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We develop a slave-boson theory for the/ model at finite doping which respects an @V
symmetry—a symmetry previously known to be important at half filling. The mean field phase diagram
is found to be consistent with the phases observed in the cuprate superconductors, whichieaatzgn
superconductor, spin gap, strange metal, and Fermi liquid phases. The spin gap phase is best understood
as the staggered flux phase, which is nevertheless translationally invariant for physical quantities. The
electron spectral function shows small Fermi pockets at low doping which continuously evolve into the
large Fermi surface at high doping concentrations.

PACS numbers: 74.25.Jb, 71.27.+a, 79.60.Bm

The parent compound of the cuprate superconductors isvariant solution can be described asmaflux phase
an antiferromagnetic (AF) insulator. With hole doping, [6] or a d-wave pairing state witHA;;| = |x;;|. The
AF is rapidly destroyed and a metallic state emerges. Isymmetry which underlies the degenerate MF states has
is well established that at optimal doping a Fermi surfacédeen identified as S@), which expresses the idea that a
exists with areal — x, wherex is the concentration of physical up spin can be viewed as either the presence of
doped holes [1]. On the other hand, for< 1, the sys- an up spin or the absence of a down spin fermion [7].
tem remains AF with a doubled unit cell, and the Fermiln the conventional theory, the $2J is broken to U1)
surface is expected to be small pockets centered aroungon doping, and only thd-wave state survives as the
the (7w /2, 7/2) point [2]. An important question is how MF solution [8,9]. This scenario has been used as an
the low lying electron state evolves from smallto op-  explanation of the spin gap phenomenon[9].
timal doping. This intermediate region, called the under- In this paper we present a new formulation of the
doped regime, also exhibits unusual magnetic propertiesonstraint which preserves $) symmetry away from
often referred to as spin gap behavior. Unlike optimallyhalf filling. Our hope is that, since Sb) is an exact
doped systems, where the magnetic susceptibilitytem-  symmetry at half filling, the MF approximation of the new
perature independent, underdoped cuprates generally shdarmulation may capture more accurately the low energy
a reduction iny at temperatures below 400 K or so [3]. degrees of freedom and may be a better starting point for
Below 150 K, y and the NMR relaxation rate decreasesmall x. We are also motivated by the photoemission
abruptly in an activated manner. It has been argued thatxperiment on the insulating cuprate [10], which finds a
this is observed only in bilayer materials [3]. In this paperlarge excitation energy at th@®, 77) point, comparable
we shall concentrate only on the high temperature spin gafp that at(0,0). This is just what is expected from the
behavior, which we view as evidence for the formation of7-flux phase spectrum, suggesting that the AF state may
spin singlets within the Cu-O layer. We shall address theesemble ther-flux phase at short distances. As we shall
guestion of how the spin gap manifests itself in the elecsee, the S(2) formulation provides a scenario for how
tronic spectral function, and how the Fermi surface evolveshe 7-flux phase is connected to the spin gap phase and
from small pockets to a large Fermi surface which satisfiefiow the hole pockets evolve upon doping.
Luttinger’s theorem. This last question was addressed in The SU2) doublets ;; = <f“> and ¢, = < fai )

. . . , a st
a weak coupling theory [4], where fluctuating spin density\yere introduced in Ref. [7]. fHere we introdugwo

waves induce shadow bands. We would like to study th&pin-0 boson fieldsb,, « = 1,2, forming another

strong correlation limit which we believe to be more ap- 4, pjet b, = <Zl> We then form SI2) singlets to
propriate for the cuprates, and we take thé model as g i - Lot
our starting point. represept the phst:caI opeJrraELorSi = 5 faiOapfBi,

