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Kinetic Ballooning Mode with Negative Shear

A. Hirose and M. Elia
Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, Canada SK S
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Kinetic analysis on the ballooning mode in tokamaks has indicated the existence of a resid
ballooning mode in the negative shear regionss , 0d. The instability has a small threshold ina
(the ballooning parameter), requires a finite ion temperature gradientshid, and is characterized by a
broad eigenfunctionfsud extending tou . 50 in the ballooning space.

PACS numbers: 52.35.Py, 52.35.Fp, 52.35.Kt, 52.55.Fa
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The ideal magnetohydrodynamic (MHD) balloonin
mode in tokamaks is known to be stable in dischar
regions where the magnetic shears is negative [1,2]. This
may qualitatively be seen from the simplified dispersio
relation for the ballooning mode,
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where VA is the Alfvén speed,vpp ­ vpes1 1 hed 1

vpis1 1 hid is the total diamagnetic frequency,vDi is
the ion magnetic drift frequency due to the magne
curvature, andri is the ion Larmor radius. For a simple
trial eigenfunction in the ballooning spaceu, f . 1 1

cosu, the norms of the differential operators are [3,4]

kkkk2
'kklu .

k2
u

s2qRd2

µ
1 1

p2 2 1.5
3

s2

2
8
3 sa 1

3
4 a2

∂
, (2)

kvDilu ­ 2envpis
2
3 1

5
9 s 2

5
12 ad , (3)

wheres ­ d ln qyd ln r is the shear parameter anda is
the ballooning parameter defined by

a ­ q2 R
Ln
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with hi,e ­ d ln Ti,eyd ln n the temperature gradient
Then the stable-unstable boundary on whichv ­ 0 is
described by
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A negative shears , 0 is clearly stabilizing. It effec-
tively enhances the Alfvén frequency through the increa
in kk and reduces the interchange drivekvDilu . In more
quantitative analysis, stabilization occurs at small positi
s below which the ballooning mode is stable [5].

Recently, it has been shown that the MHD seco
stability regime at large enougha (plasma pressure
gradient) is subject to kinetic ballooning modes driven b
a finite ion temperature gradienthi [6]. (The coexistence
of a MHD ballooning mode andhi driven kinetic mode
in the MHD unstable regime had been noted earlier
0031-9007y96y76(4)y628(4)$06.00
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Cheng [7].) The instability is due to the ion magnet
drift resonance,

v 1 v̂Disvd ­ 0 , (6)

where

v̂Disvd ­
Mc
eB3

s 1
2 y2

' 1 y
2
kd s===B 3 Bd ? k

is the velocity dependent ion magnetic drift frequenc
Ideal MHD evidently overlooks such resonance
the velocity space and thus is unable to describe
kinetic instability. Two-fluid approximation [8] qual-
itatively recovers the instability. However, the un
derlying assumption of long cross-field waveleng
sk'rid2 ­ skurid2f1 1 ssu 2 a sinud2g ø 1 tends to
be violated because of broad eigenfunctions in the b
looning spaceu. Using the gyrofluid approximation for
the ion response [9], Nordmanet al. [10] have identified
a kinetic instability in the negative shear region, whic
is similar to that in the MHD second stability regime
The purpose of the present Letter is to determine
stable-unstable boundary in thess, ad plane and asses the
critical temperature gradient in terms of a more accur
fully kinetic approach.

We consider collisionless electromagnetic modes in
intermediate frequency regime such thatvTi , jvj ,

vTe, wherevTised ­ kkyTised is the ion (electron) transit
frequency. In this regime, ion dynamics becomes elect
static and ion density perturbation can be found from t
gyrokinetic equation as follows:
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where
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is the energy dependent ion diamagnetic frequency,J0 is
the Bessel function,f is the scalar potential, andfMisy2d
© 1996 The American Physical Society
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eutrality

13) is
is the Maxwellian ion distribution. The ion magnetic drift resonance is contained in the integralIi . The electron density
and parallel current perturbation in the assumed low frequency regime,jvj , vTe, are [6]
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whereAk is the vector potential and

vpe ­
cTe

eB2
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are the electron diamagnetic and magnetic drift frequencies. Eliminating the vector potential between the charge n
conditionni ­ ne and parallel Ampere’s law

,2Ak ­ 2
4p

c
Jke , (12)

we obtain the following mode equation:
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wherek2
De ­ 4pn0e2yTe and t ­ TeyTi is the electron/ion temperature ratio. For simplicity we assumet ­ 1 and

hi ­ he. In the tokamak magnetic geometry with shifted circular magnetic surfaces, the differential form of Eq. (
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where V ­ vyvpe, fsud ­ 2enfcosu 1 ssu 2 a sinud 3

sinug, and h ­ hi ­ he. In numerical evaluation of
the two-dimensional integralIisud, the Gaussian-Hermite
quadrature method [11] is used. An isothermal dischar
with Te ­ Ti is assumed throughout this Letter.

Figure 1(a) shows both the mode frequency and grow
rate normalized byvA ­ VAyqR as functions of a

when s ­ 20.2, b0 ­ skurd2 ­ 0.01, hi ­ he ­ 1,
en ­ LnyR ­ 0.1. The mode frequencyvr is of order
VAy2qR (Alfvén frequency). It may be more appropriat
to call the instability a destabilized Alfvén mode to distin
guish it from the MHD ballooning mode. The criticala

for the instability is small,a * 0.1. Stabilization at large
a is likely due to deactivation of the interchange driv
similar to the second stabilization of the convention
MHD ballooning mode. Dependence of the growt
rate on the shear parameters is shown in Fig. 1(b) for
the casea ­ 1. There exists an unstable window in
s, 20.4 & s & 20.1 for instability. Stabilization in
the regions & 20.4 is again due to deactivation of the
interchange drive.

