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We develop a slave-boson theory for thet-J model at finite doping which respects an SUs2d
symmetry—a symmetry previously known to be important at half filling. The mean field phase dia
is found to be consistent with the phases observed in the cuprate superconductors, which containd-wave
superconductor, spin gap, strange metal, and Fermi liquid phases. The spin gap phase is best un
as the staggered flux phase, which is nevertheless translationally invariant for physical quantities
electron spectral function shows small Fermi pockets at low doping which continuously evolve int
large Fermi surface at high doping concentrations.

PACS numbers: 74.25.Jb, 71.27.+a, 79.60.Bm
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The parent compound of the cuprate superconducto
an antiferromagnetic (AF) insulator. With hole dopin
AF is rapidly destroyed and a metallic state emerges.
is well established that at optimal doping a Fermi surfa
exists with area1 2 x, wherex is the concentration o
doped holes [1]. On the other hand, forx ø 1, the sys-
tem remains AF with a doubled unit cell, and the Fer
surface is expected to be small pockets centered aro
the spy2, py2d point [2]. An important question is how
the low lying electron state evolves from smallx to op-
timal doping. This intermediate region, called the und
doped regime, also exhibits unusual magnetic proper
often referred to as spin gap behavior. Unlike optima
doped systems, where the magnetic susceptibilityx is tem-
perature independent, underdoped cuprates generally s
a reduction inx at temperatures below 400 K or so [3
Below 150 K, x and the NMR relaxation rate decrea
abruptly in an activated manner. It has been argued
this is observed only in bilayer materials [3]. In this pap
we shall concentrate only on the high temperature spin
behavior, which we view as evidence for the formation
spin singlets within the Cu-O layer. We shall address
question of how the spin gap manifests itself in the el
tronic spectral function, and how the Fermi surface evol
from small pockets to a large Fermi surface which satis
Luttinger’s theorem. This last question was addresse
a weak coupling theory [4], where fluctuating spin dens
waves induce shadow bands. We would like to study
strong correlation limit which we believe to be more a
propriate for the cuprates, and we take thet-J model as
our starting point.

A standard way of enforcing the constraint of n
double occupancy of thet-J model is to write the
electron operatorcai in terms of auxiliary fermions and
boson particlescai ­ faib

y
i and demand that each site

occupied by either a fermion or a boson. In a mean fi
(MF) treatment, the order parametersxij ­ k f

y
aifajl

and Dij ­ k f1if2j 2 f2if1jl describe the formation o
singlets envisioned in Anderson’s resonating valence b
(RVB) picture [5]. At zero doping, the translationall
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invariant solution can be described as ap-flux phase
[6] or a d-wave pairing state withjDijj ­ jxijj. The
symmetry which underlies the degenerate MF states
been identified as SUs2d, which expresses the idea that
physical up spin can be viewed as either the presence
an up spin or the absence of a down spin fermion [
In the conventional theory, the SUs2d is broken to Us1d
upon doping, and only thed-wave state survives as th
MF solution [8,9]. This scenario has been used as
explanation of the spin gap phenomenon[9].

In this paper we present a new formulation of th
constraint which preserves SUs2d symmetry away from
half filling. Our hope is that, since SUs2d is an exact
symmetry at half filling, the MF approximation of the new
formulation may capture more accurately the low ener
degrees of freedom and may be a better starting point
small x. We are also motivated by the photoemissio
experiment on the insulating cuprate [10], which finds
large excitation energy at thes0, pd point, comparable
to that ats0, 0d. This is just what is expected from th
p-flux phase spectrum, suggesting that the AF state m
resemble thep-flux phase at short distances. As we sh
see, the SUs2d formulation provides a scenario for how
the p-flux phase is connected to the spin gap phase
how the hole pockets evolve upon doping.

The SUs2d doublets c1i ­
≥

f1i

f
y

2i

¥
and c2i ­

≥
f2i

2f
y

1i

¥
were introduced in Ref. [7]. Here we introducetwo
spin-0 boson fields ba, a ­ 1, 2, forming another
doublet bi ­

≥
b1i
b2i

¥
. We then form SUs2d singlets to

represent the physical operators$Si ­
1
2 f

y
ai $sabfbi ,

c1i ­ b
y
i c1iy

p
2 ­ sby

1if1i 1 b
y
2if

y
2idy

p
2, and c2i ­

b
y
i c2iy

p
2 ­ sby

1if2i 2 b
y
2if

y
1idy

p
2. The t-J Hamil-

tonian
P

sijd fJs $Si ? $Sj 2
1
4 ninj 2 tscy

aicaj 1 H.c.dg
can now be written in terms of our fermion-boson (FB
fields. The Hilbert space of the FB system is larg
than that of thet-J model. However, the local SUs2d
singlets satisfyings 1

2 c
y
ai $tcai 1 b

y
i $tbidjphysl ­ 0 form

a subspace that is identical to the Hilbert space of thet-J
model. On a given site, there are only three states t
© 1996 The American Physical Society 503
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satisfy the above constraint. They aref
y
1 j0l, f

y
2 j0l, and

1
p

2
sby

1 1 b
y
2 f

y
2 f

y
1 d j0l, corresponding to a spin up an

down electron, and a vacancy, respectively. Furthermo
the FB Hamiltonian, as an SUs2d singlet operator, acts
within the subspace, and has the same matrix elemen
the t-J Hamiltonian.

