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We demonstrate a novel mechanism for topological defect formation in a first order phase tran
for theories with small explicit symmetry breaking terms. We perform simulations of two bub
collisions in2 1 1 dimensions. In the coalesced region of bubble walls, field oscillations result in
production of a large number of vortices and antivortices. We discuss the implications of our re
for axionic strings in the early Universe, for baryon formation in quark-gluon plasma, and for string
liquid crystals in external electric or magnetic field.

PACS numbers: 11.27.+d, 12.38.Mh, 61.30.Jf, 98.80.Cq
ic
a
t
i
ts

n
n
in
d
r
o
i
m

p

n

h
r
u
ld
3
n
.
u

th

o
io

o
in
e
a

s.
d

n.
vi-
;

l-

e
so

1)
he
y.
a

of

e
-

um
m

on
e

ed
g
al
Production and subsequent evolution of topologic
defects have been of considerable interest for part
physicists in the context of the early Universe [1]. Simil
techniques have also been used to study baryon forma
during hadronization of quark-gluon plasma (QGP)
heavy ion collisions [2,3]. Study of topological defec
has, of course, been possible in a most detailed w
only in condensed matter systems where they can
experimentally studied [4].

The aforementioned defects correspond to a spontane
breakdown of a symmetry. However, there are ma
situations when the symmetry is also explicitly broke
In particle physics, the Peccei-Quinn scheme for solv
the strongCP problem of quantum chromodynamics lea
to the presence of an explicit symmetry breaking te
and, consequently, to axionic strings [5]. The Skyrmi
picture of baryons in the context of chiral models
another example where explicit symmetry breaking ter
are needed to incorporate a nonzero pion mass [3].
condensed matter, liquid crystals provide a simple exam
of such systems where the presence of external elec
or magnetic fields induces explicit symmetry breaki
terms [6].

The study of formation of topological defects in suc
systems is therefore important as it has implications fo
diverse set of phenomena. It has recently been arg
that explicit symmetry breaking can lead to a fourfo
enhancement in the production of baryons in QGP [
These arguments were largely qualitative and did
depend sensitively on the order of the phase transition
was argued in Ref. [3] that a similar enhancement sho
occur for other topological defects as well.

In this Letter we demonstrate a new mechanism for
production of topological defects for systems with explic
symmetry breaking and with a first order phase transiti
where phase transition proceeds via bubble nucleat
This mechanism leads to a much stronger enhancem
in defect production, and results from a combination
the effects discussed in Ref. [3] as well as effects com
from the large field oscillations in the region of coalesc
bubble walls. The net result is that wall oscillations dec
0031-9007y96y76(4)y583(4)$06.00
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by producing a large number of vortices and antivortice
For example, in one simulation we found five vortices an
five antivortices produced in a single two-bubble collisio

We adopt the same numerical technique used in pre
ous simulations of vortex formation via bubble collision
see Ref. [7]. We will study vortex formation in2 1 1
dimensions in a field theory system described by the fo
lowing Lagrangian:

L ­
1
2

≠mFy≠mF 2
1
4

f2sf 2 1d2 1 ef3

1 kf2 cosu . (1)

This Lagrangian (without the last term) is related to th
one discussed in Ref. [7] by a rescaling of variables
that it is now written in terms of dimensionless field
F and length variable. f and u are the magnitude
and the phase of the complex scalar fieldF sF ­
feiud. Equation (1) describes a theory where the U(
global symmetry is spontaneously broken, except for t
presence of the last term which breaks this U(1) explicitl
Whenk is zero, this theory allows for the existence of
cylindrically symmetric vortex which is a solution of the
time independent field equations. For a nonzerok, the
vortex loses azimuthal symmetry and is not a solution
the time independent equations of motion anymore.

