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Two separated observers, by applying local operations to a supply of not-too-impure entangled states
(e.g., singlets shared through a noisy channel), can prepare a smaller number of entangled pairs of
arbitrarily high purity (e.g., near-perfect singlets). These can then be used to faithfully teleport unknown
guantum states from one observer to the other, thereby achieving faithful transmission of quantum
information through a noisy channel. We give upper and lower bounds on the Bi@) of pure
singlets(|¥~)) distillable from mixed states?, showingD (M) > 0 if (¥~ |M|¥ ™) > %

PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c

The techniques of quantum teleportation [1] and quanstate) previously shared between sender and receiver, and
tum data compression [2,3] exemplify a new goal of quana 2-bit classical message from the sender to the receiver.
tum information theory, namely, to understand the kind Both quantum data compression and teleportation re-
and quantity of channel resources needed for the transpire a noiseless quantum channel—in the former case for
mission of intact quantum states, rather than classical inthe direct quantum transmission and in the latter for sharing
formation, from a sender to a receiver. In this approachthe entangled particles—yet available channels are typi-
the quantum sourc§ is viewed as an ensemble of pure cally noisy. Since quantum information cannot be cloned
statesy;, typically not all orthogonal, emitted with known [4], it would perhaps appear impossible to use redundancy
probabilities p;. Transmission of quantum information in the usual way to correct errors. Nevertheless, quantum
through a channel is considered successful if the charerror-correcting codes have recently been discovered [5]
nel outputs closely approximate the inputs as quantunwhich operate in a subtler way, essentially by embedding
states. Because nonorthogonal states, in principle, canntite quantum information to be protected in a subspace so
be observed without disturbing them, their faithful trans-oriented in a larger Hilbert space as to leak little or no in-
mission requires that the entire transmission processes iermation to the environment, within a given noise model.
carried out by a physical apparatus that functions obliviWe describe another approach in which the noisy chan-
ously, that is, without knowing or learning whiclk are  nel is not used to transmit the source states directly, but
passing through. rather to share entangled pairs (e.g., singlets) for use in

Just as classical data compression techniques allow dateleportation. But before they can be used to teleport re-
from a classical source to be faithfully transmitted using diably, the entangled pairs must be purified—converted to
number of bits per signal asymptotically approaching thealmost perfectly entangled states from the mixed entan-
source’s Shannon entropy; > ; p; log p;, quantum data gled states that result from transmission through the noisy
compression [2,3] allows quantum data to be transmittecchannel. We show below how the two observers can ac-
with asymptotically perfect fidelity, using a number of 2- complish this purification, by performing local unitary op-
state quantum systems oubits (e.g., spins particles) ~erations and measurements on the shared entangled pairs,
asymptotically approaching the source’s von Neumangoordinating their actions through classical messages, and
entropy sacrificing some of the entangled pairs to increase the pu-
rity of the remaining ones. Once this is done, the resulting
almost perfectly pure, almost perfectly entangled pairs can
be used, in conjunction with classical messages, to tele-
port the unknown quantum statgs from sender to re-

Quantum teleportation achieves the goal of faithfulceiver with high fidelity. The overall result is to simulate
transmission in a different way, by substituting classicala noiseless quantum channel by a noisy one, supplemented
communication and prior entanglement for a direct quanby local actions and classical communication.
tum channel. Using teleportation, an arbitrary unknown Let M be a general mixed state of two spﬁnpar-
qubit can be faithfully transmitted via a pair of maximally ticles, from which we wish to distill some pure en-
entangled qubits (e.g., two spﬁuaarticles ina pure singlet tanglement. The statd/ could result, for example,

S(p) = ~Trplogsp. wherep = > pilu) il . (1
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when one or both members of an initially pure singletthe Bell states transform simply under several kinds of

stateW~ = (1| — |1)/+/2 are transmitted through a noisy local unitary operations. Besides the random bilateral

channel to two separated observers, whom we shall catbtation already described, several other local operations

Alice and Bob. The purity oM can be conveniently ex- will be used in entanglement purification.

