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Magnetohydrodynamic Continua and Stratification Induced Alfvén Eigenmodes in Coronal
Magnetic Loops
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The continuous spectra of a 2D inhomogeneous, cylindrical magnetic flux tube are studied and
applied to solar coronal loops. The density is stratified radially as well as longitudinally, while other
equilibrium quantities only vary in the radial direction. Stratification causes gaps to appear in the
continuous spectrum, and it is shown that discrete global, stratification-induced Alfvén eigenmodes
occur in these gaps. These global modes may be important for the heating of coronal loops.

PACS numbers: 96.60.Pb, 52.35.Bj, 95.30.Qd, 96.60.Ly

Continuous magnetohydrodynamic (MHD) spectra,results have found applications in fusion, magnetospheric,
global Alfvén eigenmodes in the gaps of these spectraand coronal context. For a solar arcade model, the influ-
and damping of these modes have been the subject ehce of a weak density stratification along the magnetic
intense research in fusion theory and experiments in théeld lines was studied in Ref. [13]. Although the occur-
past few years (see, e.g., Refs. [1,2]). These modes occtence of gaps in the continuous spectra has been reported
due to a breaking of the poloidal symmetry in toroidalin this paper, the authors did not look for gap modes.
plasmas as compared to cylindrical ones, where the In this paper, we study the continua in a longitudinally
existence of continuous spectra is easily demonstratedtratified plasma cylinder as a model for a solar coronal
A similar breaking of symmetry occurs in solar coronalloop and show that genuine 2D continua are present. The
magnetic loops due to the longitudinal density stratifica-density stratification will couple distinct continua giving
tion associated with th@0°-fold increase of the density rise to annihilation of degeneracies and to continuum
of the photosphere as compared to that of the corongaps. We will show that discrete global modes exist in
A corresponding study of the occurrence of gaps in théhese gaps.
continua and global modes in these gaps for coronal loops We consider a cylindrical magnetic flux tube with
has not been carried out so far. This is the subject of théength L and radiusa, filled with hot plasma, and
present paper. surrounded by a rigid wall. Curvature of the flux tube

The equations of ideal magnetohydrodynamics possessd gravity have been neglected. The two ends of the
two singularities that give rise to non-square-integrablecylinder are in the photosphere, and the center is in the
solutions. In the spectrum of inhomogeneous MHD, theseorona. The dynamics of the plasma column is studied
singularities are associated with continuous parts, theithin the framework of single fluid, ideal MHD, and for
Alfvénand theslow magnetosonicontinua. For the one- its description a cylindrical coordinate systém 6, z) is
dimensional case, where equilibrium quantities depend oadopted. Since the ratio of thermal to magnetic pressure
one spatial coordinate only, the relation between the sindoes not exceed 1% in the solar corona, the thermal
gular positions and continuum frequencies can be writtepressure is neglected. The ideal MHD equations are
in algebraic form. For example, the Alfvén continuum linearized around a static force-free equilibrium, which is
is given by{kj(x)va(x)|x € D}, wherek is the compo- given by the dimensionless profiles
nent of the wave vector parallel to the equilibrium mag-

netic field, v4(x) is the Alfvén velocity,x is the spatial By(r) = €dy

coordinate associated with the inhomogeneity, dnds a dr’

the domain ofx. However, these algebraic forms of the

continua only apply to unbounded systems or bounded B.(r) = Jl _ 26_2A¢,<1 _ 1 ¢> (1)
systems with periodic boundary conditions. In these two ) a? 2 ’

situations, the governing dynamic equation, the Hain-LUst

equation [3], is an ordinary second order differential equain which e = 27a/L is the inverse aspect ratio of the

tion in which the singularities are clearly visible. For 2D cylinder, anda = 27a*B.(0)/ f(l) By(r)dr is a dimen-

equilibria, algebraic descriptions for the continua simplysionless quantity measuring the total azimuthal flux. The

do not exist due to the mathematical nature of the goverrradial coordinater is normalized to the plasma radius

ing equations. and the magnetic fiel® = (0, By, B;) is normalized to
For more general longitudinal boundary conditions andhe value of the longitudinal component on axis,(0).

2D equilibria, singular behavior and field line resonancesThe constantA and the function/(r) € [0, 1], which is

have been the subject of much research [4—12] and the dimensionless azimuthal flux coordinate, are determined
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from the force balance equation 2

d(1., \_ _Bir)
dr(ZB (r)> = g (2)
and(0) = 0,¢(1) = 1.