Following the standard approach, we obtain the follo
ing MF Hamiltonian [11] for the FB system:

Hm ­ 2m
X

i

b
y
i bi 2

X
i

al
0i

µ
1
2

c
y
ait

lcai 1 b
y
i tlbi

∂
1

X
si,jd

3J
8

sjxijj
2 1 jDij j

2 1 c
y
aiUijcajd

1 tsby
i Uijbj 1 H.c.d , (1)

whereUij ­

µ
2x

p
ij

Dp
ij

Dij
xij

∂
.

The first two terms ofHm are included to impose the
constraints. The value ofm is chosen such that the tota
boson density (which is also the density of the ho
in the t-J model) is kby

i bil ­ kby
1ib1i 1 b

y
2ib2il ­ x.

The values ofal
0i are chosen such thatk 1

2 c
y
ait

lcai 1

b
y
i tlbil ­ 0. For l ­ 3 we have

k f
y
aifai 1 b

y
1ib1i 2 b

y
2ib2il ­ 1 . (2)

We see that, unlike the Us1d case, the density of the
fermionsk f

y
aifail is not necessarily equal to1 2 x. This

is because a vacancy in thet-J model may be represente
by an empty site with ab1 boson or a doubly occupied sit
with a b2 boson. We also notice that the MF Hamiltonia
is invariant under local SUs2d transformations,Wi [

SUs2d: cai ! Wicai, bi ! Wibi , Uij ! WiUijW
y
j , and

al
0it

l ! Wia
l
0it

lW
y
i .

We have searched the minima of the MF free energy
the MF ansatz with translation, lattice, and spin rotati
symmetries. We find a phase diagram with six differe
phases (Fig. 1).

FIG. 1. SUs2d MF phase diagram fortyJ ­ 1. The phase
diagram for tyJ ­ 2 is quantitatively very similar to the
tyJ ­ 1 phase diagram, when plotted in terms of the sca
variablextyJ, except thepF phase disappears at a lower scal
doping concentration.
504
e,

as

-

s

r
n
t

d
d

(1) Staggered flux (sF) phase:

Ui,i1x̂ ­ 2t3x 2 is2dix1iy D ,

Ui,i1ŷ ­ 2t3x 1 is2dix1iy D ,
(3)

and al
0i ­ 0. In the Us1d slave-boson theory, the

staggered flux phase breaks translation symm
try. Here the breaking of translational invarianc
is a gauge artifact. In fact, a site dependent SUs2d
transformation Wi ­ expfis21dix1iy spy4d t1g maps
the sF phase to thed-wave pairing phase of the
fermions: Ui,i1x̂,ŷ ­ 2xt3 6 Dt1, which is ex-
plicitly translationally invariant. In the sF phase th
fermion and boson dispersions are given by6Ef

and 6Eb , where Ef ­
q

sef 2 a3
0d2 1 h

2
f , ef ­

2s3Jy4d scoskx 1 coskydx, hf ­ 2s3Jy4d scoskx 2

coskydD, and a similar result forEb with 3Jy4 re-
placed by2t. Sincea3

0 ­ 0, we havek f
y
aifail ­ 1 and

kby
1 b1l ­ kby

2 b2l ­ xy2.
(2) Thep-flux (pF) phase is the same as the sF pha

except herex ­ D.
(3) The uniform RVB (uRVB) phase is described b

Eq. (3) withal
0i ­ D ­ 0.

(4) A localized spin (LS) phase hasUij ­ 0 andal
0i ­

0, where the fermions cannot hop.
(5) The d-wave superconducting (SC) phase is d

scribed byUi,i1x̂,ŷ ­ 2xt3 6 Dt1 and a3
0 fi 0, a

1,2
0 ­

0, kb1l fi 0, kb2l ­ 0. Notice that the boson condense
in the SC phase despite the fact that in our MF theo
the interactions between the bosons are ignored. The
MF solution provides an interesting example of finite
temperature free boson condensation in two dimensio
To see this, notice that thea3

0 term in the FB Hamiltonian
2

P
i a3

0s f
y
aifai 1 b

y
1ib1i 2 b

y
2ib2i 2 1d makes a3

0 be-
have like the chemical potential of the fermions. Th
fermions favor a nonzeroa3

0. Let us assumea3
0 , 0,

which makesk f
y
aifail , 1. A negativea3

0 also makes
the b1-band bottom higher than that ofb2, and the ther-
mally excited bosons satisfykby

1 b1ltherm , kby
2 b2ltherm.