A standard way of enforcing the constraint of noci = b; 1:/v2 = (biify; + byif2)/v2, and ¢y =
double occupancy of the-J/ model is to write the b;rszi/\/?: (bf,»f% - bgiffr,-)/\/i. The ¢-J Hamil-
electron operator,; in terms of auxiliary fermions and tonian Z(m [](S’i . §j — %ninj — t(c;r”-caj + H.c)]
boson particleg,; = fa,-b;r and demand that each site is can now be written in terms of our fermion-boson (FB)
occupied by either a fermion or a boson. In a mean fieldields. The Hilbert space of the FB system is larger
(MF) treatment, the order parameteps; = <flifaj> than that of thet-{ rT]rodeI. Hov¥ever, the local SD)
and A;; = (f1if2; — faf1;) describe the formation of singlets satisfyinds .74 + b; 7b;)|phys) = 0 form
singlets envisioned in Anderson’s resonating valence bond subspace that is identical to the Hilbert space ofrilie
(RVB) picture [5]. At zero doping, the translationally model. On a given site, there are only three states that
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satisfy the above constraint. They ayfélO}, f2T|0>, and (1) Staggered flux (sF) phase:

%(bl + beJff)lO}, corresponding to a spin up and o
Uijss = =T x — i(=)"HA,

down electron, and a vacancy, respectively. Furthermore, (3)

the FB Hamiltonian, as an 3B) singlet operator, acts Uity = _7-3)( + i(=)EThA

within the subspace, and has the same matrix elements as

the t-J Hamiltonian. and a); = 0. In the U1) slave-boson theory, the
Following the standard approach, we obtain the follow-staggered flux phase breaks translation symme-

ing MF Hamiltonian [11] for the FB system: try. Here the breaking of translational invariance

+ 14 + is a gauge artifact. In fact, a site dependent(BU
H, = —Mzbi bi — Zaéi<§¢ai’fl¢ai + b; le,) transformation W; = exp[i(—1)""%(ar/4) 7] maps
i i the sF phase to thel-wave pairing phase of the

3J . . :
+ > ?(l)(ijlz + AP+ i Uiihe)) fermions:  Uii+e5 = —x73 = A7y, which is ex-
(i.j) plicitly translationally invariant. In the sF phase the
+t(b;rU,»jbj + He), (1) fermion and boson dispersions are given byEy,

and *E,, where E; = \/(Ef —@)? + n;, € =
whereU;; = )A“f . —(3J/4) (cosk, + cosk,)x, m; = —(3J/4)(cosk, —

The first two terms ofH,, are included to impose the COSky)A, and a similar result fork, with 37/4 re-
constraints. The value gf is chosen such that the total placed by2:. Sinceaj = 0, we haVG(foa,-} =1 and
boson density (which is also the density of the holes(bfln) = <bgb2> = x/2.
in the ¢-J model) is (b;rb,) = <b1Jr,-b1,- + b;ribz,) = J. (2) The w-flux (wF) phase is the same as the sF phase

I t o1, except hergy = A.
Z?eIZ?Iiez O];fg’r larze 3CCVZSEQVZUCh thalg oi' i + (3) The uniform RVB (uRVB) phase is described by
i 70 - Eq. (3) witha); = A = 0. l
t t T _ 4) A localized spin (LS) phase hdg; = 0 andag;, =
(faifai  biibii = baibx) = 1. @) 0, S/v%ere the fermi(?ns (can)ngt hop. ! ’
We see that, unlike the () case, the density of the  (5) The d-wave superconducting (SC) phase is de-
fermions( £} f.:) is not necessarily equal to— x. This  SCfibed byU;+s5 = —x73 = Ary andag # 0, ag” =
is because a vacancy in the model may be represented 0. {b1) # 0, (b2) = 0. Notice that the boson condenses
by an empty site with &; boson or a doubly occupied site In the SC phase despite the fact that in our MF theory
with a b, boson. We also notice that the MF Hamiltonian the interactions between the bosons are ignored. The SC
is invariant under local S@) transformations,w; €  MF solution provides an interesting example of finite-
SUQ): thai — Withai, bi — Wib;, Uj; — WiUi,-W;r, and temperatgre fre_e boson condens_anon in two d_|mer_13|ons.
To see this, notice that the term in the FB Hamiltonian

We have searched the minima of the MF free energy fo 2 aﬁg ff{[’hf”” ;: bl%blll lt’Z’ l?[?’l fl)thm?kes a be h
the MF ansatz with translation, lattice, and spin rotation ave like the chemical potential of the termions. e

