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Magnetohydrodynamic Continua and Stratification Induced Alfvén Eigenmodes in Coronal
Magnetic Loops

A. J. C. Beliën, S. Poedts, and J. P. Goedbloed
FOM-Institute for Plasma Physics "Rijnhuizen," P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands

(Received 25 September 1995)

The continuous spectra of a 2D inhomogeneous, cylindrical magnetic flux tube are studied and
applied to solar coronal loops. The density is stratified radially as well as longitudinally, while other
equilibrium quantities only vary in the radial direction. Stratification causes gaps to appear in the
continuous spectrum, and it is shown that discrete global, stratification-induced Alfvén eigenmodes
occur in these gaps. These global modes may be important for the heating of coronal loops.

PACS numbers: 96.60.Pb, 52.35.Bj, 95.30.Qd, 96.60.Ly
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Continuous magnetohydrodynamic (MHD) spectr
global Alfvén eigenmodes in the gaps of these spect
and damping of these modes have been the subjec
intense research in fusion theory and experiments in
past few years (see, e.g., Refs. [1,2]). These modes oc
due to a breaking of the poloidal symmetry in toroid
plasmas as compared to cylindrical ones, where
existence of continuous spectra is easily demonstrat
A similar breaking of symmetry occurs in solar coron
magnetic loops due to the longitudinal density stratific
tion associated with the109-fold increase of the density
of the photosphere as compared to that of the coro
A corresponding study of the occurrence of gaps in t
continua and global modes in these gaps for coronal loo
has not been carried out so far. This is the subject of
present paper.

The equations of ideal magnetohydrodynamics poss
two singularities that give rise to non-square-integrab
solutions. In the spectrum of inhomogeneous MHD, the
singularities are associated with continuous parts,
Alfvénand theslow magnetosoniccontinua. For the one-
dimensional case, where equilibrium quantities depend
one spatial coordinate only, the relation between the s
gular positions and continuum frequencies can be writt
in algebraic form. For example, the Alfvén continuum
is given byhkksxdyAsxdjx [ Dj, wherekk is the compo-
nent of the wave vector parallel to the equilibrium ma
netic field, yAsxd is the Alfvén velocity,x is the spatial
coordinate associated with the inhomogeneity, andD is
the domain ofx. However, these algebraic forms of th
continua only apply to unbounded systems or bound
systems with periodic boundary conditions. In these tw
situations, the governing dynamic equation, the Hain-Lü
equation [3], is an ordinary second order differential equ
tion in which the singularities are clearly visible. For 2D
equilibria, algebraic descriptions for the continua simp
do not exist due to the mathematical nature of the gove
ing equations.

For more general longitudinal boundary conditions a
2D equilibria, singular behavior and field line resonanc
have been the subject of much research [4–12] and
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results have found applications in fusion, magnetosphe
and coronal context. For a solar arcade model, the infl
ence of a weak density stratification along the magne
field lines was studied in Ref. [13]. Although the occu
rence of gaps in the continuous spectra has been repo
in this paper, the authors did not look for gap modes.

In this paper, we study the continua in a longitudinal
stratified plasma cylinder as a model for a solar coron
loop and show that genuine 2D continua are present. T
density stratification will couple distinct continua giving
rise to annihilation of degeneracies and to continuu
gaps. We will show that discrete global modes exist
these gaps.

We consider a cylindrical magnetic flux tube wit
length L and radius a, filled with hot plasma, and
surrounded by a rigid wall. Curvature of the flux tub
and gravity have been neglected. The two ends of
cylinder are in the photosphere, and the center is in
corona. The dynamics of the plasma column is studi
within the framework of single fluid, ideal MHD, and for
its description a cylindrical coordinate systemsr , u, zd is
adopted. Since the ratio of thermal to magnetic press
does not exceed 1% in the solar corona, the therm
pressure is neglected. The ideal MHD equations a
linearized around a static force-free equilibrium, which
given by the dimensionless profiles

Busrd ­
e

a

dc

dr
,

Bzsrd ­

vuut1 2 2
e2

a2
Ac

√
1 2

1
2

c

!
, (1)

in which e ; 2payL is the inverse aspect ratio of the
cylinder, anda ; 2pa2Bzs0dy

R1
0 Busrddr is a dimen-

sionless quantity measuring the total azimuthal flux. T
radial coordinater is normalized to the plasma radiusa
and the magnetic fieldB ­ s0, Bu , Bzd is normalized to
the value of the longitudinal component on axis,Bzs0d.
The constantA and the functioncsrd [ f0, 1g, which is
a dimensionless azimuthal flux coordinate, are determin
© 1996 The American Physical Society 567
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from the force balance equation

d
dr

√
1
2

B2srd

!
­ 2

B2
usrd
r

, (2)

andcs0d ­ 0, cs1d ­ 1.
The equilibrium density profile can be chosen arbitra

ily. We have chosen the following 2D profile:

rsr , zd ­ f1 2 s1 2 r1dr2g

3

√
srp 2 1d exp

∑
2

sin2spzyLd
2s2

∏
1 1

!
, (3)

where r1rp is the density atr ­ 1, z ­ 0, rp is the
value of the density atr ­ 0, z ­ 0, ands is a density
scale length. The profile is even with respect toz ­ Ly2,
and, for small values of the scale lengths, it represents
a sharp transition from a high density region to a lo
density region.

