
VOLUME 76, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JANUARY 1996

dom

f the
g fronts
xtreme
tion

546
Wave-Induced Chemical Chaos
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Spatiotemporal chaos in a two-variable, cubic autocatalator model with equal diffusivities o
species is described. The interplay between an unstable homogeneous state and propagatin
which return the system to that state gives rise to a reinjection mechanism for chaotic behavior. E
sensitivity to initial conditions in both space and time and a rapid falloff of the spatial correla
function are exhibited in the chaotic regime.
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Spatiotemporal chaos may arise in distributed reacti
diffusion systems by several different dynamical pr
cesses [1]. Mixed-mode chaos [2], for example, occ
when a Hopf instability of the stationary state intera
with a diffusion-induced Turing instability [3]. The sta
tionary Turing pattern loses temporal stability when t
ratio of the diffusivities for the inhibitor and the activato
species becomes sufficiently small. As this ratio is furt
decreased, the Turing and Hopf modes increasingly
to give rise to turbulent behavior. In this Letter, we d
scribe spatiotemporal chaos in a reaction-diffusion sys
that arises from a mechanism distinctly different from th
scenario or other scenarios such as phase turbulence o
fect mediated turbulence [4,5]. We study a two-variab
cubic autocatalator model [6] in an open spatial reacto
with equal diffusion coefficients of the species. Reactio
diffusion structures emerge from an initial traveling wav
which persist indefinitely in a self-sustaining dynamic
process having all the features of spatiotemporal chao

The governing reaction-diffusion equations for t
open, unstirred autocatalator [7,8] can be written in
following dimensionless form:

≠a

≠t
­ d

≠2a

≠x2
1 1 2 a 2 mab2, (1a)

≠b

≠t
­

≠2b

≠x2 1 mab2 2 fb , (1b)

where a and b are the dimensionless concentrations
the reactantA and autocatalystB, respectively, andm
and f are parameters related to the residence time
autocatalyst decay step. The parameterd is the ratio of
the diffusion coefficientsDAyDB. Throughout this work
we taked ­ 1: the equal diffusivities case.

Reaction occurs over the domain0 # x # x0, subject
to the following initial conditions:

a ­ 1, b ­ b0gsxd for t ­ 0 ,

where gsxd is some function with compact support re
resenting a localize input of the autocatalyst. Zero fl
boundary conditions are imposed atx ­ 0 andx ­ x0.
0031-9007y96y76(3)y546(4)$06.00
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The bifurcation structure of the spatially homogeneo
system has the following important features (see Fig.
(i) There are three possible steady state solutions:
“unreacting” or extinguished state,sas, bsd ­ s1, 0d, and
a pair of nonzero states,sa6

s , b6
s d, given by

a6
s ­

m 7
p

m2 2 4mf2

2m
,

b6
s ­

m 6
p

m2 2 4mf2

2mf
, (2)

which exist for m $ msn. The locus of saddle-node
points is given bymsn ­ 4f2. (ii) The s1, 0d state is a
stable node for all parameter values. (iii) Thesa2

s , b2
s d

state is a saddle point. (iv) Thesa1
s , b1

s d state has a Hopf
bifurcation locus emerging from a double-zero eigenva

FIG. 1. Two-parameter bifurcation diagram. Simple prop
gating fronts are exhibited when the system is bistable, ab
the Hopf bifurcation line. The zero velocity linesy ­ 0d gives
the lower boundary for the existence of propagating wav
The dotted line corresponds to the saddle-node bifurcat
Chaotic behavior is found in the area between the Hopf
furcation line and the solid line with circles.
© 1996 The American Physical Society
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point atm ­ 16, f ­ 2, given by

mH ­ f4ysf 2 1d, f . 2 , (3)

with sa1
s , b1

s d being unstable form , mH . The bi-
furcation is subcritical (unstable limit cycle emerges
m . mH) over the range2 , f , 4, which includes the
range of interest here. Forf . 4, the Hopf bifurcation is
supercritical.

