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Low Shear Viscosity of a Dense lonic Micellar Solution
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We present a method for evaluating the low shear viscosity of a strongly interacting nonspherical
micellar solution. The contribution from hydrodynamic interaction was calculated according to the
Batchelor-Green equation with the effect of micellar shape and the hydration taken into account.
The Brownian contribution was calculated by modifying the method of de Schepper, Smorenburg,
and Cohen [Phys. Rev. Leff0, 2178 (1993)] with the structure factor extracted from a small angle
neutron scattering experiment. The low shear viscosity agrees with the experimental results for hydrated
micellar volume fractionp,, up to 0.4.

PACS numbers: 83.50.Fc, 03.40.Gc, 83.10.Ff

The theoretical calculation of the steady shear viscosFourier transform, the pair correlation function. By evalu-
ity of suspensions has attracted rheologists since Einsteating S(Q) with Percus-Yevick's method, de Schepper
derived the equation for the dilute case [1], which is gen-et al. obtained a surprisingly good estimate of zero shear
erally accepted as being accurate to first order in the soluté@scosity of a hard sphere system #rfrom 0.3 to 0.6.
volume fraction¢. Following Einstein’s work a number  The Brownian contribution to the steady shear viscosity
of equations were developed [2], and several neglectedan be written as [6—9]

effects, such as solvation, polydispersity, particle shapes, 2

) : . : : n av(r)
particle viscosity, and agglomeration, were taken into ac- np(v,p,w) = — | drg(r,v,w)y ,
count [3]. As extensions of Einstein’s formula, most of 2v ar

the expressions are for dilute suspensions. where g(r, v, ») is the pair distribution functione the
Recently the calculation for concentrated hard Spher?requency v the shear rateg the volume fraction, and

systems started drawing rheologists’ attention. In a CONy () the pairwise potential. At zero shear limit and under

centrated system, one has to accurately evaluate the COlje "condition of mean spherical approximation (MSA),

tributions both from the hydrodynamic interaction anqu' (1) can be expressed in termsséf) and its derivative
from the Brownian forces. Several authors have com-S/(Q)

puted the pairwise or many-body hydrodynamic interac- . )

tion [4] to estimate the zero shear viscosity. The results (b, w)= kgT ] 40 Q4[5/(Q)} 1
are comparable to experimental data ugsto- 0.3. The nELP: 6072 Jo S(Q) | 20u(Q) —iw’
Brownian contribution was also estimated based either on 2

the Smoluchowski equation or on the Fokker-Planck ki-

netic equation [5]. Again, most of the results are goodwherekp is the Boltzmann constant; the absolute tem-
for ¢ < 0.3 only, except Brady’s work [5], which agrees perature, andy(Q) the linewidth of the intermediate scat-
with experimental data reasonably well f¢rup to~0.6.  tering functionS(Q, w). At low frequency limit,wy(Q)
Although Brady’s work is based on the first principlesis a function ofS(Q) and the Enskog self-diffusion co-
and shows reasonable agreement with the experimentéfficientDg by wx(Q) = [DQ?/S(0)1d(Q). This ex-
results, it was incomplete. The author used the short timgression is true for a dense fluid of spherical molecules or
diffusion coefficient to replac®,, the dilute limit diffu- @ hard sphere system [10]. The correction functi¢@)
sion coefficient, but then applied Phung’s simulation re-accounts for the effect of the binary collisions on the self-
sult [5] in the quantitative calculation. Additionally, the diffusion process at differer®. An approximate form of
formalism developed for hydrodynamic interactions wasws [6] is

not used in the calculation (the Batchelor-Green equation Dy0?

was used) and the three-body collision was neglected (the wgn(Q) = — - )
Smoluchowski equation was within the pair space). X SN = Jjo(@o) + 272(Q0)]

de Scheppeet al. took a different approach [6]. They 1+ ¢/2
calculated the Brownian contribution based on the anal- X = (1 — ¢ (4)

ogy of the linewidth of the intermediate scattering func-

tion between a colloidal system and a dense atomic fluidDy = kgT /6moR, (10 is the solvent viscosity an®),
The Brownian force is directly related to the linewidth the hydrodynamic radius) is the Stoke-Einstein diffusion
which is a function ofD, the structure factaf(Q), orits  coefficient, y is the value of the pair correlation function
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at contact when the system is at equilibrium, gnd) is  model was used to derivB(Q) [12]. The inner region

the spherical Bessel function éth order. is an ellipsoid with a minor radiug, equal to the fully
The advantage of this approach is that the essential quastretched length of the dodecyl chaih € 16.7A [14]).