The linearized ideal MHD equations are written i
terms of the force operator equation

Fsj d ­ r
≠2j

≠t2 , (4)

where j is the displacement vector andF is the well-
known expression of the force operator [14]. Pressu
effects have been neglected inF. The following normal
modeansatzfor the displacement field will be used:

j sr , u, z, td ­ sssjr sr , zd, jusr , zd, jzsr , zddddeımu1ıvt , (5)

with m an integer.
For az-independent density profile and periodic boun

ary conditions the Alfvén continuum is given by the wel
known algebraic description to which we referred earlie

VA,mn ­

(
6vAsrd

É
vAsrd ­

mBusrdyr 1 neBzsrdp
rsrd

)
,

(6)

wheren represents the longitudinal Fourier mode numb
since, now, thez dependence can also be solved alg
braically in terms of Fourier harmonics. In Fig. 1 sever
m ­ 22 continuum profiles are plotted. The continuum
ranges themselves are found by projecting the differe
n branches onto the vertical axis. It is evident that th
continua cover the entire axis, a property characteris
for 1D equilibria. Furthermore, the Alfvén modessm, nd
and sm, n0d are degenerate at radial positions for whic
sn 2 n0derBzsrd 1 2mBusrd ­ 0.

Because of the inhomogeneity of the magnetic field a
the density, continuum eigenfunctions are localized at t
resonant frequency where≠rjr ¿ jr . This property can
be used to reduce Eq. (4) to the following second ord
ordinary differential equation inz:√

v2

y
2
Asr0, zd

2 f2sr0d

!
h0sr0, zd ­ 0 , (7)

where r0 [ f0, 1g is the radius of the singular layer
yA ; Byp

r is the local Alfvén velocity,h ; B 3 jyB
is the displacement component in the magnetic plan
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FIG. 1. Alfvén continua for an unstratified, periodic cylinde
for azimuthal mode numberm ­ 22 and longitudinal mode
numbersn ­ 21, 0, 1, . . . , 8. Equilibrium parameters aree ­
0.05, a ­ 1.254, A ­ 5.784, r1 ­ 1, andrp ­ 1.

perpendicular to the magnetic field, andf ; sB ? ===dyB
is the gradient operator parallel to the magnetic fie
The eigenfunctions of Eq. (7) represent the longitudin
behavior to zeroth order in the expansion around
singular layer.

To numerically solve Eq. (7), both the equilibrium den
sity and the displacement componenth are approximated
by a finite Fourier series,

rsr0, zd ­
2NX

n­22N

rnsr0deı2pnzyL, (8)

h0sr0, zd ­
NX

n­2N

h0
nsr0deı2pnzyL. (9)

From the4N 1 1 density coefficientsrn only 2N 1 1
are independent. The other2N are determined by the
requirements thatr is real and even. The coefficientsh0

n
are arranged in the vector

h ­ sh0
2N , . . . , h0

1 , h0
0, h0

1, . . . , h0
Nd . (10)

Using the orthogonality of the Fourier harmonics, th
approximations (8) and (9) then turn Eq. (7) into th
matrix operator form

R ? h ­ v2D ? h , (11)

with

Rnl ; dnl

√
m
r

Bu 1
2p

L
nBz

!2

, Dnl ; rn2l. (12)

Equation (11) implicitly carries the periodic boundar
conditions that are imposed atz ­ 0 andz ­ L because
the individual Fourier modes already satisfy them.

The eigenvalue problem Eq. (11) is numerically solv
using the QZ algorithm [15]. Figure 3 shows the resu
for an equilibrium with a strong density stratificatio
(see Fig. 2), and with periodic boundary condition
Compared with the unstratified density continua in Fig.
two striking differences are present.
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FIG. 2. Longitudinal stratification of the equilibrium density
profile with rp ­ 100 ands ­ 0.15.

First, the degeneracies at the crossover positions
lifted. As a result, the projection onto the vertical ax
shows gaps around the crossover frequencies (see
right-hand frame of Fig. 3). Furthermore, it is clear th
different branches can be distinguished. However, th
cannot be labeled with the longitudinal Fourier mod
number since the longitudinal dependence is not descri
by single Fourier harmonics anymore. Investigating t
Fourier decomposition of the longitudinal dependen
of the continuum eigenfunctions reveals that the ma
harmonic contribution changes as the singular radius g
from 0 to 1. Changes take place around the crossov
points as is indicated by the main mode contribution
Fig. 3 for the second branch from below.