The reaction-diffusion equations, subject to the abo
initial conditions, allow for two different types of travel
ing wave solutions. First, there is a simple pulse whi
connects thes1, 0d state ahead to the same state beh
the propagating wave. Such a wave will pass across
reaction domain and be extinguished at thex0 boundary,
leaving the system uniformly in thes1, 0d state. The sec-
ond type of traveling wave connects thes1, 0d state ahead
to the sa1

s , b1
s d state behind, propagating with a cha

acteristic velocityy. An important feature of this front
structure is the damped oscillatory approach tosa1

s , b1
s d

at the rear of the wave, which arises from the focal ch
acter of the steady state. The pulse and front soluti
correspond, respectively, to homoclinic and heterocli
connections in thea-b phase plane, and exist for particu
lar regions of them-f parameter plane. Of particular in
terest in the present context is the locus in the param
plane for which the traveling wave front solution has ze
velocity, shown along with the loci for the saddle-nod
and Hopf bifurcations in Fig. 1.

The detailed spatiotemporal behavior of this syste
has been determined by direct numerical integrations
Eqs. (1a) and (1b) for various parameter values. At lar
m, above the Hopf curve in Fig. 1, thesa1

s , b1
s d state

is stable, and simple propagating fronts connecting t
state and the initials1, 0d state are established from sui
able, nonzero inputs of autocatalyst. For parameter va
above the saddle-node curve but below the zero-velo
locus, the heteroclinic front solutions have negative vel
ity and cannot be established from the initial input con
tions studied here. Complex spatiotemporal behavio
found in the region lying between the zero velocity l
cus and Hopf curve. This region can be divided in
two subregions, one (at lowerm) corresponding to ho-
moclinic pulse solutions connecting thes1, 0d state to it-
self, the other to heteroclinic front solutions connecti
the s1, 0d andsa1

s , b1
s d states. The focal state is atempo-

rally unstablestate of the homogeneous system, so a u
form concentration behind the front corresponding to t
state cannot be established. Instead, we observe com
spatiotemporal responses in this region of parameter
ues, which are initiated by the first front and sustained
subsequent fronts triggered by the system itself.

An example of the spatiotemporal evolution in this r
gion is shown in Fig. 2. In this case, an initial input o
autocatalyst is supplied over a narrow region close to
origin [b0gsxd ­ 1 for 0 # x # 0.33]. After a short ini-
tial transient phase, the front propagates to the right wit
constant velocity (y ø 0.79 for m ­ 38 andf ­ 3) into
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FIG. 2. Concentration profiles fora at different times after
initiation at the left boundary: (a)t ­ 10, (b) t ­ 24, (c) t ­
38, (d) t ­ 120. The width of the reaction zone isx0 ­ 100.0
and f ­ 3.0, m ­ 38.0. The calculation was carried out by
numerical integration of the 1D reaction-diffusion system 1(
and 1(b) using a finite-difference approximation with 300 gr
points over the spatial domain.

the region of higha. At the rear of the wave, there is a
almost uniform region with a composition in the vicinit
of the focal steady state;sa1

s , b1
s d ­ s0.3853, 0.2049d for

these parameter values. The system then evolves a
from this state in an initially divergent oscillatory man
ner. The subsequent evolution cause the system to ev
toward the s1, 0d state, i.e., for the reaction to be ex
tinguished locally. Figure 2(a) shows this state reest
lished near the origin as the original front, now located
x ø 20, propagates to the right. In the spatially unifor
system, thes1, 0d state would represent the global attra
tor and would be established asymptotically. In the sp
tially inhomogeneous situation, however, created by
progress of the initial reaction-diffusion wave, the loc
region of high reactant concentration is adjacent to a
gion of nonzero autocatalyst concentration. This situat
allows a subsequent reaction-diffusion wave to devel
propagating now to the left into the region of higha,
Fig. 2(b). Thus there is another reinjection of the sy
tem locally to the vicinity of the unstable steady stat
sa1

