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Overlaps between RNA Secondary Structures

Paul G. Higgs*

Department of Physics, University of Sheffield,
Hounsfield Road, Sheffield S3 7RH, United Kingdom
(Received 19 June 1995

A model for RNA secondary structure is studied that has a rugged energy landscape with many
alternative local minima. Several features are observed that are qualitatively similar to the replica
theory of spin glasses. Numerical results suggest that the overlap distribution remains broad and non-
self-averaging for long random RNA sequences at low temperatures. Significant ultrametric correlations
are observed in the distances between triplets of states. Clustering algorithms are used to illustrate the
hierarchical arrangement of low energy states in configuration space.
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Biological macromolecules such as RNA and proteingo occur simultaneously. The third case is known as a
have many alternative low energy configurations sepapseudoknot, and is disallowed here and in most other work
rated by high energy barriers. Ideas taken from the meaon RNA. Any base pair must also satisfy — i| = 4,
field theory of the Sherrington-Kirkpatrick (SK) spin glass which guarantees that there are at least three unpaired
model [1,2] have proved useful to describe the thermodybases in a hairpin loop. We wish to calculate the partition
namic properties of these molecules [3]. In the spin glasfunction, which is a sum over all structures satisfying the
phase the overlap distribution remains broad in the therabove rules.
modynamic limit, and is non-self-averaging (sample to LetZ;; be the partition function for the section of chain
sample fluctuations remain in the thermodynamic limit).from bases to j inclusive. Lete;; be the energy of the
Theory also predicts that the local minima can be arrangetdond between baseésndj, which is —1 if the pair is AU or
in a hierarchy, and that the matrix of overlaps (or the corCG, and+ otherwise, and let;; = exp(—¢;;/T), which
responding distance matrix) will be ultrametric [4]. The is either exg+1/T) or zero. The full partition function
suggestion is that many of these features are generic 6,y can be calculated recursively at any given temperature
rugged landscape problems and will occur in many differ-T', beginning withZ;; = Z; ,_; = 1 for all i, and using the
ent models. Here we investigate overlaps in a model fofollowing formula forj > i.

RNA secondary structure in the light of spin glass theory. 4

Algorithms for secondary structure prediction in RNA Zii=Zij1 + Z Zin1Zns1j14ai; .

[5—-8] use recursive methods, which calculate the mini-
mum free energy structure, the partition function, and re-
lated quantities for a molecule of lengthin a time that ~ The time required i® (N?). The recursions for calculating
varies usually ag/>. The full model uses parameters for the partition function when the full set of energy parame-
the free energies of the stacking of base pairs and for fotters are used is more complicated [7], but is gBi(lv-).
mation of loops of different sizes and types that are taken Any given secondary structure can be represented
from data measured on small RNA molecules. Here wés a sequence of integeb$, ..., by, such thath; = 0
simplify the parameters to a minimum. We are interestedf basei is unpaired in configuratioa, andb;* = j and

in the thermodynamic behavior of long random sequence®,/’ = i if basesi and j are paired. The overlag®?

and the precise values of the energy parameters should negtween two configurations and g is the fraction of
affect the conclusions. bases in the chain for which* = biﬂ. The overlap dis-

We study random RNA sequences composed of A, C, Gibution function isP(q) = >, > g wawpd(q — q“B),
and U bases with equal probability. Pairing is permittedwherew, andwg are the equilibrium statistical weights
only between A and U and between C and G bases. Eaatf statesa and 8. It is possible to write a polynomial
pair contributes an energy of —1 unit, irrespective of itstime recursion for calculating’(¢) exactly for a given
position in the structure, and there is no penalty for loopschain, but both the time and the memory requirements
The topological rules that determine which structures arare of high order inV. This approach was only practical
allowed are the essential feature that creates the ruggdadr very short chains. There is, however, a way of ap-
landscape in this model. Létj, k, and! be the positions proximately calculating®(¢) using the partition functions
of four bases in a sequence numbered from Nfsuch Z;;. This consists of obtaining a representative sample of
that i and j can form a pair and and !/ can form a structures for a given temperature, such that the probabil-
pair. There are three nonequivalent possibilities for thety of a structure occurring in the sample is proportional
order:i < j <k <l i<k<IlI<j,andi <k <j < toits Boltzmann weight. If the number of structures gen-
I. In the first two cases the two pairs are permittederated is fairly large, then the distribution of overlaps

