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Devil’s Staircase, Critical Thickness, and Propagating Fingers in Antiferroelectric
Liquid Crystals
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(Received 7 August 1995)

From an expression for the energy of a cell containing an antiferroelectric smectic liquid crysta
with only nearest-neighbor interactions between layers we conclude the following: (1) a critical ce
thickness exists at which the commensurability of the system changes from unity to higher value
(2) for negative dielectric anisotropy there is another critical thickness below which a transition t
ferroelectric alignment cannot be homogeneously nucleated at any field; and (3) the transition to a
from ferroelectric alignment propagates as a stable solitary wave under certain conditions.

PACS numbers: 64.70.Md, 61.30.Gd
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As mesophases between liquids and crystals, liq
crystals combine some of the richness of phases show
crystalline solids with the comparatively rapid respon
to deforming forces shown by liquids. This makes th
particularly suitable substances in which to study non
ear behavior [1]. Of their many possible phases, a
ferroelectric liquid crystals (AFLCs) are among the m
intriguing. Experiments have indicated that antiferroel
tric smectic liquid crystals in the phase known as SmCp

A
have a layered structure in which the herringbone form
tion of the director orientation in successive layers und
goes a gentle helical rotation [2]. This complex struct
gives rise to a correspondingly intricate dielectric beh
ior [3–5]. The aim of the present work is to presen
model for the energy of AFLCs, and to analyze some
the phenomena that it yields.

The experimental observations that a theory should
capable of describing include the “devil’s-staircase” b
havior of the commensurability of the helix describi
,
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the director orientation [3,6–11], the conditions of applie
electric field and cell thickness under which homogeneo
and heterogeneous nucleation of phase transitions oc
[4], and the velocity with which the domain wall betwee
phases advances for a given field and cell thickness
A previous approach to explaining the commensurabil
is that of Yamashita and Miyazima [12], who propose
an Ising model with third-nearest-neighbor interactions;
contrast, our model requires only nearest-neighbor forc
Various models capable of supporting solitary-wave pro
agation in liquid crystals have also been previously su
gested [1]. Ours differs from these in a number of respec
including the treatment of the surface anchoring potent

In the model we propose, theN smectic layers lie
in the x-z plane as indicated in Fig. 1. The director i
characterized by the constant angleu0 that it everywhere
makes with they axis and by the variable azimuthal angl
flsx, zd that it makes relative to thex axis in thex-z plane
and in layerl. The Hamiltonian is then taken to be
H ­ D
NX

l­1

Z
dxdz

(
k
2

"µ
≠fl

≠x

∂2

1

µ
≠fl

≠z

∂2
#

1 U cossfl 2 fl21d 1 b sinsfl 2 fl21d

2 P0E cosfl 2
´0De sin2 u0

2
E2 sin2fl 1 W szd sin2fl 1

I
2

µ
≠fl

≠t

∂2
)

. (1)
rm

l.
Here D is the layer thickness,k is an elastic constant
I is the moment of inertia per unit volume for rotatio
about they axis, andW szd is a surface anchoring energ
which we shall take to act only at the top and botto
surface of the cell, and thus to be of the formw0fdsz 2

dy2d 1 dsz 1 dy2dg with d the height of the cell. We
assume planar anchoring, so thatw0 . 0. The elastic
energy terms come from the variation off in the x-z
plane. Because each layer is only one molecule th
there is no variation off in the y direction within a
layer. Instead there is the interlayer interaction, which
assumed to favor the herringbone structure [2,13] hav
an antiparallel orientation of adjacent dipoles, as descri
by the term with coefficientU. Steric hindrance acts
to introduce a small chiral deviation from a perfect
m

k,
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antiparallel orientation, and is represented by the te
with the small coefficientb. Finally, the two terms