s , b1
s d. Also visible in Fig. 2(b) is the developing

divergence from the unstable steady state over a reg
centered approximately onx ­ 15. This gives rise to a
region with a ø 1 and b ø 0, shown in Fig. 2(c), into
547
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which a pair of fronts will subsequently propagate. B
tween this region and the original front, there is a furth
region, aroundx ø 30, in which the system is evolving
away fromsa1

s , b1
s d. The spatial asymmetry—arising a

a consequence of spatially inhomogeneous initiation—
more clearly evident in this picture. Again, the syste
will approach thes1, 0d state in this region, and a pair o
inwardly propagating fronts will subsequently give rise
reinjections to the vicinity of thesa1

s , b1
s d state.

Figure 2(d) shows an example of the instantane
a profile at a much later time. The original front ha
almost left the system on reachingx0, but a complex
and dynamic reaction-diffusion structure is sustained
repeated, spontaneous local extinction events followed
a wave-driven reinjection process.

The long-time evolution of the system is further illu
trated in Fig. 3. In this space-time plot the concentrat
of the reactant is represented by a linear gray scale, w
white corresponds to regions witha ø 1 and black to re-
gions witha ø 0. The initial front propagates diagonall
across the diagram with a constant slope characteristi
the wave velocity. The subsequent localized extinct
events lead to patches near thes1, 0d state. These have
approximately triangular shape, reflecting the constant
locity of the subsequent reaction-diffusion fronts prop
gating into these regions. The velocities of the subsequ
fronts are similar to that of the original front.

The system does not achieve a regular spatial patt
although some indication of a characteristic wavelen
can be seen. There are phases of almost periodic evolu
over localized regions, for instance, in the vicinity of th
origin for 600 , t , 900 and for much of the evolution
at the right-hand boundary, but these are interspersed
aperiodic “bursts” of larger-scale extinction events.
test this aperiodicity for the characteristics of chaos,
single-point spatial correlation function was determin

FIG. 3. Space-time plot ofa in the chaotic regime, where
white corresponds toa ­ 1.0 and black toa ­ 0.0. The front
was initiated at the left boundary att ­ 0; parameter values ar
the same as in Fig. 2 except the width of the reaction zon
x0 ­ 200.0.
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relative to the midpoint of the domain and the resultin
correlation lengthlcorr was evaluated. The correlation
falls off rapidly, with lcorr ­ 3.2. This value is consistent
with the minimum domain length for which complex
spatiotemporal responses were observed,x0,min ø 2lcorr .

Sensitivity to initial conditions was also demonstrate
Two identical systems were computed until the pos
transient behavior was established. A localized, sm
perturbation was then imposed on one system, and
difference in the subsequent evolution of the two syste
was monitored. Not only is there a local exponenti
divergence of the two systems, but they also rapid
become spatially uncorrelated. These tests provide str
evidence for the existence of spatiotemporal chaos in t
system for these parameter values.

The chaotic behavior is observed over a finite regi
in the m-f parameter plane, as indicated in Fig. 1, b
there are smooth qualitative changes in the character
the spatiotemporal evolution within this domain. Fo
parameter values close to the Hopf locus, which al
marks the upper boundary for the region of chao
behavior, the system exhibits spatially extended areas
the vicinity of thesa1

s , b1
s d state. These regions persis

over long times, reflecting the near stability of this stat
and are interspersed with widely spaced, localized bur
of extinction [approaching thes1, 0d state]. The apparent
wavelength of the structures also varies across the reg
reflecting the dependence of the wave front velocity a
the characteristic chemical time scale for the divergen
from thesa1

s , b1
s d state on the system parameters.