Thus the thermally excited bosons alone cannot sat
the constraint in Eq. (2). Theb1 bosons are forced to
condense at the bottom of theb1 band to satisfy the con-
straint, in the same way that ordinary bosons conde
to satisfy the density constraint. Because of the ferm
contribution, the total free energy can still be lowered
generating a finitea3

0 at low temperatures.
(6) The Fermi liquid (FL) phase is similar to the SC

phase except that there is no fermion pairing (D ­ 0).
In the following we would like to discuss som

simple physical properties of the MF phases. uRV
sF, pF, and LS phases contain no boson condensa
and correspond to unusual metallic states. Sincea3

0 ­ 0,
the area of the fermion Fermi sea in the uRVB phase
pinned at1

2 of the Brillouin zone. As the temperature i
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lowered, fermions condense in pairs or develop stagge
flux and the uRVB phase changes into the sF orpF
phase. A gap is opened at the Fermi surface wh
reduces the low energy spin excitations. Thus the
and pF phases correspond to the high temperature s
gap phase. The SC phase contains both the boson
fermion pair condensations and corresponds to ad-wave
superconducting state of the electrons. The FL ph
containing boson condensation corresponds to a Fe
liquid phase of electrons. However, the area of t
Fermi sea produced by the SUs2d MF theory is larger
than that predicted by the Luttinger theorem, whi
reveals a drawback of the SUs2d MF theory at high
doping concentrations. This is probably related to anot
drawback of the SUs2d theory that the superconductin
Tc goes down too slowly beyond the optimal doping.
appears that the Us1d MF theory is better at higher doping

We would like to point out that the different MF phase
contain different gauge symmetries. The uRVB and
pF phases have the full SUs2d gauge symmetry. In the
sF phase the SUs2d gauge symmetry is broken down t
Us1d [12], while in the SC and FL phases the SUs2d gauge
symmetry is completely broken.

Next we calculate the physical electron Green functi
in the sF phase. Using the expression ofca , the MF
approximationG0 is given by the convolution of fermion
and boson Green functions. The expression ofG0 is
lengthy, but can be approximated at low temperatures

G0sk, vd ­
x
2

√
u2

v 2 Ef
1

y2

v 1 Ef

!
1 Gin . (4)

The first term describes the coherent motion of electro
with the fermion dispersion (where a finite decay rate
order T is ignored). The new feature is the appearan
of the coherent factorsuskd ­

q
sEf 1 efdy2Ef sgnshf d

and yskd ­
q

sEf 2 ef dy2Ef . The second term is the
incoherent background, which mainly reflects the bos
density of states. ImGin exists only for v , 0 and
contributes1y2 to a total spectral weights1 1 xdy2.

The coherent part ofG0 produces only Fermi points a
S ­ s6py2, 6py2d. Another feature is that the occu
pied part of the spectral weight ofG0 contains1 1 xy2
electrons as opposed to1 2 x electrons. These unsatis
factory features are due to the absence of correlation
tween fermions and bosons in arriving atG0. In reality
there is a strong attraction between them due to ga
fluctuations. In the limit of a single hole, this attractio
can lead to a bound state with the quantum number o
electron, as emphasized in Ref. [13]. In the case of fin
hole concentration, we expect that fermion particle-h
pairs may be spontaneously excited out of the MF grou
state so that theb2 (b1) bosons can bind to fermions (an
tifermions). The result would be low lying physical ele
tron excitations which may resemble a Fermi surface.
order to capture this physics, even at a very crude le
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we assume that after screening theal
0 fluctuations in-

duce the short range interaction2
P

i Uc
y
ait

lcaib
y
i tlbi ,

whereU , 0. We have calculatedGU , which includes
this attraction, in the Bethe-Salpeter approximation. T
results are shown in Figs. 2 and 3. To interpret these
sults, we consider insteadG0