FIG. 1. Geometry of the model antiferroelectric liquid crysta
© 1996 The American Physical Society
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containing the electric fieldE, which is assumed to be
in thez direction, represent the effects of polarization a
of the dielectric anisotropy,De, respectively, whilé 0 is
the vacuum permittivity.
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To the equations of motion obtained from the Ham
tonian (1) we add a dissipative term to account for t
viscosityg. The result is
I
≠2fl

≠t2
1 g

≠fl

≠t
­ k

µ
≠2fl

≠x2
1

≠2fl

≠z2

∂
2 P0E sinfl

µ
´0De sin2 u0

2
E2 2 Wszd

∂
sin2fl

1 Ufsinsfl 2 fl21 2 ad 2 sinsfl11 2 fl 2 adg . (2)
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Here the antiferroelectric and chiral steric terms ha
been combined into a single set of terms by defini
a ; arctansbyUd and approximating

p
U2 1 b2 by U.

The natural pitch of the helix formed by a samp
with no boundaries and in zero field would then b
2pDya . 2pDUyb. This set of coupled nonlinear
partial differential equations must now be examined in t
hope of extracting some of the richness of the observ
behavior of AFLCs.

We start by looking for stationary solutions of Eq. (2
in the case whereE ­ 0 and where there is no variation
of thefl in thex andz directions. Integration overx and
z then give us the set of equations

2G sin2fl ­ sinsfl 2 fl21 2 ad

2 sinsfl11 2 fl 2 ad , (3)
whereG ; w0yUd. This set of coupled nonlinear differ-
ence equations has already been studied by Banerjea
Taylor [14], who found that the lowest-energy solution
were helices whose pitch formed an incomplete devi
staircase when plotted as a function ofa for fixed G.
By this we mean that the pitch of the helix is consta
over certain ranges ofa and changes either continuousl
or discontinuously between these ranges. Whenp is the
smallest integer for whichfl1p is identical tofl, modulo
p , we say that the commensurability of this commens
rate state isp. The phase diagram ina-G space is shown
in Fig. 2, and shows the commensurabilities in a numb
of regions of this parameter space. BecauseG varies in-
versely as the cell thicknessd, we see that the order of
commensurability is 1 for thin cells and smalla. As the
cell thickness is increased,G falls until one crosses from
the region wherep ­ 1 to those wherep . 1. The crit-
ical cell thickness above which this higher commensu
bility can occur is aboutdc1 , 2w0yb. If we regard the
Hamiltonian (1) as an effective free energy, then we c
allow b and hencea to be a function of temperature. A
change in temperature then represents a horizontal mo
ment across Fig. 2 from commensurability 1 to high
commensurabilities. We stress that this devil’s stairca
of commensurate helices is quite different from the com
mensurate ferroelectric structures formed in Ising mod
with longer-range interactions [15]. In the Ising-mode
picture, all thef are quantized at 0 orp, while in our
solution thef can take on any value. The Ising-mode
picture applies to very thin cells, and requires interactio
e
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to be of greater range than nearest neighbor. Our pic
applies to cells of arbitrary thickness, and requires o
nearest-neighbor forces.

Application of an electric field adds further complic
tions. For this case we first consider thick cells, whi
will be in states of high commensurability, and look f
static solutions at modest fields. We then drop the te
in W and inE2 and are left with the equations

P0E sinfl 1 Ufsinsfl11 2 fl 2 ad

2 sinsfl 2 fl21 2 adg ­ 0 , (4)

when f is again assumed independent ofx and
z. The zero-field solution, fl ­ lsp 1 ad, is
then modified by the electric field by an amou
Dfl . s21dlEP0 sinsaldy4U, and the energy is reduce
to an amount2U 2 E2P2

0y16U per unit volume. The
ferroelectrically aligned state, in which allfl vanish,
has an energy per unit volume ofU 2 P0E, and is thus
preferred at a critical fieldEc1 . 2.3UyP0. For states of
commensurability 1, in which all thefl are either0 or
p , the critical electric field at which the ferroelectrical

FIG. 2. In the devil’s-staircase structure of an antiferroelec
liquid crystal, the lower orders of commensurability are sho
as a function of anchoring strengthG and helical twista.
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16]

d

aligned state is reduced in energy below the antiferroe
tric state is simplyEc2 ­ 2UyP0. The phase diagram in
E-d space is then of the form shown schematically by t
bold lines in Fig. 3.

