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Kinetic Ballooning Mode with Negative Shear
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Kinetic analysis on the ballooning mode in tokamaks has indicated the existence of a residual

ballooning mode in the negative shear region<

0). The instability has a small threshold ia

(the ballooning parameter), requires a finite ion temperature graflightand is characterized by a

broad eigenfunctiorb (6) extending to# = 50 in the

ballooning space.

PACS numbers: 52.35.Py, 52.35.Fp, 52.35.Kt, 52.55.Fa

The ideal magnetohydrodynamic (MHD) ballooning

Cheng [7].) The instability is due to the ion magnetic

mode in tokamaks is known to be stable in dischargelrift resonance,

regions where the magnetic sheds negative [1,2]. This
may qualitatively be seen from the simplified dispersion
relation for the ballooning mode,

w’k] = Vikjkl k) — wwp0pi/p} . (1)

where V, is the Alfvén speedw., = w..(1 + n.) +
w+ (1 + m;) is the total diamagnetic frequencwp; is

w + d)Di(V) = 0,

(6)

where

. Mc
wpi(v) = E(% v? + vj) (VB X B) - k

is the velocity dependent ion magnetic drift frequency.

the ion magnetic drift frequency due to the magneticldeal MHD evidently overlooks such resonance in

curvature, ang; is the ion Larmor radius. For a simple
trial eigenfunction in the ballooning spa¢e ¢ = 1 +
cosé, the norms of the differential operators are [3,4]
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wheres = dIng/dInr is the shear parameter amdis
the ballooning parameter defined by

R
LB+ m) + B+ ). (@)
with %;, = dInT;./dInn the temperature gradient.
Then the stable-unstable boundary on whish= 0 is
described by

2
(wpide = 2€, w4 (5 +

a=q2

the velocity space and thus is unable to describe the
kinetic instability. Two-fluid approximation [8] qual-
itatively recovers the instability. However, the un-
derlying assumption of long cross-field wavelength
(ki pi)*> = (kgpi)’[1 + (s8 — asingd)’] < 1 tends to

be violated because of broad eigenfunctions in the bal-
looning spaced. Using the gyrofluid approximation for
the ion response [9], Nordmaet al. [10] have identified

a kinetic instability in the negative shear region, which
is similar to that in the MHD second stability regime.
The purpose of the present Letter is to determine the
stable-unstable boundary in the «) plane and asses the
critical temperature gradient in terms of a more accurate
fully kinetic approach.

We consider collisionless electromagnetic modes in the
intermediate frequency regime such tha; < |w| <
wr., Wherewri) = kjjvric) iS the ion (electron) transit
frequency. In this regime, ion dynamics becomes electro-
static and ion density perturbation can be found from the

|+ ? ; 1.5 2 %sa n %az gyrokinetic equation as follows:
e ® + &2 kv
~4aG+ 35— Sa)=0. (5 n = —Tfno + f — an(v))J§< ;ﬁ)

A negative sheas < 0 is clearly stabilizing. It effec- b ed
tively enhances the Alfvén frequency through the increaséMidVT ng = (—1+ Ii)T no, (7)
in k and reduces the interchange driep;)s. In more ! !
quantitative analysis, stabilization occurs at small positivé/here
s below which the ballooning mode is stable [5]. Muv> 3

Recently, it has been shown that the MHD second @i (v?) = w*i|:1 + 7]:‘( T Eﬂ
stability regime at large enouglx (plasma pressure !
gradient) is subject to kinetic ballooning modes driven by Our = cTi (Vinng X B) - k ®)
a finite ion temperature gradient [6]. (The coexistence Y eR?

of a MHD ballooning mode andy; driven kinetic mode

is the energy dependent ion diamagnetic frequerigys

in the MHD unstable regime had been noted earlier bythe Bessel functiong is the scalar potential, angl;; (v?)
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is the Maxwellian ion distribution. The ion magnetic drift resonance is contained in the infegrBhe electron density
and parallel current perturbation in the assumed low frequency re¢imhe< wr., are [6]

W — Wxe e
e = - A 4 9
n (¢ ok ||> T, 0 )
2
nope (w B w*e) ((1) - wDe) + NeWxe WpDe >
Jile = ve — + Ay, 10
le = T <(w w) ok I (10)
whereA| is the vector potential and
cT, 2cT,
Wip = E (Vinny X B) - K, Wpe = 2B} (VB X B) - k (12)

are the electron diamagnetic and magnetic drift frequencies. Eliminating the vector potential between the charge neutrality
conditionn; = n, and parallel Ampere’s law

4
VZA” = ——WJ”E, (12)
C
we obtain the following mode equation:
kpe Vo[ (@ — wse)?
ki + (2] [ {40 — 0 = 0. (0 = w00 = mewwon. |8 =0, 13)
c 1+7 -7l

wherekb, = 4mnye?/T, andr = T,/T; is the electron/ion temperature ratio. For simplicity we assume 1 and
n: = 7m.. Inthe tokamak magnetic geometry with shifted circular magnetic surfaces, the differential form of Eq. (13) is
4 Q — 12