For k ­ 0, the process of vortex creation via bubbl
nucleation has been described in Ref. [7]. At zero tem
perature, bubbles of true vacuum nucleate via quant
tunneling in the background of the metastable vacuu
with f ­ 0. These are described by the bounce soluti
which is an O(3)-symmetric, least action, solution of th
Euclidean field equation [8]

d2f

dr2
1

2
r

df

dr
2 V 0sfd ­ 0 , (2)

where V sfd is the effective potential in Eq. (1) (with
k ­ 0), and r is the radial coordinate in the Euclidean
space. In the Minkowski space the profile of the nucleat
bubble is obtained from the solution of Eq. (2) by puttin
t ­ 0. This bubble then evolves according to the classic
© 1996 The American Physical Society 583
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field equations obtained from the Lagrangian in Eq. (1)
Minkowski space,

hFi ­ 2
≠V sFd

≠Fi
, i ­ 1, 2 , (3)

whereF ­ F1 1 iF2, h is the d’Alembertian, and time
derivatives of fields are set equal to zero att ­ 0. In a
phase transition,u varies randomly from one bubble t
another. These bubbles expand, and vortices form at
junction of three or more bubbles if the phaseu traces a
nontrivial winding in that region. This is the convention
Kibble mechanism of defect formation [9] which leads
the probability of vortex formation for 2 space dimensio
equal to1y4 per bubble [4].

We wish to study the case whenk is nonzero. First, we
briefly recall the physical picture described in Ref. [3
Consider a two-bubble collision with the phaseu in the
two bubbles taking valuesp 1 a and p 2 a, where
a is small. (We mention that here, as well as for t
results discussed later in this paper, it is not necess
that u in the two bubbles be equally spaced fromp . We
take this just for simplicity.) As the bubbles collide,u in
the coalesced portion will assume a valuep due to the
geodesic rule (essentially to minimize energy) and w
keep evolving towards zero inside the bubbles (and in
walls, which, at later times, forcesu in the coalescing
regions to change to zero). It is then easy to see that
leads to a winding one being created on one end of
coalesced wall and winding minus one on the other e
[3]. It was argued in Ref. [3] that this leads to rough
fourfold enhancement in the number density of vort
production per bubble.

However, it turns out that the actual dynamics of vort
creation has a much richer structure, especially for a fi
order phase transition. Asu in both the bubbles evolves
towards zero, the coalesced portion of the walls underg
large oscillations. Such oscillations have been descri
in Ref. [7], where it was shown (for the case of subcritic
bubbles) that, asf undergoes large oscillations, it pass
throughf ­ 0, forcing u to change tou 1 p.

This flip in the orientation ofF has very important
effects on the process of vortex formation. The evoluti
of u towards zero inside the bubbles tends to cre
a winding one near one end and an antiwinding o
near the other end inside the coalesced region. The
in the orientation ofF in the central region complete
these windings and results in the nucleation of a vort
antivortex pair in the coalesced wall.

This explains the formation of the first vortex
antivortex pair. Subsequent pairs are created due to
oscillation of u aboutu ­ 0. As u in the two bubbles
evolves towards zero, it overshoots the true vacuum (
u = 0). It is easy to convince oneself that this evolutio
of u in the two bubbles, combined with the flipping of th
orientation ofF due to wall oscillations, will result in the
creation of another vortex-antivortex pair. This proce
584
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continues as long asu and f oscillate aboutu ­ 0 and
f ­ 0, respectively.

It is important to mention that the first vortex-antivorte
pair always forms, given appropriate initialu values for
the two bubbles. However, subsequent vortices will n
be nucleated iff oscillations did not continue to have
large enough amplitudes (as may happen due to damp
in the presence of a thermal bath). Even with largef

oscillations, vortices are not nucleated unless there
appropriateu oscillations. We see this in our simulation
where many oscillations of the wall, and that ofu, may
pass by before a given pair gets nucleated. Also,
sequence of vortices and antivortices created on one
of the coalesced region is quite arbitrary, depending on
details off andu oscillations; although, the net winding
number is always zero. This implies that the annihilatio
of vortex-antivortex pairs may be very ineffective.