A phase portrait obtained by plotting the variation ofa

with respect tob at a single point in the domain is show
in Fig. 4. Also shown on this figure are (i) the hetero
clinic connection formed by the outset of the unstable f
cussa1

s , b1
s d and the inset along the slow manifold to th

stable nodes1, 0d of the ODE system (solid, heavy curve
and (ii) the heteroclinic connection froms1, 0d to sa1

s , b1
s d

formed by the constant-velocity, constant-form travelin
wave front solution for this system (dashed curve). The
two connections form a closed loop which plays an o
ganizing role similar to that of homoclinic connection
in the Sil’nikov mechanism for chaos [9,10]. The fixed
point eigenvalues associated with the divergence from
unstable steady statel1 and with the reinjection from
the front connectionl2 have been calculated for vari
ous parameter values throughout the chaos region. B
are complex pairs in this region, with Resl1d . 0 and
Resl2d , 0. The ratio of the magnitude of the real part
jResl2djyResl1d decreases from infinity at the Hopf lo
cus [where Resl1d ­ 0] to a value that approaches ap
proximately unity at the boundary between chaos and
pulse solution. Within the chaotic region of the param
ter plane, therefore, the Sil’nikov criterion that the attrac
ing manifold should have faster dynamics than the out
manifold appears to be satisfied, which is consistent w
the existence of nearby chaotic orbits. This idea can
pursued further to explain, at least semiquantitatively, t
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FIG. 4. The a-b phase plane form ­ 38.0 and f ­ 3.0,
with x0 ­ 100.0. The thin line shows trajectories of the
reaction-diffusion system taken at the middle of the reacti
zonesx ­ 50.0d. The heavy line represents the trajectory of th
spatially homogeneous system spiraling out from the unsta
focus. The heavy dashed line corresponds to the traveling w
solution of the reaction-diffusion system.

transition from chaotic behavior associated with the fro
reinjection mechanism to the simple, traveling pulse r
sponse. Within the region of chaos, the reinjection to t
vicinity of sa1

s , b1
s d is stronger than the outward evolu

tion along the unstable manifold, in the sense of the re
tive magnitudes of the inset and outset eigenvalues. T
trajectories are therefore qualitatively altered by the u
stable focus with a corresponding loss of phase inform
tion. In the pulse region, however, the instability of th
sa1

s , b1
s d state is somewhat stronger and the reinjectio

weaker. The latter arises because the front velocity, wh
is involved as a multiplicative factor in the temporal eigen
value, rapidly approaches zero asm is decreased in the
vicinity of they ­ 0 locus. Trajectories are thus more ef
fectively repelled from the focal region and return directl
to the vicinity ofs1, 0d without experiencing the phase los
nearsa1

s , b1
s d.

The spatiotemporal chaos reported here arises from
mixing of two distinct dynamical processes. Propagatin
fronts convert regions near thes1, 0d state, where little
reaction occurs, to the vicinity of thesa1

s , b1
s d state,

where both the extent of reaction and the autocatal
concentration are significant. These regions would rem
in this state were it not for the fact that it is an
unstable state of the homogeneous system. Instead,
system spirals out from the unstable focal state to retu
to the s1, 0d state. The process is then repeated wi
fronts propagating into the new regions in thes1, 0d
state. The behavior depends on inhomogeneous ini
conditions, which in this study were in the form of an
initial front. We note that the behavior is not depende
on the complete lack of reaction in thes1, 0d state.
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Calculations were also carried out with low concentratio
of autocatalyst in the input stream, and the change of
stable steady state (of the ODE system) from no react
to slight but finite reaction had essentially no effect on t
wave-induced chaotic behavior.

An essential mechanistic feature of the chaos is
wave-mediated reinjection of the system to the unsta
focus, a process reminiscent of the Sil’kinov mechanis
for homoclinic chaos [9,10]. The chaotic behavior d
pends on the stable manifold of thesa1

s , b1
s d state be-

ing more strongly attracting than the unstable manifold
repelling. Phase information is lost as the system is
jected into and then spirals out from the focal steady sta
Chemical turbulence has also been studied by Kapral
co-workers [11,12] in the Brusselator and the compl
Ginzburg-Landau equation for the case of equal diffusi
ties. This chaotic behavior develops in a two-dimension
medium from the interaction of vortices initiated by inho
mogeneous, random initial conditions. The spatiotemp
ral chaos described here arises from the interplay betw
an unstable homogeneous state and propagating fr
which return the system to that state.
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