. 3 3
symmetries. We find a phase diagram with six differentfe"_mons favor f nonzerap. Let u‘_c' as3sume10 <0,
phases (Fig. 1). which makes( f,ifai) < 1. A negativea; also makes

the b,-band bottom higher than that &%, and the ther-
mally excited bosons satisff/b;r b therm < <b§ b2)therm -
Thus the thermally excited bosons alone cannot satisfy
! the constraint in Eq. (2). Thé, bosons are forced to
T/ | p | condense at the bottom of tlke band to satisfy the con-

““HH:LI‘--"-' “Nmmlnll""" FL | straint, in the same way that ordinary bosons condense
0.151 'iw, ‘,‘.muw""“" to satisfy the density constraint. Because of the fermion

mumnl“”'“I
‘H ””"“I ||lIIII\|

a(l),-Tl — W,-a(l),-TlW,-Jr.

| contribution, the total free energy can still be lowered by
SC 1 generating a finite;} at low temperatures.
. (6) The Fermi liquid (FL) phase is similar to the SC
0 01 : 0.2 phase except that there is no fermion pairing=t 0).
xt/]J In the following we would like to discuss some
simple physical properties of the MF phases. uRVB,
FIG. 1. SU2) MF phase diagram for/J = 1. The phase sF 7F, and LS phases contain no boson condensation

diagram for t/J = 2 is quantitatively very similar to the : :
t/J = 1 phase diagram, when plotted in terms of the scale nd correspond to unusual metallic states. Suf’)ce= 0,

variablext/J, except therF phase disappears at a lower scaledtN€ area ?f the fermion Fermi sea in the URVB phase is
doping concentration. pinned at; of the Brillouin zone. As the temperature is
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lowered, fermions condense in pairs or develop staggeresle assume that after screening thg fluctuations in-

flux and the uRVB phase changes into the sFm  duce the short range interactiony,; U, 7/srib! 71,
phase. A gap is opened at the Fermi surface whichyhere U < 0. We have calculated, which includes
reduces the low energy spin excitations. Thus the sfhis attraction, in the Bethe-Salpeter approximation. The
and mF phases correspond to the high temperature spifesults are shown in Figs. 2 and 3. To interpret these re-
gap phase. The SC phase contains both the boson aggdits, we consider instea@;, = (G, ' + U)~!, which we
fermion pair condensations and corresponds tbwave  have found numerically to be nearly identical @y. It
superconducting state of the electrons. The FL phasg easy to see thaf also has the fornG,, = Gl +
containing boson condensation corresponds to a Fern@ji'n_ In the case when eithdu| or |v| = 1, we find
liquid phase of electrons. However, the area of thehat G/, = Z/(w *+ E; + myp) with up = xU/2(1 +
Fermi sea produced by the 8) MF theory is larger UG;,) andZ = (x/2)/(1 + UGjyy)?. We see that a nega-
than that predicted by the Luttinger theorem, whichiive 7 generates a negatiye; which produces small hole
reveals a drawback of the §2) MF theory at high pockets. A negativé/ also enhances the spectral weight
doping concentrations. This is probably related to anothesf unoccupied quasiparticles. This allows us to choose
drawback of the SI2) theory that the superconducting ¢ by requiring that the occupied spectral weightGpy
T. goes down too slowly beyond the optimal doping. ltis | — x. For general and v, we find that the coher-
appears that the W) MF theory is better at higher doping. ent part ofGj, produces pocketlike Fermi surfaces n&ar
We would like to point out that the different MF phases (see Fig. 2), which are determined PE,(1 + UGiy) =
contain different gauge symmetries. The uRVB and theyx (42 — v2). The quasiparticle weight at the Fermi sur-
7F phases have the full $2) gauge symmetry. Inthe face z = 2£7/xU? vanishes afS and is very small on
sF phase the SQ) gauge symmetry is broken down t0 the outer edge of the pocket, making it hard to detect. As
U(1) [12], while in the SC and FL phases the @Ugauge e approach the uRVB phas&,decreases and the pock-
symmetry is completely broken. _ ets are elongated, while their area increases with doping.
~ Next we calculate the physical electron Green functiongventually the inner edges of the pockets join together
in the sF phase. Using the expressioncqf the MF {0 form a large Fermi surface, with low lying excitations
approximationGy is given by the convolution of fermion nearas and a shape which resembles the experiment [1].