We now proceed to describe our numerical resul
We find the bubble profile by solving Eq. (2) fork ­ 0
in V sfd. This bubble profile will be an approximate
solution of the field equations obtained from Eq. (1) fo
small nonzero values ofk and provides an adequat
starting point as bubbles collide only after undergoin
large expansions. (In fact, our choice of the specific for
of the explicit symmetry breaking term was motivate
by this consideration, as well as by simplicity. Wit
this term, f ­ 0 is also a local minimum of the full
effective potential so the asymptotic form of the bubb
profile calculated withk ­ 0 is suitable for nonzerok
as well.) It is important to mention that our result
do not sensitively depend on the specific form of th
explicit symmetry breaking term, as long as there is
unique true vacuum. [It is interesting to investigate th
case of degenerate vacua, e.g., with cossnud, n . 1 in the
last term of Eq. (1); we hope to discuss it in a futur
work.] We have verified that similar enhancement
vortex production results for other types of symmet
breaking terms as well (e.g.,kf cosu).

We use a natural system of units with̄h ­ c ­ 1 and
choose the value ofe ­ 0.05. We have studied a range o
values ofk. Large values ofk s.0.03d do not give any
vortex formation asu in bubbles rolls down and settles
to zero before bubbles can effectively coalesce. For
other values ofk, vortices form (with smallerk leading
to vortex formation at a later stage). The figures show
in this paper correspond to the choice ofk ­ 0.015.

Following the techniques developed in Ref. [7], w
study the case of a two-bubble collision by prescribing t
nucleation centers for the two bubbles. This amounts
replacing a portion of the false vacuum region (withF ­
0) by the profiles of two bubbles. The field configuratio
is then evolved by using a discretized version of Eq. (3
Simulation is implemented by using a stabilized leapfro
algorithm of second order accuracy in both space a
time. We use a1000 3 1600 lattice, with the lattice
spacing in spatial directions,Dx, equal to 0.1 and lattice
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spacing in the temporal direction,Dt, equal toDxy
p

2.
With these values, the evolution was completely stab
and energy was conserved within a few percent duri
the simulation. For details of the numerical techniqu
see Ref. [7]. Simulations were carried out on a HP-7
workstation at the Institute of Physics, Bhubaneswar.

Bubble centers were chosen to lie at they boundaries
of the lattice (and at the midpoint of thex axis) so
that the initial bubble profiles are that of half bubble
We use free boundary conditions. Figure 1(a) shows
plot of F and the contour plot off for the initial field
configuration of one of the bubbles. Values ofu for the
two bubbles are taken as 1.12p and 0.88p (for the lower
and upper bubbles, respectively) and are uniform ins
each bubble. This leads to the development of a region
u ­ p in the region where bubbles coalesce. Figure 1(
shows the plot ofF at an intermediate stage. The bubble
have significantly coalesced, andu inside the bubbles has
started rotating towards zero. The rotation ofu is smaller
near the bubble walls due to the dependence of the exp
symmetry breaking term in Eq. (1) onf2. Due to this,
even for largeu difference between the two bubbles,
region of u ­ p develops in the coalesced region an
vortices are produced. (However, then subsequent w
oscillations are not very prominent [7] so the numb
of vortices produced is small.) The only requireme
for initial values of u in the two bubbles for vortex
production is that the geodesic connecting these twou

values onS1 should pass through the valuep. (Actually
we get one pair even when this geodesic passes thro
u ­ 0; however, then the vortex and the antivortex do n
separate out.)