U ­ sG21
0 1 Ud21, which we

have found numerically to be nearly identical toGU . It
is easy to see thatG0

U also has the formG0
U ­ G0

coh 1

G0
in. In the case when eitherjuj or jyj ø 1, we find

that G0
coh ­ Zysv 6 Ef 1 mfd with mf ­ xUy2s1 1

UGind andZ ­ sxy2dys1 1 UGind2. We see that a nega
tive U generates a negativemf which produces small hole
pockets. A negativeU also enhances the spectral weig
of unoccupied quasiparticles. This allows us to choo
U by requiring that the occupied spectral weight inGU

is 1 2 x. For generalu and y, we find that the coher-
ent part ofG0

U produces pocketlike Fermi surfaces nearS

(see Fig. 2), which are determined by2Efs1 1 UGind ­
Uxsu2 2 y2d. The quasiparticle weight at the Fermi su
face Z ­ 2E2

fyxU2 vanishes atS and is very small on
the outer edge of the pocket, making it hard to detect.
we approach the uRVB phase,D decreases and the pock
ets are elongated, while their area increases with dop
Eventually the inner edges of the pockets join togeth
to form a large Fermi surface, with low lying excitation
nearM and a shape which resembles the experiment [1

The incoherent background of ImGU contains two
broad peaks separated by2t, shown in Fig. 2(a) atS and
M. This follows from the pseudogap in the boson dens
of states and is a direct consequence of the stagge
flux. Coherence factors cause a transfer of spectral we
from the low energy to the high energy peak as one g
from G to S to X [14], in qualitative agreement with
exact diagonalization results [15] with the same dopi
concentration but at a higher temperature.

FIG. 2. (a) The electron spectral function ImGU in the
sF phase fortyJ ­ 2, x ­ 0.041, and TyJ ­ 0.13, where
x ­ 0.57 and D ­ 0.22. The sharp peaks nearv ­ 0 are
quasiparticle peaks. The inset shows a quarter of the Brillo
zone. (b) The spectral functions ImGU for three linear scans
along the lines A, B, and C in the inset.
505
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FIG. 3. The points describe the dispersion of the quasipart
peaks for the sF phase in Fig. 2. The vertical bars are p
portional to the peak values of ImGU , which reflect the quasi-
particle weight. The solid curve is the quasiparticle dispers
for a uRVB phase with the same doping concentration but a
higher temperature (TyJ ­ 0.19).

Figure 3 shows the dispersion of the quasiparti
peaks and their spectral weights. Comparing the
and uRVB dispersions, we see clearly a splitting of t
spectral weight alongS to M, which is remarkable for a
translational invariant state. In our theory the splitting
naturally related to the spin gap. We also note that at h
filling the bottoms of the band atM andG are degenerate
As doping is increased, the spin gap shrinks and
occupied band nearM moves up in energy, eventuall
producing the flat band near the Fermi surface seen
photoemission experiments. In our calculation, the ba
at G has been pushed up in energy from its bare va
near2J to 2Jy2 due to the inclusion ofU, whereas the
experimental value is closer to22J. We believe this
feature, as well as the large spectral weight nearG, is an
artifact of our crude treatment of the gauge fluctuation.

Figure 2(b) shows, in more detail, how the Ferm
surface disappears in the sF phase. In scan C, a g
band below the Fermi energy is quite visible after t
main peak goes above the Fermi surface. This ban
connected to the occupied band in Fig. 3 as theM point
is approached. The appearance of the ghost band
the sudden reduction of the quasiparticle spectral wei
in the ghost band have been observed in the insula
cuprates [10]. The inner edge of the Fermi pocket
the inset of Fig. 2 is determined from the position of t
quasiparticle peaks atv ­ 0. The quasiparticle peaks a
the outer edge of the Fermi pocket are not visible in o
numerical result, and the full ellipse of the Fermi pock
is completed based on our analytic results onG0

U .
The SUs2d MF theory shares many similar physica

properties with theUs1d MF theory (where the spin gap
is generated by thed-wave pairing of the fermions)
However, there are some qualitative distinctions.
506
le
ro-

n
t a

le
sF
e

is
alf

he

in
nd
ue

i
ost
e
is

and
ht
ng
in
e

ur
t

l

)

The sF phase in the SUs2d theory contains a gaples
Us1d gauge field, which is absent in the correspondi
d-wave state in theUs1d theory. It has been pointed
out that the existence of a mass gap in theUs1d theory
may destabilize thed-wave state [16]. The sF phas
may be more stable from this point of view. (2) Th
d-wave state in theUs1d theory does not produce th
double-peak structure in the incoherent background
ImG. One needs to use a flux phase in the Us1d theory
to produce the double peak (at the expense of break
translation or time reversal symmetry [14]). (3) Thed-
wave state in the Us1d theory does not have Fermi pocke
at finite doping, even if we include the gauge interacti
as we did in the SUs2d theory. The SUs2d theory
can generate Fermi pockets without breaking translat
symmetry. Because of their nesting condition, the s
gap (sF) phase of the SUs2d theory can have a nonzer
Pauli spin susceptibility (inT ! 0 limit) and strong
antiferromagnetic spin fluctuations. Both properties ha
direct experimental consequences.
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