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Devil's Staircase, Critical Thickness, and Propagating Fingers in Antiferroelectric
Liquid Crystals
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From an expression for the energy of a cell containing an antiferroelectric smectic liquid crystal
with only nearest-neighbor interactions between layers we conclude the following: (1) a critical cell
thickness exists at which the commensurability of the system changes from unity to higher values;
(2) for negative dielectric anisotropy there is another critical thickness below which a transition to
ferroelectric alignment cannot be homogeneously nucleated at any field; and (3) the transition to and
from ferroelectric alignment propagates as a stable solitary wave under certain conditions.

PACS numbers: 64.70.Md, 61.30.Gd

As mesophases between liquids and crystals, liquidhe director orientation [3,6—11], the conditions of applied
crystals combine some of the richness of phases shown lgtectric field and cell thickness under which homogeneous
crystalline solids with the comparatively rapid responsesnd heterogeneous nucleation of phase transitions occur
to deforming forces shown by liquids. This makes them[4], and the velocity with which the domain wall between
particularly suitable substances in which to study nonlinphases advances for a given field and cell thickness [4].
ear behavior [1]. Of their many possible phases, antiA previous approach to explaining the commensurability
ferroelectric liquid crystals (AFLCs) are among the mostis that of Yamashita and Miyazima [12], who proposed
intriguing. Experiments have indicated that antiferroelec-an Ising model with third-nearest-neighbor interactions; in
tric smectic liquid crystals in the phase known as(Sm contrast, our model requires only nearest-neighbor forces.
have a layered structure in which the herringbone formavarious models capable of supporting solitary-wave prop-
tion of the director orientation in successive layers underagation in liquid crystals have also been previously sug-
goes a gentle helical rotation [2]. This complex structuregested [1]. Ours differs from these in a number of respects
gives rise to a correspondingly intricate dielectric behavincluding the treatment of the surface anchoring potential.
ior [3-5]. The aim of the present work is to present a In the model we propose, th& smectic layers lie
model for the energy of AFLCs, and to analyze some oin the x-z plane as indicated in Fig. 1. The director is
the phenomena that it yields. characterized by the constant anglethat it everywhere

The experimental observations that a theory should benakes with they axis and by the variable azimuthal angle
capable of describing include the “devil's-staircase” be-¢,(x, z) that it makes relative to theaxis in thex-z plane
havior of the commensurability of the helix describin|g and in layerl. The Hamiltonian is then taken to be
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Here D is the layer thicknessk is an elastic constant! antiparallel orientation, and is represented by the term
I is the moment of inertia per unit volume for rotation with the small coefficients. Finally, the two terms
about they axis, andW(z) is a surface anchoring energy

which we shall take to act only at the top and bottom

surface of the cell, and thus to be of the fomwg[6(z —

d/2) + 8(z + d/2)] with d the height of the cell. We K ‘%‘
assume planar anchoring, so tha§ > 0. The elastic N\ SN\ SN S 7
energy terms come from the variation ¢f in the x-z z 4

plane. Because each layer is only one molecule thick
there is no variation ofp in the y direction within a

layer. Instead there is the interlayer interaction, which is
assumed to favor the herringbone structure [2,13] havin¢y/”  °\.)| | _'_:_:_:__:—_
an antiparallel orientation of adjacent dipoles, as describe —
by the term with coefficient/. Steric hindrance acts —
to introduce a small chiral deviation from a perfectly FIG. 1. Geometry of the model antiferroelectric liquid crystal.
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containing the electric fieldz, which is assumed to be  To the equations of motion obtained from the Hamil-
in the z direction, represent the effects of polarization andtonian (1) we add a dissipative term to account for the
of the dielectric anisotropyAe, respectively, whilesg is  viscosityy. The result is

the vacuum permittivity. |
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Here the antiferroelectric and chiral steric terms haveo be of greater range than nearest neighbor. Our picture
been combined into a single set of terms by definingapplies to cells of arbitrary thickness, and requires only
a = arctarip/U) and approximatingyU? + b2 by U.  nearest-neighbor forces.
The natural pitch of the helix formed by a sample Application of an electric field adds further complica-
with no boundaries and in zero field would then betions. For this case we first consider thick cells, which
27D/a = 2wDU/b. This set of coupled nonlinear will be in states of high commensurability, and look for
partial differential equations must now be examined in thestatic solutions at modest fields. We then drop the terms
hope of extracting some of the richness of the observeth W and inE? and are left with the equations
behavior of AFLCs. . .