Second, all frequencies are lower than in the corr
sponding unstratified case. The frequency decrease
consequence of the increased mean density along the m
netic field lines. Hence, this is just an inertial effect.

FIG. 3. Them ­ 22 Alfvén continuum of a 2D inhomoge-
neous, stratified, periodic loop for the longitudinal density stra
ification shown in Fig. 2. Number of Fourier modes:N ­ 19.
Other parameters as in Fig. 1. The frame on the right sho
the projection onto thev axis, where crosses indicate the SA
modes. The inset shows an enlargement of the second gap
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To investigate the presence of global discrete MH
modes in the continuum gaps, the original Eqs. (4) ha
to be solved. This is done numerically with the finit
element codePOLLUX [16]. The results show that discrete
modes exist in the continuum gaps. In Fig. 3 we ha
indicated the locations of these modes, which we w
call stratification induced Alfvén eigenmodes(SAEs), by
crosses for the lowest four gaps. In the first and four
gaps from below one SAE is present, in the second g
two SAEs are present, but in the third gap no SAE
were found. Whether these modes are present, and h
many, strongly depends onrp and s, which determine,
in a complicated way, the coupling between the differe
Fourier coefficients. Since stronger coupling between t
different Fourier modes that lift the degeneracies at t
crossover points causes bigger gaps, the occurrence
SAEs is more likely in bigger gaps.

In Fig. 4 the mode structure of the gap mode
the second gapf0.028 28, 0.037 53g closest to the edge
of the continuum is shown:v ­ 0.028 45. Since this
mode is located close to the continuum edge, an accur
numerical convergence study was carried out to sho
that it is not a numerical error and that it is reall
located in the gap. The mode peaks at the two ra
where the degeneracy has been lifted since mode coup
is strongest there. Notice that the longitudinal mod
structure clearly shows a decrease in amplitude towa
the ends of the loop indicating that this SAE will becom
a line-tied mode in the limit of an infinite density jump
between the corona and the photosphere.

SAEs will continue to exist when nonideal MHD
effects, such as resistivity, are taken into account. Th
frequencies will be complex and the imaginary par
corresponding to the damping, will be proportional t
the nonideal parameter involved. For resistivity, whic
is very small in the solar corona, this yields a ver
small damping. However, as shown in resistive MH
studies of gap modes in tokamak geometries [17], g
modes exist with a strong damping that converges to
constant value in the limit of zero resistivity. The stron
damping is caused by the interaction with other continuu
branches. It is to be expected that this also holds
SAEs in coronal loops. Strongly damped modes wi
a damping independent of resistivity and with a glob
mode structure can be excited easily and convert th
energy quickly into heat and, therefore, play an importa
role in wave heating theories of the solar corona [16,18
Resistive studies of SAEs and their heating properties w
be addressed in a forthcoming paper.

Besides relevance for heating of coronal loops, glob
modes, such as the SAE modes, may play an import
role in MHD spectroscopy of solar coronal loops, sinc
they are in principle easier to observe than continuu
modes. With a profound understanding of the relatio
between the physical parameters and the frequencies
global modes, valuable information on the magnetic fie
569
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FIG. 4. Mode structure of the SAE mode in the second gap of the continuum, indicated by the arrow in Fig. 3, withv ­ 0.028 45.
The variables plotted arey1 ; rvjr andy2 ; rvh. (a), (b) Radial dependence atz ­ 0.25. (c), (d) Longitudinal dependence
of y2 at r ­ 0.6 andr ­ 0.8.
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and density inside coronal loops can be obtained fro
their observed frequencies [19]. Gap modes may
observed by measuring the Doppler shifts of optica
thin coronal lines originating from single coronal loops
This gives information on frequencies and mode structu
of the waves involved. For this purpose, the Coron
Diagnostics Spectrometer aboard SOHO seems promis
since its spatial and time resolution (1000 km and a fe
seconds) should be accurate enough to measure Alf
periods of 100 s and longitudinal length scales of a fe
thousand to 10 000 km.

Summarizing, we have computed the Alfvén continu
for a longitudinally stratified coronal loop. This stratifica
tion is responsible for gaps in the continuous spectrum.
these gaps global modes (SAEs) have been found wh
are a true consequence of the 2D nature introduced by
longitudinal density stratification. They may be importa
for wave heating of the solar corona and for solar MH
spectroscopy.

The authors wish to thank Hanno Holties and Rona
Nijboer for stimulating discussions and suggestions.
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