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Non-Mean-Field Behavior of Realistic Spin Glasses
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We provide rigorous proofs which show that the main features of the Parisi solution of the
Sherrington-Kirkpatrick spin glass, as applied to more realistic spin glass models, are not valid in
any dimension and at any temperature.

PACS numbers: 75.10.Nr, 75.50.Lk

The theoretical perspective provided by the Parisi The SK picture—The Parisi solution, as applied to the
solution [1] of the infinite-ranged Sherrington-Kirkpatrick EA model at fixed temperatur@, suggests that there
(SK) model [2] has dominated the spin glass literatureexist two related quantities which are non-self-averaging
over the past decade and a half. This is partly becaudge., depend onJ): (i) a statep j(o), which is a Gibbs
it represents the only example of a reasonably completprobability measure (at temperaturgon the microscopic
thermodynamic solution to an interesting and nontrivialspin configurationso on all of Z¢, and (ii) a Parisi
spin glass model, and partly because of the novel, andrder parameter distributioP ;(¢), which is a probability
in some respects, spectacular, nature of the symmetmpeasure on the intervil-1, 1] of possible overlap values.
breaking displayed in the low-temperature phase. I[tShese two are related as follows: If one chooseand
main qualitative features—the presence of (countably}’ from the product distribution ;(o)p y(¢”'), then the
many pure states, the non-self-averaging of their overlapverlap
distribution function, and the ultrametric organization of
their overlaps, among others—have greatly influenced 0= LliLﬂoolALl*1 > ool 1)
thinking about disordered and complex systems in general xEAL
[3,4]. A common working hypothesis is that the Parisihas P ; as its probability distribution. Herg\,| is the
solution provides a theory of general spin glass modelgolume of a cubeA; of side lengthL centered at the
[3—-5]. In particular, many authors have directly appliedorigin in d dimensions.
its features to the study of both short-ranged models In this picture the decomposition f; into pure states
and laboratory spin glasses [6—9]. Support for this “SKis countable(i.e., a sum rather than an integral):
picture"—that the main qualitative features of Parisi’'s
solution survive in non-infinite-ranged models—comes pjlo) = ZW;pjf(O'). (2)
from both analytical [10] and numerical [11,12] work. a

In this Letter, however, we prove that short-rangedis . is drawn from p% and o' from pﬁi, then the
models such as the nearest-neighbor Edwards_-Anders%rg(pression in Eq. (1) equals its thermal mean,

(EA) model [13] have natural thermodynamic states

vyhose overlap distribution functi_ons are self—a_lveraged q‘jﬁ = lim |Az]™! Z (T)alT)p . (3)
(i.e., do not depend on the realizatignof the couplings). L= XEA,

Thus the standard SK picture is not valid. Furthermore

X ThusP ; is given b
most of our arguments rely on little more than the 7149 y

homogeneity properties of the disorder, and thus are Pi(g) = ZW}W?é(q _ q?ﬁ). )
applicable to more realistic spin glass models such as a.B

models with long-ranged couplings or diluted RKKY B ]
interactions [14]. Here, theW$’'s and ¢ 's are non-self-averaging quan-