pressed by its fidelity [2] () Unilateral Pauli rotations (that is, rotations by
F= MV (2) a rad about thex, y, or z axis) of one particle in an

relative to a perfect singlet. Though nonlocally defined,ntangled pair. These operations map the Bell states
the purity F can be computed from the probabiligy of ~ ONto one another in a 1:1 pairwise fasrﬂon, leaving no
obtaining parallel outcomes if the two spins are measuredt@te unchanged; thus, maps ¥= < ®~, o, maps
locally along the same random axis: One finds thaf! < V™ and®™ « &7, while o, maps¥= — @~.
F=1-3P/2 We ignore overall phase changes because they do not
The recovery of entanglement froM is best under- affect our arguments.

stood in the special case thit is already a pure state of  (i}) Bilateral /2 rotations B,, B,, and B. of both
the two particlesM = |Y) (Y| for someY. The quantity Particles in a pair about the, y, or z axis, respectively.
of entanglement£(Y), in such a pure state is naturally Each of these operations leaves the singlet state and
defined by the von Neumann entropy of the reduced der@ different one of the triplets invariant, interchanging
sity matrix of either particle considered separately: the other wo_triplets, withB, mapping ‘D: i

E(Y) = S(pa) = S(ps), 3) B, r_nappmg@ — ¥7 and B, mapping®" — &
whereps = Trz(|Y)(Y]), and similarly forpg. For pure Again we omit phases.
states, this entanglement can be efficiently concentrate[%]
into singlets by the methods of [6], which use local
operations and classical communication to transferm

(i) The quantum-XOR or controlled-NOT operation
performed bilaterally by both observers on corre-

sponding members of two shared pairs. Turlateral

quantum XOR is an operation on two qubits held by

Input statesy into m singlets with a_yleldn/n app_roach- the same observer which conditionally flips the second or
ing E(Y) asn — . Conversely, givem shared singlets, . w o : . w o
target” spin if the first or “source” spin is up, and does

local actions and classical communication suffice to Pre othing otherwise. As a unitary operator it is exoressed
pare m arbitrarily good copies ofY' with a yield m/n 9 ' yop P
approachingl /E(Y) asn — .

Returning now to the problem of obtaining singlets _
from mixed states, the first step in our purification proto- Uxor = TsTr)Msbel #1151 (s 17l
col is to have Alice and Bob performrandom bilateral +llslmdslel +1lstTAsTrl. (5)
rotation on each shared pair, choosing a random SU(2)
rotation independently for each pair and applying it Io—T
cally to both members of the pair (the same result coul%
also be achieved by choosing from a finite set of rotation@
{B\, By, B, I} defined below). This transforms the initial
general two-spin mixed stat& into a rotationally sym-
metric mixture,

he bilateral XOR (henceforth, BXOR) operates in a
imilar fashion on corresponding members of two pairs
hared between Alice and Bob: If Alice holds spins 1
and 3, and Bob holds spins 2 and 4, a BXOR, with spins
1 and 2 as source and spins 3 and 4 as target, would

| — F conditionally flip spin 3 if and only if spin 1 was up, while

Wp=F|¥ )Y (¥ | + [Ty (P conditionally flipping spin 4 if and only if spin 2 was up.
A BXOR on two ®* states leaves them both invariant.
1—-F 1—F,_ _ _ The results of applying BXOR to other combinations of
+ D7) (DT + |®7)(@"], (4)  Bell states is shown below, omitting phases.

of the singlet state¥~ and the three triplet states

Ut = (1] + 11)/+/2 and ®* = (It = |I)//2. Because

of the singlet's invariance under bilateral rotations, theSourceBmcoreTar After(n.c. = no change
. . get Source Target

symmetrized stat®¥r, which we shall call a Werner state —
[7] of purity F, has the samé& as the initial mixed state P~ o n.c. n.c.
M from which it was derived. v ol n.c. wr

At this point, it should be recalled that two mixed states ¥ wr n.c. @
having the same density matrix are physically indistin- ¥ vt n.c. n.c. (6)
guishable, even though they may have had different prepa—q): o~ o n.c.
rations. Therefore, subsequent steps in the purificationq’: o~ v v
can be carried out without regard to any properties of the \I’: v v o~
original mixed stateM, or of the noisy channel(s) that P~ v e n.c.