and boson Green functions. The expressionGgf is The incoherent background of @y contains two
lengthy, but can be approximated at low temperatures byproad peaks separated By, shown in Fig. 2(a) ab, and
P u2 2 M. This follows from the pseudogap in the boson density
Golk, w) = §<w y T Ef> + Gin. (4  of states and is a direct consequence of the staggered

flux. Coherence factors cause a transfer of spectral weight
The first term describes the coherent motion of electronfrom the low energy to the high energy peak as one goes
with the fermion dispersion (where a finite decay rate offrom I" to X to X [14], in qualitative agreement with
orderT is ignored). The new feature is the appearancexact diagonalization results [15] with the same doping

of the coherent factors(k) = /(Ef + €7)/2E; sgn(ny) concentration but at a higher temperature.

and v(k) = /(Ef — €7)/2E;. The second term is the
incoherent background, which mainly reflects the boson 4
density of states. I, exists only for o < 0 and
contributesl /2 to a total spectral weighl + x)/2.

The coherent part of;y produces only Fermi points at
S = (*xm/2,=7/2). Another feature is that the occu-
pied part of the spectral weight @f, containsl + x/2 o)
electrons as opposed fo— x electrons. These unsatis-
factory features are due to the absence of correlation be- (5’ I
tween fermions and bosons in arriving @. In reality E
there is a strong attraction between them due to gauge =

fluctuations. In the limit of a single hole, this attraction _/\'_/\2_/
can lead to a bound state with the quantum number of an 0 : —
electron, as emphasized in Ref. [13]. In the case of finite -6 -3 ®/ 0 -3/8 3/8

hole concentration, we expect that fermion particle-hole . .

pairs may be spontaneously excited out of the MF ground!G. 2. (a) The electron spectral function dim in the
state so that thé, (b,) bosons can bind to fermions (an- f('::pg"?‘s%eaaoétéj =:02i2x fn?e-o‘;lh’a%”%ggé :né)é};l: v(\)/h:rrg
t|ferm|on_s).. The re_sult would be low lying ph_yS|caI elec- guasiparticle peaks. The inset shows a quarter of the Brillouin
tron excitations which may resemble a Fermi surface. Iyone. (b) The spectral functions G for three linear scans

order to capture this physics, even at a very crude levehlong the lines A, B, and C in the inset.
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The sF phase in the $R) theory contains a gapless
U(1) gauge field, which is absent in the corresponding

0.75 - d-wave state in theU(1) theory. It has been pointed
out that the existence of a mass gap in thed) theory

- may destabilize thel-wave state [16]. The sF phase

) Wﬂ‘*"" may be more stable from this point of view. (2) The

d-wave state in theU(1) theory does not produce the
double-peak structure in the incoherent background of
ImG. One needs to use a flux phase in thd)Uheory
- i /"E' to produce the double peak (at the expense of breaking
[" translation or time reversal symmetry [14]). (3) THe
wave state in the U) theory does not have Fermi pockets
r M r X M at finite doping, even if we include the gauge interaction
FIG. 3. The points describe the dispersion of the quasiparticléﬁ"S we did in the,S@) theory. The S@) theory )
peaks for the sF phase in Fig. 2. The vertical bars are procan generate Fermi pockets without breaking translation
portional to the peak values of I&;, which reflect the quasi- symmetry. Because of their nesting condition, the spin
particle weight. The solid curve is the quasiparticle dispersionyap (sF) phase of the $2) theory can have a nonzero
for a uRVB phase with the same doping concentration but at Pauli spin susceptibility (in7 — 0 limit) and strong
higher temperaturel(/J = 0.19). . ; . . i
antiferromagnetic spin fluctuations. Both properties have
direct experimental consequences.
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