tity in the Brownian contribution$(Q), is experimentally The major radiusa, determined by the core volume

obtainable. Infact, for many complex fluids syste§1§?)  under compact packing constraints, increases with LDS

and its corresponding pair correlation function can be reliconcentration. The outer layer of the micelle has a

ably obtained through scattering experiments, as opposétickness. The degree of aggregatiah(number of LDS

to hard sphere system whef6Q) can be calculated pri-  chains in a micelle) and the degree of hydration (number
ori. This method provides an opportunity to extend theof water molecules per LDS molecule) can be extracted
viscosity calculation beyond the hard sphere limit. from SANS data fitting. From these two parameters, the

We adopt this approach, with some modification, toaverage micellar diameter (= 2[(a + ) (b + 1)*]'/3),
evaluate the zero shear viscosity of a strongly interactingnicellar shape:/b, and the hydrated volumeé,, can be
ionic micellar system. Since we deal with a wide determined.
concentration range, it is essential to take into account To evaluateS(Q) we employed the generalized mean
both the hydrodynamic interaction and the Brownianspherical approximation (GMSA) theory reported previ-
forces. de Scheppeet al. neglected the hydrodynamic ously [13]. The Ornstein-Zernike equation can be solved
contribution completely, nevertheless, their calculation iswithin the MSA limit to obtainS(Q). One adjustable pa-
valid for high volume fraction, where the Brownian effect rameter, the effective micellar surface charge, is involved.
dominates the low shear viscosity [11]. This charge defines the strength of the intermicellar po-

The system we study is an ionic micellar solution. Ittential V(r). The role of counterions has been neglected
represents a class of fluids of great practical importanceexcept for their contribution to the ionic strength.

The micellar solutions were made by dissolving lithium Figure 1 shows a typical scattering intensity distribu-
dodecyl sulfate [LiISQ(CH,);;CHs] surfactant (LDS) in tion functions/(Q) and extractedP(Q) and S(Q) for
water. A LDS surfactant molecule consists of a hydropho5 gdL™!' LDS in D,0. At this concentration the ag-
bic chain, a polar sulfate headgroup, and & tounterion.  gregation number is 80, the average diameter 49 A, the
As the concentration exceeds critical micellization con-effective charge 26, the/b ratio 1.47, and the number of
centration .9 mM at room temperature), LDS molecules hydratedD,O molecules 10.

aggregate to form quasispherical micelles. As concentra- These structural parameters can be extracted from
tion increases, LDS micelles grow and gradually transfeSANS data analysis at each LDS concentration. As
into ellipsoids [12,13]. The micelle is composed of a hy-

drophobic core made of dodecyl chains and a hydrophilic

outer layer made of polar headgroups and undisassoci- 5 : : : :
ated counterions. The micelle is often hydrated by a sub- —a | |
stantial amount of solvent molecules in the outer layer. n
The concentration range studied is from 12®gdL"!, 53 I 1
equivalent to hydrated micellar volume fractign, from 2 1
0.01 to 0.4, determined from small angle neutron scatter- g, 3 1
ing (SANS) experiments. ¢, will be used from what 0 . , W
followed as the hydrated volume fraction, in order to be 0.00 0.05 0.10 0.15 0.20 0.25
distinguished fromp, the volume fraction of the solute). QAT

SANS measurements were performed for LDS in 15 . .

deuterated waterl;0). PureD,0 was used in order

to enhance the scattering contrast against the protonated
alkyl micellar core. The scattering intensity distribution
function I(Q) always shows a characteristic peak, sig-
nifying strong intermicellar interactions. The intensity
1(Q) can be formulated as [13] 00

2
100) = cN(X b = psVu) P(Q)SWQ).  (5) 00 of 02 03 o4
Q [A7]

where C is the molar concentration of LDSV the
aggregation numberh; the scattering length of thé&h  FIG. 1. SANS spectrum and extracted structure factors in

nucleus,p, the scattering length density of the solvent,an ionic micellar solution made of lithium dodecy! sulfate in

and V,, the dry volume of a LDS moleculdV,, = deuterated water at room temperature. Top: SANS intensity

3 . . - profile 1(Q) data (crosses) and fitted curve (solid line) for
410 A3). The normalized intraparticle structure factor 5 ¢dL-! LDS in D,0. Bottom: Particle structure factor

P(Q) is a function of the micellar size, shape, and thep(() calculated based on a two-shell model, and intermicellar
scattering lengths density profile. A two-shell ellipsoid structure factorS(Q) evaluated from GMSA theory.