J
h=i
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between pairs of structures in the sample should be a  20.0
good approximation to the fulP(g).
The following method generates a structure at random
with a probability equal to its Boltzmann weight. It is 15.0
possible to calculate the probability that baées paired
with any other basé in the sequence, and the probability
that baseV is unpaired. The state of basecan thus be
assigned at random using these probabilities. If bédse
is unpairedby is set to 0. If base® andh are paired,
by, is set toN and by is set toh. This process can be 5.0
repeated until all thé; are assigned. At each stage it
is necessary to consider an interval of the sequence such
that none of thé; in the interval is yet assigned, and such 0.0
that it is already known that pairs are forbidden between
bases in the interval and those outside. In the above case
whereN is unpaired it is now necessary to consider theF!G. 1. Mean overlap distributions af = 0.1 and0.5 for
interval from 1 toN — 1. In the case wher® was paired =~ 100 (lowest of each set), 200, 400, and 800 (highest of
. . : . each set).
with % it is necessary to consider two new intervals from
ltoh — 1,and fromh + 1to N — 1. Given a general
interval fromi to j it is always possible to determine considered(N = 1200). Note that the ground state is
the probability that the last base in the interval (i.js  multiply degenerate, therefor@(q) is broad at zero
paired with any other bask in the interval. We denote temperature.

10.0

P(q)

this by p(j,h;i,j). The probability thatj is unpaired, The meang was measured for each sequence and the
given the intervali to j, is denotedp(j,0;i,j). These standard deviation of the mean§gq, was obtained as
probabilities are given by a measure of sample to sample fluctuations. Figure 2
showséd g as a function ofV. For normal thermodynamic
p(jihiij) = anjZin1Zn+1j-1/Zij averaging 64 should decrease a®~'/? for large N,

whereas if P(¢) is non-self-averaging it should tend

R . to a constant. In Fig. 2, af = 0.5 and0.3 &6q is
p(j.0iij) =1 = hz_p(]’h”’ﬂ' decreasing at least as rapidly a5 !/2, as indicated

- by the broken line, whereas faf = 0.2, 0.1, and0.0

Base j can now be either paired with some base &g decreases only very slowly. These results suggest
or left unpaired by generating a random number andhe presence of a low temperature phase with non-self-
comparing with the probabilities above. The procedureaveragingP(q), with a transition temperature somewhere
can be repeated in smaller and smaller intervals until albround T = 0.2. However, from numerical evidence
the b; are assigned. It is always necessary to consideslone we cannot rule out the possibility th#j continues
the last base in the interval, since the probability ofto decrease very slowly in the thermodynamic limit
forming a general pai, k in an interval i, j is not
calculable from the known partition functions. This is an
exact method, which is guaranteed to generate states with
their correct equilibrium probabilities, hence there is no
need for approximate methods such as Monte Carlo with
simulated annealing.

Figure 1 shows overlap distributions averaged over
many random sequences. At = 0.5 the width of
the distribution scales a®/ ~'/2 and P(gq) becomes a
delta function in the thermodynamic limit, as would be
expected for a high temperature phase. 7At 0.1 the
distribution is much broader and appears to narrow only
very slowly asV increases, suggesting thafg) may tend
to a nontrivial limit for largeN. The width of P(¢) was
plotted againsV on a log-log plot at several temperatures 100 ' 1000
(not shown). ClearN~!/2 behavior was observed for N