may have generated it, except for the pudity
Mixtures of the four state¥* and®* —known as the (iv) Besides these unitary operations, Alice and Bob
four Bell states—are particularly easy to analyze, becausgerform one kind of measurement: measuring both spins
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in a given pair along the spin axis. This reliably distin-
guishes¥ states fromd states, but cannot distinguish

even or odd number ob states in the tested subset. By
performing a number of BXOR tests, on different subsets

from — states. Of course, after the measurement has beerf the original impure pairs, all th# states can be found

performed, the measured pair is no longer entangled.
We now show that, given two Werner pairs of fidelity

1 . .
F > 5, Alice and Bob can use local operations and two-

way classical communication to obtain, with probability
greater tharfi, one Werner pair of fidelity”” > F, where
the F’ satisfies the recurrence relation

, F2 + 5(1 — F)?
F2 + 3F(1 — F) + 5(1 — F)?
To achieve this, the following protocol is used.
(A1) A unilateral oy rotation is performed on each of
the two pairs, converting them from mostly~ Werner
states to the analogous mostly" states, i.e., states with
a large component’ > % of ®* and equal components

of the other three Bell states.
(A2) A BXOR is performed on the two impuré*

(7)

states, after which the target pair is locally measured alon%

the z axis. If the target pair's spins come out parallel,
as they would if both inputs were trué™* states, the

unmeasured source pair is kept; otherwise, it is discarded.
d

(A3) If the source pair has been kept, it is converte
back to a mostly?~ state by a unilaterab, rotation,
then made rotationally symmetric by a random bilatera
rotation (cf. [9]).

BecauseF/(F) is continuous and exceeds over the
entire range% < F < 1, iteration of the above protocol
can distill Werner states of arbitrarily high purify,,, <
1 from a supply of input mixed state® of any purity
Fin > % The vyield (purified output pairs per impure
input pair) is rather poor and tends to zero in the limit
Fou — 1; but by BXORing a variable numbet(F) =
1/+/1 — F of source pairs, rather than 1, into each targe
pair before measuring it, the yield can be increased an
made to approach a positive limit @&, — 1. [For
this choice ofk, to lowest order inl — F, the iteration
formula for purity agrees with Eq. (7)F'(F) =1 —
20 - 1
at each step, also to lowest order, zi(sl — F)2. One
thus obtains a nonzero yield &, — 1.] We do not

and corrected t@ states. A similar procedure is then used
to find all the® ™ states and correct them to the desired
®*. The full protocol is described below.

(B1) Alice and Bob start witlz impure pairs each de-
scribed by the same Bell-diagonal density mat#ixwith
S(W) < 1, andn[S(W) + &] prepurified® " states, pre-
pared, for example, by the variable blocksize recurrence
method described above. Heéeis a positive constant
that can be allowed to approach 0 in the limit of large

(B2) Using the prepurifiedb* pairs as targets, Alice
and Bob perform BXOR tests on sufficiently many
random subsets of the impure pairs to locatelaltates,
with high probability, without distinguishingl’* from
¥~. Once found, thel= are converted, respectively, to
&~ by applying a unilateratr, rotation to each of them.
The impure pairs now consist of onfy ™ and® ~ states.
(B3) Next Alice and Bob do a bilateral, to convert the
~ states intd? ", while leaving thed " states invariant.
This done, they perform BXOR tests on sufficiently many
ore random subsets to find all the n&w states with
igh probability. Once found, these states are corrected to
the desiredb ™ form by unilateralo, rotations.

The number of BXOR test per impure pair required to
find all the errors, with arbitrarily small chance of failure,
approaches the entropy of the impure paifsW) =
—Trwlog W, in the limit of large n. This follows
from the following facts: (i) For any two distinct-bit
strings the probability that they agree on the paritieg of
independent random subsets of their bitssiz™" [10].