We start by looking for stationary solutions of Eq. (2) PoEsing; + Ulsin(¢r+1 = ¢1 = )
in the case wher®& = 0 and where there is no variation —sin(¢p; — d;-1 — a)] =0, (4)
of the ¢, in thex andz directions. Integration over and

2 then give u_s the set c_)f equations z. The zero-field solution, ¢, = I(7m + «), is
2Usi2d; = sin(¢; — ¢i-1 — @) then modified by the electric field by an amount
— sin(¢i41 — ¢ — @), 3) Ad = (—1D!EPysin(al)/4U, and the energy is reduced
wherel' = wo/Ud. This set of coupled nonlinear differ- t0 an amount-U — E?Pg/16U per unit volume. The
ence equations has already been studied by Banerjea af@droelectrically aligned state, in which atp, vanish,
Taylor [14], who found that the lowest-energy solutionshas an energy per unit volume of — PoE, and is thus
were helices whose pitch formed an incomplete devil'spreferred at a critical field.; = 2.3U/P,. For states of
staircase when plotted as a function @ffor fixed I'.  commensurability 1, in which all the, are either0 or
By this we mean that the pitch of the helix is constant7, the critical electric field at which the ferroelectrically
over certain ranges af and changes either continuously
or discontinuously between these ranges. When the
smallest integer for whiclkp, ., is identical to¢;, modulo
a, we say that the commensurability of this commensu-
rate state ip. The phase diagram in-I" space is shown
in Fig. 2, and shows the commensurabilities in a number
of regions of this parameter space. Becalisearies in- Lol
versely as the cell thickness we see that the order of
commensurability is 1 for thin cells and small As the
cell thickness is increasedl, falls until one crosses from
the region whergp = 1 to those whergp > 1. The crit- T
ical cell thickness above which this higher commensura- o6k
bility can occur is about/.; ~ 2wy/b. If we regard the
Hamiltonian (1) as an effective free energy, then we can
allow » and hencex to be a function of temperature. A oar
change in temperature then represents a horizontal move- - z
ment across Fig. 2 from commensurability 1 to higher o2k -
commensurabilities. We stress that this devil's staircase
of commensurate helices is quite different from the com-
mensurate ferroelectric structures formed in Ising models o 0.1 0.2 03 0.4 05
with longer-range interactions [15]. In the Ising-model o/t

plcture, all the¢ are quantized at 0 or, Wh'le_ INOUr £, 2. In the devil's-staircase structure of an antiferroelectric
solution the¢ can take on any value. The Ising-model jiquid crystal, the lower orders of commensurability are shown
picture applies to very thin cells, and requires interactionss a function of anchoring strengthand helical twist.

when ¢ is again assumed independent af and
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aligned state is reduced in energy below the antiferroelec- An interesting situation arises when the dielectric
tric state is simplyE., = 2U/Py. The phase diagram in anisotropy is negative, as then there is a maximum value
E-d space is then of the form shown schematically by theghatG, and hencey, can attain. The upper shaded area in
bold lines in Fig. 3. Fig. 3 represents schematically the fidlgh necessary to

In a perfect cell, however, the transition to the state ofmake the AFLC unstable in the limit of strong anchoring.
lower energy may not occur until a higher field is reached~or cells below the critical width marked as,, there is
at which the ferroelectrically aligned stated is homogeno possible electric field that can destabilize the AFLC.
neously nucleated. To determine whether this is the cadeor weaker anchoring the curve is displaced to the left,
we now examine the stability of the commensurability-land the critical thickness is correspondingly reduced.
states when subjected to an electric field. For this analfhe value E;; of E.; at which the cell of critical
ysis we must restore the dependence of, and so we width becomes unstable B)/2gy|A€| sir?d, regardless
put ¢ = 0 in all odd layers andp; = 7 + (—1)"/2¢(z)  of the strength of the anchoring. If the electric field is
in all even layers, realizing, however, that this symmetricreduced while the sample is in the ferroelectrically aligned
solution will not always be realized [5]. The energy of anstate, there is a similar critical field for homogeneous