We do not attempt to resolve in this paper the closelytities, except fora = g8 or its global flip, Whereq‘}ﬁ =
related issue of whether short-ranged spin glass modetsgga (we assume throughout that there is no external
have many pure thermodynamic states at sufficiently higffield, although that plays no essential role). The average
dimension and low temperature, or only a single pair. TheP(q) of P j(g) over the disorder distribution of the cou-
latter conjecture arises from a droplet model [15] baseglings is a mixture of two delta-function components at
on a scalingansatz[15-17]. Rather, we assert thdt *gga and a continuous part between them.
there are many pure states, their structure and that of their The countability of the decomposition of Eq. (2) is
overlaps cannot be that of the SK picture [18]. also employed to obtain the often-used result (see, for
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example, Refs. [3,6,19]) that the free energies of the This gives us existence of @&, which is a joint
lowest-lying states are independent random variables witHistribution on the infinite-volume realizations gf and
an exponential distribution. g. Its marginal distribution forJ is the original disorder
Both p ; and P ; are infinite-volume quantities and so distribution », while its conditional distribution forg
must be obtained by some kind of thermodynamic limit.given J is what we denote ;. Because of the periodic
Naively, one might simply fixJ and attempt to take a se- boundary conditions, the marginal distribution (under
guence of increasing volumes with, say, periodic boundaryi;) of Ji,...,J,, ¢ is the same (for largd.) as of
conditions. However, we argued in a previous paper [20V7,...,J%, ¢ (Wherea is any lattice translation and“ is
that the existence of multiple pure states is inconsisterthe translated/) and thus one has translation invariance
with the existence of such a limit féixed J. Instead, there of the limit measurei. Translation invariance here
would be chaotic size dependence, so that infinite-volumeneans that for any:, the shifted variables/“ together
limits can be achieved only through couplidgpendent with Q have the same joint distribution as do the original
boundary conditions. We will see below that, nonetheless,J together withQ; becauser is in any case translation
py and Py can be obtained by natural limit proceduresinvariant, this implies tha# ; = P ;.. In other words,
which are coupling independent and which imply translathe overlaps do not care about the choice of origin.
tion covariance forp y [21,22] and translation invariance  The second and more fundamental procedure for ob
for P;. We ask whether this is consistent with the SKtaining Py is first to constructp ; and then obtainP y
picture, which requires the following properties®f and  as the distribution of th€ given by Eq. (1). The con-
its averageP: (1) P j(¢) is non-self-averaging. (2 7(¢)  struction ofp ; is as follows [21,22]. Leju, be the joint
is a sum of (infinitely many) delta functions. (B)Yq) has distribution for J©) and o) on the periodic cube\;, .
a continuous component (for allbetween the delta func- Then by compactness arguments, some subsequence
tions at+gga). converges to a limiting joint distributiop(J, o). The
The answer is no; we will see th&tanslation invari-  resulting conditional distribution ofr given J is what
ance rules out non-self-averaging his in turn makes the we denotep j(o). u will be translation invariant (and
absence of a continuous componentAn inconsistent p; will be translation covariant) because of the trans-
with its presence inP. We conclude thaproperty (1) lation invariance (on the torus) gf;. Translation in-
is absent, and at most one of the remaining two propervariance means that the distributian for (J, o) is the
ties can be valid for realistic spin glass modelg/e will  same as fof J¢, %) for any lattice vectom. In terms
consider below the implications of this result for other im-of p 7, this means thap ;.(o)) = p ;(0™¢), so that, e.g.,
portant features of this picture, such as ultrametricity. (o) j« = (o—,) s; thus we say thap ; is translation co-
Construction ofp ; and P ;.—We first describe a limit  variant rather than invariant. Translation covariance of
procedure to obtai® ; which does not involve the prior p ;immediately implies, via Eq. (1), translation invariance
construction ofp y. Begin with the finite-volume Gibbs of P;.

distribution p(ﬁ) on the spin configurationr®™ in the Before pursuing the rigorous implications of translation
cube A, with periodic boundary conditions. Herg(®)  invariance, we discuss (on a nonrigorous level) s_everal
denotes the couplings restricted Ag. Let o denote questions related to thesg con_structlon_s._ Could dlffe_rent
the overlap ofr™ and a duplicater’(”: subsequences of cubes yield different limits? We believe
the answer is no, although we have no complete proof,
oW = A" Z g')(CL)g')/C(L). (5) because our procedure of considerjoint distributions
xEA; (for J and g or for J and o) should avoid the kind of

chaotic size dependence discussed in Ref. [20]. Could
different deterministic boundary conditions yield different
Simits? Certain classes of boundary conditions must yield
in Ref. [20] that in the SK model, non-self-averaging the same “mit.(see R_ef. [20].)’.t.)Ut in general we cannot
, (L) ) rigorously eliminate this possibility. However, we see no
requiresP ;, to have chaotid. dependence ab — *  achanism for any such limit to violate the very weak
for fixed J; a similar result was suggested, though notyroperty of translation invariance fér;. Could theP ’s
proved, for short-ranged spin glasses with many purgyising from our two constructions (one usipg and
states. Because of this, we do not take a limitPof,,  one not) be different? Yes; in fact, they apparerahe
directly but rather of thgoint distribution iz, of J®) and different in some models [23]. Either way, since both
oW, That is, by a compactness argument (which mayP ;’s are translation invariant, neither one can be non-
require the use of a subsequencd &) one has a limiting  self-averaging, as we now show rigorously.
fx, which is a probability measure on joint configurations  Self-averaging oP ;(¢).—To prove that translation in-
(J, q) (¢ being a realization 0) such that for any (nice) variance ofP ;(g) implies that it is self-averaging, take a
function f of finitely many couplings and af, the average (nice) functionf(q) (like ¢*) and consider the function of
(f) for i is the limit of the averages fqi, . J, f(J) = [f(q@)Pj(q)dq. By translation invariance,

The distribution P(JL&) for Q) is the finite-volume
Parisi overlap distribution function, whose average wa
studied numerically in Refs. [11,12]. It was proved
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F(J) = f(J%, but by thetranslation ergodicity[24] of  the probability that the two overlap values can be identical

v, any translation-invariant (measurable) functj/) is  is zero, and we arrive at a contradiction.

equal to itsJ average,[ f(J)v(J)d J. Since this is true The only way to avoid the contradiction is if the two

for all f’s, it follows thatP ; itself equals its] average.  strict inequalities in Eq. (6fannotoccur simultaneously.
We remark that this proof is valid for any model This means that eithey* < ¢#7« for everyk or vice

involving disorder whose underlying distribution is (like versa, which implies that the pure states can be ordered

v) ftranslation invariant and translation ergodic [25].into a one-dimensional continuum, and the ultrametric