In a perfect cell, however, the transition to the state
lower energy may not occur until a higher field is reach
at which the ferroelectrically aligned stated is homog
neously nucleated. To determine whether this is the c
we now examine the stability of the commensurability
states when subjected to an electric field. For this an
ysis we must restore thez dependence off, and so we
put f ­ 0 in all odd layers andfl ­ p 1 s21dly2f̃szd
in all even layers, realizing, however, that this symmet
solution will not always be realized [5]. The energy of a
even layer can then be written to second order inf̃ as

E ­ D
Z

dxdz

(
k
2

µ
≠f̃

≠z

∂2

1

"
U 2

1
2

P0E

2
1
2

´0DeE2 sin2u0 1 Wszd

#
f̃2

)
. (5)

While the first term is always positive, the second set
terms may become negative at sufficiently large elec
field. Minimization of this expression in the bulk o
the layer, wherewszd vanishes, gives us a differentia
equation whose solution is̃f ­ f̃0 cossqzd, whereq ­p

Gyk and

G ; 22U 1 P0E 1 ´0DeE2 sin2u0 . (6)

A nonzero f̃ will occur only when the total energy is
negative. The condition for this is

tan

µ
qd
2

∂
.

2w0

kq
. (7)

In the limit of strong anchoring (w0 ! `) this reduces
to the conditionqd . p, and can always be achieve
in a sufficiently thick sample or strong electric field
De . 0.

FIG. 3. This schematic phase diagram shows the range
electric field and cell thickness where the different phases
stable, and also the region of homgeneous nucleation wh
propagating solitary waves of polarization may be unstab
For clarity of illustration it is not drawn to scale; in actualit
dc1 ¿ dc2 andEp

c3 ¿ Ec2.
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An interesting situation arises when the dielectr
anisotropy is negative, as then there is a maximum va
thatG, and henceq, can attain. The upper shaded area
Fig. 3 represents schematically the fieldEc3 necessary to
make the AFLC unstable in the limit of strong anchorin
For cells below the critical width marked asdc2, there is
no possible electric field that can destabilize the AFL
For weaker anchoring the curve is displaced to the le
and the critical thickness is correspondingly reduce
The value Ep

c3 of Ec3 at which the cell of critical
width becomes unstable isP0y2´0jDej sin2u0 regardless
of the strength of the anchoring. If the electric field
reduced while the sample is in the ferroelectrically align
state, there is a similar critical field for homogeneou
nucleation into the AF state. This is shown for stron
anchoring in the lower shaded area in Fig. 3, and
given by the inequality (7), but withG ­ 2U 2 P0E 1

´0DeE2 sin2u0.
The critical fieldEc3 for homogeneous nucleation ma

be appreciably larger than the fieldEc2 at which the
aligned state becomes energetically preferred. We th
expect that nucleation will occur at isolated imperfectio
within a cell or at the cell boundary. When a region o
ferroelectrically aligned material is formed, it will tend
to spread by a process of domain-wall propagation alo
the layer in thex direction. In order to examine this
process we restore the time dependence to the probl
and look at the dynamical process in which finge
of ferroelectrically aligned material propagate along th
smectic layers into an AFLC sample. As before, we st
with the commensurability-1 state wherefl ­ 0 for l
odd, but now include the dependence of thefl for even
l on x and t, while assuming that thez dependence can
be neglected whenE , Ec3. Equation (2) then takes the
form

I
≠2fl

≠t2
1 g

≠fl

≠t
2 k

≠2fl

≠x2
­ A sinf 1 B sin2f , (8)

with

A ­ 2U 2 P0E; B ­
´0DeE2 sin2u0

2
2

2w0

d
. (9)