even layer can then be written to second ordegias nucleation into the AF state. This is shown for strong
k() 1 anchoring in the lower shaded area in Fig. 3, and is
T = Df dxdz 3(5) T|U - SPE given by the inequality (7), but witle = 2U — PoE +
80A6E2 Sinze().
- lgerEz sirt, + W(Z):|<~b2]. (5) The critical fieldE 3 for homogeneous nucleation may
2 be appreciably larger than the field., at which the

While the first term is always positive, the second set ofaligned state becomes energetically preferred. We then
terms may become negative at sufficiently large electri@xpect that nucleation will occur at isolated imperfections
field. Minimization of this expression in the bulk of within a cell or at the cell boundary. When a region of
the layer, wherew(z) vanishes, gives us a differential ferroelectrically aligned material is formed, it will tend

equation whose solution i$ = ¢,codgz), whereq =  to spread by a process of domain-wall propagation along
\JG/k and the layer in thex direction. In order to examine this
= —2U + PoE + soAeE?sirt6,. (6) process we restore the time dependence to the problem,

and look at the dynamical process in which fingers
of ferroelectrically aligned material propagate along the
smectic layers into an AFLC sample. As before, we start

tar(ﬂ) > M' @) with the commensurability-1 state wheg, = 0 for [

2 kq odd, but now include the dependence of thefor even

In the limit of strong anchoringu{, — =) this reduces [ on x andt, while assuming that the dependence can
to the conditiongd > 7, and can always be achieved be neglected whel < E.;. Equation (2) then takes the
in a sufficiently thick sample or strong electric field if form
Ae > 0. 82(;’)1 % - kaz—d)

1 . .
+ = Asing + Bsim2 8
o2 Y Py ] ¢, (8)

with )
. A=2U - po; B = WAEISITO 2w g
Ee3 - 2 d

| homogeneous pucleation | We seek traveling-wave solutions of this equation to
. describe the advance of ferroelectrically ordered fingers
i into the antiferroelectric layers when a sufficiently strong

[Ferraeleciric alignment] electric field is applied. Exact solutions to Eq. (8) may be
_--'-—_
N /umh found [16]. They are of the form

Eca T

' e et \ 2= ¢ (x,1) = 2arctar"™ ", (10)
7/— wherer = \/—2B/k + A%I/kvy?. For these to be valid,

4y . must be real, which is always the case when the dielectric
. . . o anisotropyAe is negative. Whem > 0 they represent
FIG.3. This schematic phase diagram shows the ranges ¢f rotation of¢ from 7 to 0 as the finger advances; for

electric field and cell thickness where the different phases arBegatived the velocityv is negative, and the ferroelectric
stable, and also the region of homgeneous nucleation wher, f

propagating solitary waves of polarization may be unstableﬁnger recedes. These solutions have been shown [16]

For clarity of illustration it is not drawn to scale; in actuality 10 be stable wheneveld| < —2B. The width of this
d.y > dop andEl; > E,. window of stability of the solitary wave is closely related

A nonzero ¢ will occur only when the total energy is
negative. The condition for this is

1
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to the range ofE for which homogeneous nucleation is unity at a critical cell thickness related to the planar
possible. In fact, the conditiod < —2B for a stable anchoring strength of the cell surface. Application of
solitary wave is simply an approximation to the conversean electric field to the commensurability-1 AF state can
of inequality (7). Were a more accurate treatment of thdead to homogenous nucleation of ferroelectrically aligned
solitary-wave problem possible in which thelependence material only for cells of thickness greater than another
of ¢ was included, it would presumably show that thecritical value. The regime where homogeneous nucleation
waves were stable outside the regime of homogeneous forbidden corresponds to that in which the material
nucleation. may make transitions between the AF and ferroelectrically
The velocity of the solitary waves is aligned states by propagation of stable solitary waves.
Py These waves represent fingers of ferroelectrically aligned

v=I(E- E02)7 liquid crystal advancing into or receding from the AF

X material.
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