For example, any analog of the Parisi order parametestructure resembles a comb rather than the usual tree.

distribution for spin glass models with site-diluted RKKY  As discussed previously, self-averaging makes it im-

interactions will also be self-averaging (if it is translation plausible that the set of overlaps is countable. A count-

invariant). able set of overlaps would invalidate the above argument
BecauseP ; is self-averaging, we are forced to the and possibly rescue ultrametricity, but at the cost of de-

dichotomy that, for any temperature in any dimensionstroying anything resembling the Parisi solution.

either P (= P) is a sum of one or moré functions Decomposition into pure states:What is the nature

or else P has a continuous component. When thereof the decomposition ofp; into pure states? The

is a unigue infinite-volume Gibbs state (e.g., in thepossibility of a sum as in Eq. (2) (with a countable infinity

paramagnetic phase) then of couyse is that state and of SeIf—averagedq; 's) has already been ruled out as

P is a singleés function atg = 0. If there were only implausible. Thus, in any reasonable scenario gqr,

two pure states (related by a global flip) [26], thén there should be at most one pair of pure states (related

would simply be a sum of twa functions at=ggs. by a global spin flip) withstrictly positive weight.

But what if infinitely many pure states? coexist inp 7, In other words, either (ap ; is pure, (b) it is a sum

with infinitely many overlap valueg’”? If the set of Of two pure states related by a global flip, (c) it is an
overlap values wereountablyinfinite, then P ; would integral over pure states with none having strictly positive
necessarily be a sum of functions, butthe infinitely ~ Weight, or (d) it has one “special” pair of pure states
many locations (as well as the weights) would notwith strictly positive weight and all the rest with zero
depend onJ. We regard as implausible such a selectionweight. Case (a) occurs if the system is in a paramagnetic
of preferred J-independent values of the overlaps. A Phase, or any other in which the EA order parameter is
plausible alternative for multiple pure states and overlapgero. Case (b) would occur according to the Fisher-Huse
is where the countable decomposition Eq. (2) is replacedroplet picture [15], but could also occur if there existed
by an integral and® is continuous. multiple pure states not appearing gy (“weak Fisher-
Ultrametricity—We briefly turn to the question of Huse”) [28]. Case (c) occurs if there ammcountably
whether ultrametricity of pure state overlaps [27] canmany pure states in the decomposition mf, all with
survive in short-ranged spin glasses, given thatis self-  zero weight (“democratic multiplicity”). Case (d) (which
averaged. Clearly, this type of nontrivial ultrametricity We regard as unlikely) occurs when one pair of pure states
requires the existence of multiple pure states. As discussdtfirtially dominates all others, but accounts for only part
above, we consider the case whexe) is continuous. We  ©f the total weight (“dictatorial multiplicity”).
now demonstrate that such an overlap distribution cannot Whatis the nature af (= P ;) obtained fromp ; in the
have an ultrametric structure, in the Parisi sense. three (nontrivial) cases (b)—(d) discussed above? Clearly
Let @, B,y1, 72 ... denote pure states randomly se-case (b) implies thaP is a sum of twos functions at
lected from the continuum of such states [according to=¢gEa, and no continuous part. If we assume in cases
the integral replacement for Eq. (2)], and let their over-(c) and (d) that varyingx and 8 through the continuous
laps as usual be denoted?, etc. In the Parisi solution, Portion of the pure states yields a continuously varying
these overlaps are such that, for anyhe two smallest of ¢ap [but see the next paragraph for an example of case
qaﬁ,qayk, andq.B)’k are equall For nontrivial ultrametric- (C) where this aSSUmption is violated beca%@ does
ity such as occurs in the Parisi solution, there would beot vary but is fixed a], then it follows that case (c)
positive probability that for someé and j the following ~ corresponds to & with no 6 functions while case (d)

two strict inequalities occur simultaneously: corresponds to & with 6 functions at*ges and a
continuous part. This latter case is tAgredicted by the
q*" < gP" and ¢V > qP7. (6) Parisi solution, but note two crucial distinctions between

case (d) and the SK picture: (i) There is self-averaging, so
If ultrametricity holds, then the first inequality requires one already obtains the continuous parPdirom a single
that ¢*7 = ¢*#, while the second inequality requires realization_J, and (ii) thed functions at+gg, come from
that g7 = q*#. Thus ¢®” = ¢P7. But becausex, a single special pair of pure states—not from countably
B, vi, andy; are chosen randomly and independently, themany ¢g“*’s.
two variablesy®”i = ¢#7; are also independent. Because We remark that a case of democratic multiplicity
each of these is chosen froncantinuousdistribution P,  occurs in a solution for the ground state structure in a
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