(ii) The probability distributionPy overn-bit stringsx,
wherex represents the original sequencedof ¥ values
of the impure pairs, receives almost all its weight from

b set of “typical” strings containingV; = 2HX)+0(/m

H1embers, wherdd(X) is the Shannon entropy aPy.
Similarly, the conditional distributionPyx—, of n-bit
strings y, representing thet values of a sequence of
impure pairs whose /¥ sequence ig, receives almost

F). The expected fraction of the pairs discardedy]| its weight from a set of typical strings containing

N, = 2HYIX=0)+0(/n) mempers.
Let r; BXOR tests be performed in the first round,

give the asymptotic yield from this method, because avhose goal is to findc unigquely. The expected number
higher yield can be obtained by combining it with anotherof “false positives”—strings in the typical set, other than
method to be described below, which uses a supply othe correctr, which agree with it orr; subset parities—

previously purified® " pairs in the manner of a breeder

is =N;27". Thus the chance of a false positive becomes

reactor, consuming some in order to produce more thanegligible whenr; > log,N;. Similarly, the chance of a

the number consumed.

The basic step (a “BXOR test”) used in this method
consists of bilaterally XORing a subset of the impure pairs
used as sources, into one of the pdré states, used as a

false positive in the second round after BXOR tests

is negligible whenr, > log,N,. Combining these re-
sults, and recalling that legV,N,) = nS(W) + O(/n),

we obtain the desired result, viz., that asymptotically

target, followed by measurement of the target. Consultingg(W) BXOR tests per impure pair suffice to find all

table (6) above, we see that ea#t or ¥~ source pair
toggles the target betwea* and¥*, without affecting

the errors.
The breeding method has a yield— S(W), producing

the source. Thus a BXOR test, like a parity check onmore pure pairs than consumed if the mixed state’s von
classical data, tells Alice and Bob whether there are atNeumann entropyS(W), is less than 1. For Werner
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states, the yield 1. In fact [11], these are the least entangled ensembles
1 - F realizing Wr; therefore, E(Wr) may be viewed as the
Werner state’s “entanglement of formation”—the asymp-
totic number of singlets required to prepare diig by
(8)  local actions. Because expected entanglement cannot be
is positive for > 0.8107. increased by local actions and classical communication
The use of prepurified pairs as targets simplifies analyf11], a mixed state’s distillable entanglemeant)) can-
sis of the protocol by avoiding backaction of the targets omot exceed its entanglement of formatiB).
the sources, but is not strictly necessary. Even without the \yje have seen that = % is a threshold below which

prepurified pairs, using only impure Bell-diagonal stateSyerner states can be made from unentangled ingredients,
W as input, it is possible [11] to design a sequence ofng apove which they can be used as a starting material to
BXOR'’s and local rotations that eliminate approximately jake pure singlets. This further grounds (cf. also [12])
half the candidates far or y at each step, achieving the ¢, regarding all Werner states with > 1 55 nonlocal
same asymptotic yield — S(W) as the breeding method. ven though only those withf > (2 + 3j§)/8 ~ (.78

This nonbreeding protocol requires only one-way classica\?,ioIate the Clauser-Horne-Shimony-Holt [13] ineq‘uality.

.Cc?mmu?_lcatflon, aIIowmg It to bet used tofpr(%t(]e-(::lt quamulrlrbistillable entanglement and entanglement of formation
information from errors during storage (cf. [5,11]) as we are two alternative extensions of the definition of entan-

as during transmission. . .
. L glement from pure to mixed states, but for most mixed
We do not yet know the optimal asymptofic yieli) statesV, we do not know the value of either quantity, nor

of purified singlets distillable from general mixed statesdo we know an¥f for which they probably differ
M, nor even from Werner states. Figure 1 compares the We thank David DiVincenzo for extensive and valuable

yields. of several purification m_ethods for Werner St"’m:"sadvice, and Chiara Macchiavello and the Oxford quantum
Wr with an upper bound(Wr) given by information group for sharing their unpublished results.

1 TR Y ; Technion (Haifa), the Institute for Scientific Research
E(Wp) = {OHz(2 +VF( = F)), :;?Zi% (9)  (Torino), ELSAG-Bailey (Genoa), and IBM Research

1 —SWp)=1+ Flog;F + (1 — F)log,

d ksh tly facilitati k.
Here Ha(x) — —xloger — (1 — x)loga(l — x) is the sponsored workshops greatly facilitating our wor

dyadic Shannon entropy. This upper bound is based on
the fact thatWr, for F > % can be expressed as an equal
mixture of eight pure states

JEIU) + 1;
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