We seek traveling-wave solutions of this equation
describe the advance of ferroelectrically ordered finge
into the antiferroelectric layers when a sufficiently stron
electric field is applied. Exact solutions to Eq. (8) may b
found [16]. They are of the form

fsx, td ­ 2 arctanersx2ytd, (10)

wherer ­
p

22Byk 1 A2Iykg2. For these to be valid,r
must be real, which is always the case when the dielec
anisotropyDe is negative. WhenA . 0 they represent
a rotation off from p to 0 as the finger advances; fo
negativeA the velocityy is negative, and the ferroelectric
finger recedes. These solutions have been shown [
to be stable wheneverjAj , 22B. The width of this
window of stability of the solitary wave is closely relate
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to the range ofE for which homogeneous nucleation i
possible. In fact, the conditionA , 22B for a stable
solitary wave is simply an approximation to the conver
of inequality (7). Were a more accurate treatment of t
solitary-wave problem possible in which thez dependence
of f was included, it would presumably show that th
waves were stable outside the regime of homogene
nucleation.

The velocity of the solitary waves is

y ­ sE 2 Ec2d
P0

g

3

s
k

´0jDejE2 sin2u0 1 4w0yd 1 sE 2 Ec2d2P2
0Iyg2

,

(11)
and is proportional toE 2 Ec2 when this quantity is
small. The term proportional to the moment of inert
density,I , is neglected in the overdamped limit whereg

is large, as is the case in many materials. At very lar
fields the velocity saturates at a value

y` ­
P0

g

s
k

2´0De sin2u0
. (12)

In the homogeneous-nucleation regime, where these s
tary waves are unstable, one cannot in general predict w
any confidence what the velocity of the advancing or r
ceding ferroelectrically aligned fingers will be. Althoug
expression (10) is still a solution of the equation of m
tion (8), any propagating wave will then tend to chang
its shape and velocity in an unpredictable way. The
is, however, one special case where a prediction can
made. WhenE ­ 0 and the cell is either very thick or
very weakly anchored then the term in sin2f vanishes
and the equation of motion reduces to the damped si
Gordon equation. If the inertia termI can be ignored
then Aronson-Weinberger theory [17] allows one to sta
that the velocity of the stable solitary wave by which th
ferroelectrically aligned state returns to the AF state is

yp ­
2
g

p
2Uk . (13)

This is very different from the incorrect value,yp
i ­p

kyI, that would be found as theE ­ 0 limit of Eq. (11).
One need only look at the limit of large viscosity to verif
thatyp will then vanish, as expected on physical ground
while y

p
i is a constant independent ofg.

Finally, we put the preceding calculations in pe
spective by noting some numerical magnitudes for
typical LC material. We put k ­ 10211 N, I ­
10216 kgym, w0 ­ 1024 Jym2, g ­ 1022 J sym3, P0 ­
7.5 3 1024 Cym2, b ­ 1.5 3 1023U, and U, de-
termined by the observed value [4] ofEc2, as 3 3

1023 Jym3. We then findEc2 to be 8 Vymm, Ec3 the
unrealizably high value of400 Vymm, dc1 to be20 mm,
anddc2 to be the extremely low value of 25 nm.

In summary, we have seen that the commensurabi
of the layers in a SmCp

A liquid crystal changes from
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unity at a critical cell thickness related to the plan
anchoring strength of the cell surface. Application o
an electric field to the commensurability-1 AF state ca
lead to homogenous nucleation of ferroelectrically align
material only for cells of thickness greater than anoth
critical value. The regime where homogeneous nucleat
is forbidden corresponds to that in which the mater
may make transitions between the AF and ferroelectrica
aligned states by propagation of stable solitary wav
These waves represent fingers of ferroelectrically align
liquid crystal advancing into or receding from the A
material.
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