Alice and B
perform one kind of measurement: measuring both sp
723
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in a given pair along thez spin axis. This reliably distin-
guishesC states fromF states, but cannot distinguish1

from 2 states. Of course, after the measurement has b
performed, the measured pair is no longer entangled.

We now show that, given two Werner pairs of fidelit
F .

1
2 , Alice and Bob can use local operations and tw

way classical communication to obtain, with probabilit
greater than1

4 , one Werner pair of fidelityF0 . F, where
theF0 satisfies the recurrence relation

F0 ­
F2 1

1
9 s1 2 Fd2

F2 1
2
3 Fs1 2 Fd 1

5
9 s1 2 Fd2

. (7)

To achieve this, the following protocol is used.
(A1) A unilateral sy rotation is performed on each o

the two pairs, converting them from mostlyC2 Werner
states to the analogous mostlyF1 states, i.e., states with
a large componentF .

1
2 of F1 and equal components

of the other three Bell states.
(A2) A BXOR is performed on the two impureF1

states, after which the target pair is locally measured alo
the z axis. If the target pair’sz spins come out parallel,
as they would if both inputs were trueF1 states, the
unmeasured source pair is kept; otherwise, it is discard

(A3) If the source pair has been kept, it is converte
back to a mostlyC2 state by a unilateralsy rotation,
then made rotationally symmetric by a random bilater
rotation (cf. [9]).

BecauseF0sFd is continuous and exceedsF over the
entire range1

2 , F , 1, iteration of the above protocol
can distill Werner states of arbitrarily high purityFout ,

1 from a supply of input mixed statesM of any purity
Fin .

1
2 . The yield (purified output pairs per impure

input pair) is rather poor and tends to zero in the lim
Fout ! 1; but by BXORing a variable numberksFd ø
1y

p
1 2 F of source pairs, rather than 1, into each targ

pair before measuring it, the yield can be increased a
made to approach a positive limit asFout ! 1. [For
this choice ofk, to lowest order in1 2 F, the iteration
formula for purity agrees with Eq. (7):F0sFd ­ 1 2
2
3 s1 2 Fd. The expected fraction of the pairs discarde

at each step, also to lowest order, is2
3 s1 2 Fd

1

2 . One
thus obtains a nonzero yield asFout ! 1.] We do not
give the asymptotic yield from this method, because
higher yield can be obtained by combining it with anoth
method to be described below, which uses a supply
previously purifiedF1 pairs in the manner of a breede
reactor, consuming some in order to produce more th
the number consumed.

The basic step (a “BXOR test”) used in this metho
consists of bilaterally XORing a subset of the impure pai
used as sources, into one of the pureF1 states, used as a
target, followed by measurement of the target. Consulti
table (6) above, we see that eachC1 or C2 source pair
toggles the target betweenF1 andC1, without affecting
the source. Thus a BXOR test, like a parity check o
classical data, tells Alice and Bob whether there are
724
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even or odd number ofC states in the tested subset. B
performing a number of BXOR tests, on different subse
of the original impure pairs, all theC states can be found
and corrected toF states. A similar procedure is then use
to find all theF2 states and correct them to the desire
F1. The full protocol is described below.

(B1) Alice and Bob start withn impure pairs each de-
scribed by the same Bell-diagonal density matrixW with
SsW d , 1, andnfSsWd 1 dg prepurifiedF1 states, pre-
pared, for example, by the variable blocksize recurren
method described above. Hered is a positive constant
that can be allowed to approach 0 in the limit of largen.

(B2) Using the prepurifiedF1 pairs as targets, Alice
and Bob perform BXOR tests on sufficiently man
random subsets of the impure pairs to locate allC states,
with high probability, without distinguishingC1 from
C2. Once found, theC6 are converted, respectively, to
F6 by applying a unilateralsx rotation to each of them.
The impure pairs now consist of onlyF1 andF2 states.

(B3) Next Alice and Bob do a bilateralBy to convert the
F2 states intoC1, while leaving theF1 states invariant.
This done, they perform BXOR tests on sufficiently man
more random subsets to find all the newC1 states with
high probability. Once found, these states are corrected
the desiredF1 form by unilateralsx rotations.

The number of BXOR test per impure pair required
find all the errors, with arbitrarily small chance of failure
approaches the entropy of the impure pairs,SsW d ­
2TrW log2W , in the limit of large n. This follows
from the following facts: (i) For any two distinctn-bit
strings the probability that they agree on the parities or
independent random subsets of their bits is#22r [10].