| S(Q)
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method. The physical basis of the equivalent hard sphere
0.40 | is established through the second virial coeffici@®;.
We write B, of an interacting system as [15]
0.30 | ° 2B, = 6w (Cus + Cy), (6)
) o where Cys = 8 represents the hard sphere contribution
0.20 | andC; the contribution from long range interaction. The
x parametelC; can be written as
X
o * V
0.10 ¢ Ci = 24] [1 - exp(—ﬂﬂx%zx, 7
] x 1 kBT
X
0.00 .2 s w ! s . where x = r/o is the reduced distanceC; can be
0 5 10 15 20 25 30 calculated using/(r) extracted from SANS data analysis.
C [o/dL] SubstitutingC; into Eq. (6) and imposing it into a hard

FIG. 2. Hydrated volume fractionp, (circles) and “dry” SPhere form 2B, = 6770391), the equivalent hard sphere
volume fraction¢ (crosses) of ionic micelles as function of diametero., can be obtained. Thug can be obtained

LDS surfactant concentratiof. from Eq. (4) using the equivalent hard sphere volume
fraction ¢.q. OnceS(Q) and y are known, the Brownian
contribution can be calculated using Egs. (2) and (3).
concentration increases from 128 g dL ™!, aggregation We next calculate the hydrodynamic contributigr
number N increases from 62 to 100, corresponding tousing the Batchelor-Green equation [4],
a/b ratios from 1.1 to 1.8, average micellar diameters
o from 45 to 51 A, andko from 1.8 to 6.2 k is the
inverse Debye screening length). The hydration number
remains approximately 10 throughout the concentration
range. Figure 2 illustrates the significance of hydrationThis equation is valid for spherical suspensions. For
by comparing the hydrated volume fractigh), and solute nonspherical suspensions, viscosity increases with axial
(dry) volume fractiong. ratio. To account for the shape effect, we replace the
Having obtainedS(Q) and ¢,,, we determine the coefficient 2.5 by the intrinsic viscosity,n] = (n —
parametery in Eq. (4) using an equivalent hard sphereng)/n0¢., using the Jeffery equation [16],

ny = no(1 + 2.5¢, + 52¢2). (8)

4B 14 3B
[n]= F[p2(4p2 ~10 + 3a) | p2(p? + DI2p - Da — 2]
N 6 4p2 + 2 - (4p2 - Da :| ©)
(p2 + 1)2p2 + 4 — 3p2a)  p2(4p? — 10 + 3a)[2p%2 + Da — 6] |’

I

with  B=p>—1 and a=In[(p +/B)/(p — to28 gdL!, which corresponds to a hydrated micellar
JVB)l/p/B for axial ratio p > 1. We calculate volume fraction of 0.4. Beyond this concentration, the
[n] at each concentration using the axial ratios extractedtructure factor can no longer be accurately evaluated due
from SANS data. to a high axial ratio of micelle and due to a liquid crystal

Combining the Brownian and the hydrodynamic contri-phase transition€35 gdL™!).
butions, we obtain the relative viscosity as In an ionic system, the idea of equivalent hard sphere

ns + M may be jeopardized ik o is less than 1, since the double
= . (10)  layer may subject to distortion under shear. In our case,

70 xo values are greater than 1, which makes the calculation

Figure 3 shows the measured and calculated low shear y possible. As for using the Batchelor-Green equation
viscosity of the LDQwater system as a function of to calculate the hydrodynamic contribution, inaccuracy
hydrated micellar volume fractio,,. The calculation may arise from the second order term which is derived
for a hard sphere system is also shown. The effect of thbased on a mean field theory. Another factor that may
long range interaction on rheological properties is signifi-affect the calculation is the polydispersity. It alters the
cant. We restrict the upper limit of LDS concentration system compressibility leading to a slow down of the

r
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FIG. 3. Relative viscosityn, at low shear as a function of
hydrated micellar volume fractiong,,. The open circles are
experimental data, and the solid line is theoretical calculation.
The dashed line is a theoretical prediction for a hard sphere
system.

(6]
particle diffusion at the short time limit [17]. Since we
are dealing with the low sheer viscosity, which is in the
long time limit, the polydispersity effect can be neglected.

In comparison with the work of de Scheppstral. on
hard sphere systems, this work aims at a much broade%
class of fluids in a wide concentration range. Both [g}
Brownian force and hydrodynamic interaction are calcu-
lated, which is necessary for an interacting system [18][10]
The Brownian force is calculated with the structure fac-
tor determined from a scattering experiment. An equiv-
alent hard sphere concept is introduced to calculate thgi]
linewidth of the intermediate scattering function. The hy-
drodynamic interaction is estimated using the Batchelor-
Green equation with the particle shape factor taken into
account. This methodology, validated through the LDS
system, has laid a foundation for studying the rheologicai12
properties of a complex fluid. ]
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