The equilibrium density profile can be chosen arbitrar-
ily. We have chosen the following 2D profile:

p(r.z) =[1 - (1 = p)r’]
X ((pp - l)exp{—w} + 1>, 3)

202
where pip, is the density atr =1, z = 0, p” is the 5 - T
value of the density at = 0, z = 0, and o is a density r
scale length. The profile is even with respectte- L/2,  FIG. 1. Alfvén continua for an unstratified, periodic cylinder;
and, for small values of the scale leng#h it represents for azimuthal mode numbem = —2 and longitudinal mode
a sharp transition from a high density region to a lownumbersz = —1,0,1,...,8. Equilibrium parameters are =
density region. 0.05, « = 1.254,A = 5784, p; = 1, andp? = 1.
The linearized ideal MHD equations are written in
terms of the force operator equation
92¢ perpendicular to the magnetic field, afid= (B - V)/B
F(¢) = PR (4) is the gradient operator parallel to the magnetic field.
! The eigenfunctions of Eq. (7) represent the longitudinal

where £ is the displacement vector aridis the well- ehavior to zeroth order in the expansion around the
known expression of the force operator [14]. Pressuré;ingm&r layer P

effects have been neglectedfin The following normal To numerically solve Eq. (7), both the equilibrium den-

modeansatzfor the displacement field will be used: . ; .
. sity and_ the d|s_placement componentre approximated
£(r,0,z,1) = (&(r,2), &p(r, 2), £:(r, 2))e , (5) by a finite Fourier series,

W, .

with m an integer. 2N N
For az-independent density profile and periodic bound- p(ro.z) = D palro)e® ™Ik, (8)
ary conditions the Alfvén continuum is given by the well- =N
known algebraic description to which we referred earlier: n%(ro, 7) = Z ng(ro)eﬂﬂ'nz/L. (9)
mBg(r)/r + neB,(r) n=—N
Qpmn = i(I)A("‘) wA(r): s . _
’ Jp(r) From the4N + 1 density coefficientsp, only 2N + 1

©6) are independent. The oth@VN are determined by the

o ] requirements thap is real and even. The coefficientd
wheren represents the longitudinal Fourier mode numberyre arranged in the vector

since, now, thez dependence can also be solved alge- 0 o 0 0 0
braically in terms of Fourier harmonics. In Fig. 1 several N = (MNs M0 M0: M- ) - (10)

m = —2 continuum profiles are plotted. The continuum ysjng the orthogonality of the Fourier harmonics, the

ranges themselves are found by projecting the differe”&pproximations (8) and (9) then turn Eq. (7) into the
n branches onto the vertical axis. It is evident that thematrix operator form

continua cover the entire axis, a property characteristic

for 1D equilibria. Furthermore, the Alfvén modés, n) R n=0oD: 7y, (11)
and (m,n’) are degenerate at radial positions for whichyih
(n — n')erB,(r) + 2mBy(r) = 0. m 27 2

Because of the inhomogeneity of the magnetic field and Rn = 5nl(730 + T”BZ> o Du = po—r (12)

the density, continuum eigenfunctions are localized at the ) o ) o
resonant frequency whete ¢, > £,. This property can Equation (11) implicitly carries the periodic boundary
be used to reduce Eq. (4) to the following second ordefonditions that are imposed at= 0 andz = L because

ordinary differential equation in: the individual Fourier modes already satisfy them.
»? The eigenvalue problem Eq. (11) is numerically solved
( 3 - fz(ro))no(ro,z) =0, (7)  using the QZ algorithm [15]. Figure 3 shows the results
vi(ro, 2) for an equilibrium with a strong density stratification

where ry € [0,1] is the radius of the singular layer, (see Fig. 2), and with periodic boundary conditions.
vy = B/, /p is the local Alfvén velocityn = B X £/B Compared with the unstratified density continua in Fig. 1,
is the displacement component in the magnetic planeswo striking differences are present.