Unstable domain in thess, ad plane is depicted in
Fig. 2(a) and dependence of the growth rate on the te
perature gradienthi ­ he in Fig. 2(b). As seen in
Fig. 2(b), the instability requires a finite (ion) temperatu
gradient, similar to the case of the kinetic balloon
ing mode in the MHD second stability regime. Th
threshold inh is modest,hi * 0.5 for instability. A
typical eigenfunction is shown in Fig. 3. It extends t
e

th

l

-

e
-

u . 50 where the ion finite Larmor radius paramete
skurd2f1 1 ssu 2 a sinud2g, becomes of order unity
which necessitates the use of kinetic formulation. T
eigenfunction is similar to that of the kinetic balloonin
mode in the second stability regime. In both cases, eig
functions are broad and have peaks off the centersu ­ 0d.
The norms of the differential operators corresponding
the eigenfunction shown in Fig. 3 are
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where f is normalized such that
R

jfj2 du ­ 1. As
expected, the norm ofk2

' is large because of the extende
eigenfunction. The norm ofk2

k is primarily determined by
local derivative off and remains of order1ysqRd2.

Since the growth rate is small compared with th
of the ideal MHD ballooning mode, it is important t
check whether the instability may be suppressed or
by stabilizing effects. One such effect is the stabilizi
629
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FIG. 1. Dependence of the normalized frequencysvr 1
igdyvpe on (a) ass ­ 20.2d and (b)s sa ­ 1.2d when b0 ­
0.01, en ­ 0.1, hi ­ 1.
630
FIG. 2. (a) Stability boundary in thess, ad plane whenen ­
0.1, b0 ­ 0.01, hi ­ 1. (b) Dependence ofsvr 1 igdyvpe on
hi whens ­ 20.2, hi ­ 1, b0 ­ 0.01, a ­ 1.2.
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role of the trapped electrons. The trapped electrons modify the mode equation as
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where
p

e is the fraction of trapped electrons andIeT sud is given by

IeT sud ­

*
v 2 v̂pesy2d
v 2 v̂Desvd

+
ey

2
'.y

2
k

. (16)

The inverse aspect ratioe ­ ryR has been varied up to 0.3 in solving Eq. (15). The eigenvaluev is insensitive toe,
and it may be concluded that the instability persists in realistic tokamak discharges. Other stabilizing agents, suc
ion transit frequencykkyTi and magnetosonic perturbationA', are unlikely to have significant effects on the instability

Finally, it should be pointed out that the two-fluid approximation based on the ion density perturbation [8],
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is able to predict, at least qualitatively, the instability in the negative shear region even though the underlying assu
of long wavelengthssk'rid2 ø 1 becomes dubious for extended eigenfunctions. This may suggest that the insta
is of a reactive type rather than purely kinetic, and exact resonance as given in Eq. (2) and the corresponding
residue do not play essential roles.
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FIG. 3. (a)vyvA vs b0 whens ­ 20.2, a ­ 1.2, en ­ 0.2,
ei ­ 2. (b) Eigenfunction whens ­ 20.2, a ­ 1, b0 ­ 0.01,
hi ­ 1, vyvpe ­ 25.03 1 i0.73.

In summary, a tokamak discharge with negative shea
subject to a kinetic Alfvén instability driven by a finite io
temperature gradient. The stability boundary in thess, ad
plane has been determined for a long wavelength m
is

e

with skurd2 ­ 0.01. The lower threshold ina is small
and there is an unstable window ins, 20.5 & s & 20.1.
The maximum growth rate is of order0.1VAyqR.

Helpful communication with H. Nordman is acknowl
edged with gratitude. This research has been sponso
by the Natural Sciences and Engineering Research Co
cil of Canada.

[1] A. Sykes and M. F. Turner, inProceedings of the
9th European Conference on Controlled Fusion an
Plasma Physics, Oxford, 1979(European Physi-
cal Society, Petit-Lancy, Switzerland, 1979), Vol. 1
p. 161.

[2] M. S. Chance and J. M. Greene, Nucl. Fusion21, 453
(1981).

[3] B. Coppi, A. Ferreira, J. W.-K. Mark, and J. J. Ramo
Nucl. Fusion19, 715 (1979).

[4] A. Hirose, Phys. Fluids B3, 1599 (1991).
[5] For a review of extensive work on the MHD bal-

looning mode, see, for example, O. P. Pogutse a
E. I. Yurchenko, in Reviews of Plasma Physics
(Consultants Bureau, New York, 1986), Vol. 11
p. 65.

[6] A. Hirose, L. Zhang, and M. Elia, Phys. Rev. Lett.72,
3993 (1994); Phys. Plasmas2, 859 (1995).

[7] C. Z. Cheng, Phys. Fluids25, 1020 (1980).
[8] H. Nordman, B. Jhowry, and J. Weiland, Phys. Fluids

5, 3465 (1993).
[9] G. W. Hammet and F. W. Perkins, Phys. Rev. Lett.64,

3019 (1990).
[10] H. Nordman, A. Jarmen, P. Malinov, and M. Persso

Phys. Plasmas2, 3440 (1995).
[11] A. H. Stroud and D. Secrest,Gaussian Quadra-

ture Formulas (Prentice-Hall, Englewood Cliffs, NJ,
1966).
631