(ii) The probability distributionPX overn-bit stringsx,
wherex represents the original sequence ofFyC values
of the impure pairs, receives almost all its weight fro
a set of “typical” strings containingN1 ­ 2HsXd1Os

p
nd

members, whereHsXd is the Shannon entropy ofPX .
Similarly, the conditional distributionPY jX­x of n-bit
strings y, representing the6 values of a sequence o
impure pairs whoseFyC sequence isx, receives almost
all its weight from a set of typical strings containin
N2 ­ 2HsY jX­xd1Os

p
nd members.

Let r1 BXOR tests be performed in the first round
whose goal is to findx uniquely. The expected numbe
of “false positives”—strings in the typical set, other tha
the correctx, which agree with it onr1 subset parities—
is #N122r1 . Thus the chance of a false positive becom
negligible whenr1 . log2N1. Similarly, the chance of a
false positive in the second round afterr2 BXOR tests
is negligible whenr2 . log2N2. Combining these re-
sults, and recalling that log2sN1N2d ­ nSsW d 1 Os

p
n d,

we obtain the desired result, viz., that asymptotica
SsW d BXOR tests per impure pair suffice to find a
the errors.

The breeding method has a yield1 2 SsW d, producing
more pure pairs than consumed if the mixed state’s v
Neumann entropy,SsW d, is less than 1. For Werner
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states, the yield

1 2 SsWFd ­ 1 1 F log2F 1 s1 2 Fd log2
1 2 F

3

(8)
is positive forF . 0.8107.

The use of prepurified pairs as targets simplifies ana
sis of the protocol by avoiding backaction of the targets o
the sources, but is not strictly necessary. Even without t
prepurified pairs, using only impure Bell-diagonal state
W as input, it is possible [11] to design a sequence
BXOR’s and local rotations that eliminate approximate
half the candidates forx or y at each step, achieving the
same asymptotic yield1 2 SsW d as the breeding method.
This nonbreeding protocol requires only one-way classic
communication, allowing it to be used to protect quantu
information from errors during storage (cf. [5,11]) as we
as during transmission.

We do not yet know the optimal asymptotic yieldDsMd
of purified singlets distillable from general mixed state
M, nor even from Werner states. Figure 1 compares t
yields of several purification methods for Werner stat
WF with an upper boundEsWFd given by

EsWFd ­

Ω
H2sss1

2 1
p

Fs1 2 Fd ddd , if F . 1y2 ,
0 , if F # 1y2 .

(9)

Here H2sxd ­ 2x log2x 2 s1 2 xd log2s1 2 xd is the
dyadic Shannon entropy. This upper bound is based
the fact thatWF , for F .

1
2 , can be expressed as an equ

mixture of eight pure states
p

F jC2l 1

s
1 2 F

3
s6jC1l 6 jF2l 6 ijF1ld ,

(10)

each having entropy of entanglement equal to the rig
side of Eq. (9), while forF #

1
2 , WF can be expressed

as a mixture of unentangled product states"", ##, "#, and

FIG. 1. Log-log Plot of entanglement distillable from Werne
states of purityF by various methods vsF 2

1
2 . D0 is the

breeding method alone [Eq. (8)];DR is the breeding preceded
by the recurrence method of Eq. (7);DM is the breeding
preceded by recurrence of [9]; andE is the entanglement of
formation, Eq. (9), an upper bound on entanglement yield
any method.
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#". In fact [11], these are the least entangled ensemb
realizing WF ; therefore,EsWFd may be viewed as the
Werner state’s “entanglement of formation”—the asym
totic number of singlets required to prepare oneWF by
local actions. Because expected entanglement canno
increased by local actions and classical communicat
[11], a mixed state’s distillable entanglementDsMd can-
not exceed its entanglement of formationEsMd.

We have seen thatF ­
1
2 is a threshold below which

Werner states can be made from unentangled ingredie
and above which they can be used as a starting materia
make pure singlets. This further grounds (cf. also [12
for regarding all Werner states withF .

1
2 as nonlocal

even though only those withF . s2 1 3
p

2 dy8 ø 0.78
violate the Clauser-Horne-Shimony-Holt [13] inequalit
Distillable entanglement and entanglement of formati
are two alternative extensions of the definition of enta
glement from pure to mixed states, but for most mix
statesM, we do not know the value of either quantity, no
do we know anM for which they probably differ.
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