Figures 1(c) and 1(d) show the configurations after t
first pair has been nucleated. The plot ofF clearly shows
thatu has overshot the true vacuum (u ­ 0). Afterwards,
u starts climbing towardsp first and then again rolls back
towards zero. As described earlier, this will cause t
creation of subsequent pairs for appropriatef oscillations.
Figures 1(e) and 1(f) show the plots at a stage when th
is a total of ten vortices and antivortices. Out of thes

FIG. 1. (a) Plot ofF and contour plot off for the initial
configuration of one of the bubbles with center at the bounda
For all F plots, the orientation of the arrows from positiv
x axis gives the phaseu of F while the length of arrows is
proportional tof. (b) Plot of F for the coalesced region at
t ­ 53.0 showing thatu has significantly rotated towards zero
in bubble interiors. (c) Contour plot off at t ­ 60.1 showing
a vortex-antivortex pair. (d) Winding numbers of the vorte
and the antivortex are clear from theF plot. (e) Contour plot
of f at t ­ 81.3 showing ten vortices and antivortices. Ther
are two groups of three overlapping vortices each, one n
x ­ 33 and the other nearx ­ 127. These groups have ne
windings of11 and21, respectively. (f)F plot for a portion
of lattice showing winding numbers of at least two vortice
and one antivortex which are well separated. The winding11
region nearx ­ 33 actually consists of close by configuration
of two vortices and one antivortex.
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there are two groups, containing three vortices each
confirmed by detailed plots ofF of these regions) which
are not well separated. Overall there are at least
vortices and antivortices which are well separated. No
that, due to the presence of explicit symmetry breaki
terms, the profiles of these vortices are highly deform
as shown by the contour plots.

In conclusion, we have demonstrated a new mechan
for the formation of topological defects in the presen
of explicit symmetry breaking which may dominate ove
other mechanisms of defect production. A somewh
modified version of this mechanism (due to the absen
of a coalesced portion of bubble walls) may also b
applicable for the case of second order phase transitio
(In this context we mention that in Ref. [7] it was foun
that the number of vortices produced was roughly twi
the estimate based on the Kibble mechanism; thou
many pairs annihilated quickly. In view of our result
in this paper, it seems interesting to investigate wheth
the excess production of vortices in Ref. [7] can be due
a nontrivial dynamics ofu coupled withf oscillations,
even though explicit symmetry breaking was abse
there.) The most interesting aspect of this mechani
is that it is literally a pair creation process, though st
governed by classical equations of motion. In this sen
it resembles the pair creation of vortices in the flo
of superfluid 4He through a small orifice, as discusse
in Ref. [10], although actual mechanisms are complete
different. In a subsequent paper we will present the stu
of full phase transition by nucleating a large number
bubbles [11].

Implications of these results are many. Using the ide
described above, it is possible to argue that, in two-bub
collisions in 3 1 1 dimensions, field oscillations should
lead to string loops being emitted out from the coalesc
region. For axionic strings in the early Universe, earli
studies have assumed that the formation mechanism is
same as for other cosmic strings, namely, via the Kibb
mechanism [5]. The above discussion shows that
dominant mechanism may be via the mechanism discus
in this paper, at least for a first order phase transitio
Therefore, the final distribution of axionic strings, an
hence the frequency distribution of emitted axions, c
be drastically different from what is conventionally taken
Also, as one now expects small string loops to be produc
axionic domain walls may not survive for long. This ma
make a larger class of axionic models viable.

For the case of liquid crystals in the presence of elect
field, our results suggest that, instead of long string
small string loops should form in the coalesced regi
of two bubbles. However, in this case, the dynamics
586
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string formation via this mechanism may be complete
dominated by the presence of damping terms. Hen
as discussed above, the number of strings produced
not be large. The mechanism discussed in this pa
should also be applicable to the production of oth
defects, though the details of the mechanism will depe
on the type of defect (and dimensionality of physic
space) under consideration. (We mention again that
the presence of thermal bath damping of field oscillatio
may suppress this enhancement.) Especially importan
the production of baryons (in the Skyrmion picture)
quark-gluon plasma [3]. In view of our results in thi
paper, there is a possibility of a larger enhancement
baryon production due to explicit symmetry breaking
the phase transition is of first order.
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