2 (@ - nia - 701+ 270) - 7)o =0, @9

a

<[1 + (56 — asinﬁ)z]%> + de,(1 + n)

where Q = w/w+., f(0) =2€,[coP + (s6 — a Sing) X
sind], and = 5; = .. In numerical evaluation of # = 50 where the ion finite Larmor radius parameter,
the two-dimensional integrd}(6), the Gaussian-Hermite (kyp)*[1 + (s6 — a sing)?], becomes of order unity
quadrature method [11] is used. An isothermal dischargehich necessitates the use of kinetic formulation. The
with T, = T; is assumed throughout this Letter. eigenfunction is similar to that of the kinetic ballooning

Figure 1(a) shows both the mode frequency and growtimode in the second stability regime. In both cases, eigen-
rate normalized byw,s = V4/qR as functions ofa  functions are broad and have peaks off the cefter 0).
when s = —0.2, by = (kgp)*> = 001, n; =n, =1, The norms of the differential operators corresponding to
€, = L,/R = 0.1. The mode frequencw, is of order the eigenfunction shown in Fig. 3 are
Va/2gR (Alfvén frequency). It may be more appropriate
to call the instability a destabilized Alfvén mode to distin- (k2 ),
guish it from the MHD ballooning mode. The critical
for the instability is smallp = 0.1. Stabilization at large K2y, — — 1 j’ d’¢ 1 ] d¢
a is likely due to deactivation of the interchange drive kido = (gR)? ¢ d6>  (gR)? ’ do
similar to the second stabilization of the conventional 034
MHD ballooning mode. Dependence of the growth = —2
rate on the shear parameteris shown in Fig. 1(b) for (qR)
the casea = 1. There exists an unstable window in _ . . 2
s, —04 < s =< —0.1 for instability. Stabilization in (wp)y/2€ene = f[cose + (56 — asing)sind]|$"d6
the regions < —0.4 is again due to deactivation of the ~ 021
interchange drive. o

Unstable domain in thds, ) plane is depicted in where ¢ is normalized such thaff |¢|°d6 = 1. As
Fig. 2(a) and dependence of the growth rate on the tenmexpected, the norm df? is large because of the extended
perature gradienty; = n, in Fig. 2(b). As seen in eigenfunction. The norm da‘ﬁ is primarily determined by
Fig. 2(b), the instability requires a finite (ion) temperaturelocal derivative of¢ and remains of order/(gR)>.
gradient, similar to the case of the kinetic balloon- Since the growth rate is small compared with that
ing mode in the MHD second stability regime. The of the ideal MHD ballooning mode, it is important to
threshold inn is modest,n; = 0.5 for instability. A  check whether the instability may be suppressed or not
typical eigenfunction is shown in Fig. 3. It extends to by stabilizing effects. One such effect is the stabilizing

kﬁ]u + (s6 — asing)?]|p|*do = 6.3k],

2
do
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FIG. 2. (@) Stability boundary in thé, «) plane whene, =
0.1, by = 0.01, ; = 1. (b) Dependence dfw, + iy)/w.. ON
ni Whenv =-02,m,=1,by =001, a = 1.2.

FIG. 1. Dependence of the normalized frequengy, +
iv)/w. on (@) a(s = —0.2) and (b)s (¢ = 1.2) whenby =
0.01, €, = 0.1, ; = 1.

role of the trapped electrons. The trapped electrons modify the mode equation as

d _asing21d® ) el - 06\/_) _ 3 (1 =-06/6)(Q - D),
5 ([1 + (0 = asing) ]d9> i+ ((n IO = fO1+0/0) — 5o >¢—o,
(15)
where /¢ is the fraction of trapped electrons anhg(0) is given by
_ @ — d)*e(vz)
IeT(H) - < © — d)De(V) >evi>U2| . (16)

The inverse aspect ratio = r/R has been varied up to 0.3 in solving Eq. (15). The eigenvalus insensitive toe,

and it may be concluded that the instability persists in realistic tokamak discharges. Other stabilizing agents, such as the

ion transit frequency;vy; and magnetosonic perturbatidn, , are unlikely to have significant effects on the instability.
Finally, it should be pointed out that the two-fluid approximation based on the ion density perturbation [8],

5 2
(0 + Fop) 0w — wpe — (@ + wsip) (kips)*] + (5 — ni)wswpi ed

ng = 3 0 2
(0 + 30pi)* — 5 @b Te

no’

is able to predict, at least qualitatively, the instability in the negative shear region even though the underlying assumption
of long wavelengthsk | p;)> < 1 becomes dubious for extended eigenfunctions. This may suggest that the instability

is of a reactive type rather than purely kinetic, and exact resonance as given in Eq. (2) and the corresponding Landau
residue do not play essential roles.
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FIG.3. (@)w/w4 VSbywhens = —0.2, a« = 1.2, €, = 0.2,
€; = 2. (b) Eigenfunction when = —0.2, « = 1, by = 0.01,
n =1, w/w., = —5.03 + i0.73.

with (kgp)?> = 0.01. The lower threshold inv is small
and there is an unstable windowin—0.5 < s < —0.1.
The maximum growth rate is of ordériV,/gR.
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