568



VOLUME 76, NUMBER 4 PHYSICAL REVIEW LETTERS 22 ANUARY 1996

120 T To investigate the presence of global discrete MHD
modes in the continuum gaps, the original Egs. (4) have
to be solved. This is done numerically with the finite
element codeoLLux [16]. The results show that discrete
modes exist in the continuum gaps. In Fig. 3 we have
indicated the locations of these modes, which we will
call stratification induced Alfvén eigenmod€3SAES), by
crosses for the lowest four gaps. In the first and fourth
gaps from below one SAE is present, in the second gap
two SAEs are present, but in the third gap no SAEs
were found. Whether these modes are present, and how
0 | . | many, strongly depends go’ and o, which determine,
0 0.5 o5 0.75 1.0 in a complicated way, the coupling between the different
Fourier coefficients. Since stronger coupling between the
different Fourier modes that lift the degeneracies at the
crossover points causes bigger gaps, the occurrence of
SAEs is more likely in bigger gaps.
In Fig. 4 the mode structure of the gap mode in

First, the degeneracies at the crossover positions afle second' ga;ﬁ0.0gS 28,0.03753] closest to_the ed.ge

of the continuum is shownw = 0.02845. Since this

lifted. As a result, the projection onto the vertical axis . ;
shows gaps around the crossover frequencies (see tﬁéode is located close to the continuum edge, an accurate

right-hand frame of Fig. 3). Furthermore, it is clear thatnumgrlqal convergence study was carried out to show
different branches can be distinguished. However, the?1at It IS not a numerical error and that it is reaIIy_'
cannot be labeled with the longitudinal Fourier modelocated in the gap. The mode peaks at the two radii
number since the longitudinal dependence is not describef€re the degeneracy has been lifted since mode coupling

by single Fourier harmonics anymore. Investigating thdS Strongest there. Notice that the longitudinal mode
Fourier decomposition of the longitudinal dependenceStr“Ct“re clearly shows a decrease in amplitude towards

of the continuum eigenfunctions reveals that the maiﬁhe_ end§ of the Iopp indigat.ing that _thi_s .SAE Wi”. bepome
harmonic contribution changes as the singular radius go Ilne-tledhmode in thedl";?'t Or]: an mrf]lnlte density jump
from 0 to 1. Changes take place around the crossoveP€tWween the corona and the photosphere.

points as is indicated by the main mode contribution in SAEs will continue to exist Wher_‘ nonideal MHD .
Fig. 3 for the second branch from below. effects, such as resistivity, are taken into account. Their

Second, all frequencies are lower than in the Correfrequencieg will be complex and. the imaginary part,
sponding unstratified case. The frequency decrease isagrrespondlng to the damping, will be proportional to

FIG. 2. Longitudinal stratification of the equilibrium density
profile with p, = 100 ando = 0.15.

consequence of the increased mean density along the m e nonideal parameter involved. For _resi_stivity, which
netic field lines. Hence, this is just an inertial effect. IS very Sm?” in the solar corona, th.'S V'e.'d.S a very
small damping. However, as shown in resistive MHD

studies of gap modes in tokamak geometries [17], gap
modes exist with a strong damping that converges to a
constant value in the limit of zero resistivity. The strong
damping is caused by the interaction with other continuum
| branches. It is to be expected that this also holds for
r SAEs in coronal loops. Strongly damped modes with
| a damping independent of resistivity and with a global
' mode structure can be excited easily and convert their
energy quickly into heat and, therefore, play an important
role in wave heating theories of the solar corona [16,18].
Resistive studies of SAEs and their heating properties will
be addressed in a forthcoming paper.

Besides relevance for heating of coronal loops, global
modes, such as the SAE modes, may play an important
FIG. 3. Them = —2 Alfvén continuum of a 2D inhomoge- role in MHD spectroscopy of solar coronal loops, since

neous, stratified, periodic loop for the longitudinal density strat- ; i ; ;
ification shown in Fig. 2. Number of Fourier modeé:= 19. they are in principle easier to observe than continuum

Other parameters as in Fig. 1. The frame on the right show@OdeS' With a profound understanding of the rele}tion
the projection onto the axis, where crosses indicate the SAE between the physical parameters and the frequenCI_es of
modes. The inset shows an enlargement of the second gap. global modes, valuable information on the magnetic field
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Re (V2)
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FIG. 4. Mode structure of the SAE mode in the second gap of the continuum, indicated by the arrow in Fig.«3,=iftk028 45.
The variables plotted are, = rw ¢, andv, = ron. (a), (b) Radial dependence at= 0.25. (c), (d) Longitudinal dependence
of v, atr = 0.6 andr = 0.8.
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