T =0.5and0.3. ForT =02, 0'1;1‘/32nd 0.0 the Width FIG. 2. The standard deviatiaty of the mean overlap shown
decreased much less rapidly th&inm*/< but a stationary s a function ofV for temperatures between 0 and 0.5. The
value had not yet been reached for the maximum lengtbroken line has a slope of1/2.
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even at low temperatures. In the SK model the spiruncorrelated triangles, otherwise they were rejected and a
glass transition is signaled by a cusp singularity in thenew group of six generated. The uncorrelated triangles
magnetic susceptibility. We have looked for singularitieshave the same distribution of lengths of sides as the
in the RNA model using recursion formulas for variousreal triangles formed from triplets of states, but there is
derivatives of the partition function, but this has provedno correlation between the lengths of the two longest
inconclusive. It is difficult to locate cusp singularities sides other than that introduced by the triangle inequality.
because they are easily masked by finite size effect§able | shows the ratio of (for real triangles) tOsync
hence it is difficult to prove the presence of a phasgfor uncorrelated triangles). This is always less than 1.
transition in this model, and the possibility remains thatAt 7 = 0.5 the ratio appears to increase towards 1NVas
there is no transition. increases. This means that the data are ultrametric only
The other key feature of the replica theory of the SKin a trivial way: s is small mostly due to the narrow
model is that the valleys in the energy landscape (oP(g) and the triangle inequality (cf. example of trivial
pure states) are predicted to be arranged in a hierarchidtrametricity in [9]). By contrast, al" = 0.1 the ratio
cal way, so that the matrix of distances between the purg/s.,. is smaller, and decreases with Thus there are
states is ultrametric. For any three pure stateg, and real ultrametric correlations that become more significant
v there is a triangle with sides equal to the distancesvith increasingV.
d*P, dPY, d*¥. The ultrametric property is that the two A large number of hierarchical clustering algorithms
longest sides of the triangle must be equal. In the RNA10] have been developed for the analysis of distance
model the distance will be defined @§? =1 — ¢*#, matrices. Figure 3 shows a representation of the dis-
which is just the fraction of thé; variables that are dif- tance matrix for a set of 200 alternative structures for
ferent in the two structures. These distances satisfy thene single random RNA sequence of length 400. The
triangle inequalityd®” = d*# + 47, foranya, B, and structures were obtained & = 0, therefore they are
v. We will let s denote the mean value of the differenceall degenerate ground states. The single link cluster-
between the longest and second longest sides of trianglésy method [10] was used to order the structures so
in the measured data. The average is taken over many tiihat similar structures are consecutive. Clusters appear
angles per sequence and over many sequences. Valuesasf blocks along the diagonal of the matrix; 20 grey
s are shown as a function @f at two representative tem- levels have been used, with darker shades indicating
peratures in Table I. It is found thatis quite small at all smaller distances. A pattern of clusters is seen in Fig. 3
temperatures, and always decreased @screases. with at least three hierarchical stages of division be-
However, there are two reasons whighould be small ing apparent at different grey levels. The structure
that do not indicate a significant ultrametric structure.gradually disappears as the temperature is raised. At
First, the width of the distribution off scales agv=/2 T = 0.5 there is just a black line along the diagonal,
in the high temperature phase, hencenust also scale
as N~1/2 (see data in Table | fo' = 0.5). Second,
the triangle inequality also limits the maximum size
of s. In order to demonstrate that the real triangles
are closer to being Isosceles than would be expected
merely from the triangle inequality we generated random
uncorrelated triangles in the following way. Groups of
six structuresx,B,v,6,u,v were considered, from which
three independent distance&?, d¥°, and d*” were
obtained. If these three distances satisfied the triangle
inequalities, then they were included in the sample of

TABLE I. Mean deviation from ultrametricity per triangle,
and the ratio ofs for real and uncorrelated triangles shown for
two temperatures.

T =05 T =0.1

N s S/Slll'lC s S/SUIIC

50 0.058 0.80 0.058 0.73

100 0.042 0.84 0.055 0.67

200 0.030 0.87 0.048 0.62

400 0.021 0.89 0.044 0.55 FIG. 3. Matrix of distances between alternative structures for
800 0.015 0.90 0.040 052 a random sequence d¥ =400 at T = 0. Darker shades
1200 0.012 0.91 0.037 0.4g indicate shorter distances. A hierarchical pattern of clusters

is visible.
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