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Charge Density Wave in Two-Dimensional Electron Liquid in Weak Magnetic Field

A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii
Theoretical Physics Institute, University of Minnesota, 116 Church Street Southeast, Minneapolis, Minnesota
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We study the ground state of a clean two-dimensional electron liquid in a weak magnetic field where
N ¿ 1 lower Landau levels are completely filled and the upper level is partially filled. It is shown
that the electrons at the upper Landau level form domains with filling factors equal to 1 and zero. The
domains alternate with a spatial period of order of the cyclotron radius, which is much larger than the
interparticle distance at the upper Landau level. The one-particle density of states, which can be probe
by tunneling experiments, is shown to have a gap linearly dependent on the magnetic field in the limit
of largeN.

PACS numbers: 73.20.Dx, 73.40.Gk, 73.40.Hm
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The nature of the ground state of an interacting tw
dimensional (2D) electron gas in a magnetic field h
attracted much attention. The studies have been focu
mostly on the case of very strong magnetic fields whe
only the lowest Landau level (LL) is occupied, so that th
filling factor n ­ k2

Fl2 does not exceed unity (herekF is
the Fermi wave vector of the 2D gas in zero magne
field and l is the magnetic length,l2 ­ h̄ymvc). The
physics at the lowest LL turned out to be so rich tha
perhaps, only atn ­ 1 does the ground state have a simp
structure; namely, it corresponds to one fully occupied sp
subband of the lowest LL. The charge density in such
state is uniform. The case of a partial filling,n , 1,
is much more interesting. Using the Hartree-Fock (H
approximation, Fukuyama, Platzman, and Anderson
found that a uniform uncorrelated spin-polarized electr
liquid (UEL) is unstable against the formation of a charg
density wave (CDW) at wave vectors larger than0.79l21.
The optimal CDW period was later found to coincide wit
that of the classical Wigner crystal (WC) [2].

Subsequently, however, it turned out that non-HF tr
states suggested by Laughlin [3] forn ­ 1y3 and 1y5
to explain the fractional quantum Hall effect are lowe
in energy by a few percent. The Laughlin states we
further interpreted in terms of an integer number of ful
occupied LL’s of new quasiparticles, composite fermion
[4]. This concept was then applied to even denomina
fractions [5]. Thus, although the HF approximation give
a rather accurate estimate of the energy, it fails to descr
important correlations in a partially filled lowest LL.

Recently, the requirement of complete spin polarizati
in the ground state was also reconsidered. It was found t
a partially filled lowest LL may contain Skyrmions [6].

In this Letter we consider the case of weak magne
fields or high LL numbersN. There is growing evidence
from analytical and numerical calculations that fraction
states, composite fermions, and Skyrmions are restric
to the lowest and the first excited LL’s (N ­ 0, 1) only
(see Refs. [7–9]). We will present an additional argume
in favor of this conclusion. This point of view is also
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consistent with the experiment because none of th
structures has been observed forN . 1.

Before we proceed to the main subject of the paper
partially filled upper LL, note that we can use the conce
of LL’s only if the electron-electron interactions do no
destroy the Landau quantization. For weak magnetic fie
where the cyclotron gap̄hvc is small, this is far from being
evident. To see that the LL mixing is indeed small one h
to calculate the interaction energy per particle at the up
LL and verify that its absolute value is much smaller tha
h̄vc. The largest value of the interaction energy is attain
atn ­ 2N 1 1 where the electron density at the upper L
is the largest. The interaction energy per particle is eq
to 2

1
2 Eex, whereEex is the exchange-enhanced gap for t

spin-flip excitations [10] atn ­ 2N 1 1 (it determines,
e.g., the activation energy between spin-resolved quan
Hall resistivity peaks). Aleiner and Glazman (AG) [9
calculatedEex to be

Eex ­
rsh̄vcp

2 p
ln

µ
2
p

2
rs

∂
1 Eh, rs ø 1 , (1)

whereEh is the “hydrodynamic” term (see Ref. [11]) give
by [12]

Eh ­ h̄vc
lnsNrsd
2N 1 1

. (2)

The parameterrs entering these formulas is defined b
rs ­

p
2ykFaB, aB ­ h̄2kyme2 being the effective Bohr

radius. In realistic samplesrs , 1 but even at suchrs the
ratioEexyh̄vc is still rather small. Therefore even at wea
magnetic fields the cyclotron motion is preserved and
mixing of the LL’s is small. Note that the first term inEex
linearly depends on the magnetic field, whereasEh has an
approximately quadratic dependence.

Since we chose to rely on the HF approximation,
natural turn of thought is to consider a WC-type sta
whose wave function is given by [9,13]

jCl ­
Y

i

c
y
Ri

j0N l , (3)
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where j0N l stands forN completely filled LL’s andc
y
R

is the creation operator for a certain one-particle sta
called a coherent state [14]. The modulus of the coh
ent state wave function is not small only within a distan
l off the classical cyclotron orbit with the center at th
point R and radiusRc ­ kFl2. In the HF WC stateRi

coincide with the sites of a triangular lattice with densi
nN y2pl2, wherenN ; n 2 2N. From now on we con-
sider onlynN #

1
2 , which suffices because of the electron

hole symmetry.
WhennN is small,nN ø 1yN, the cyclotron orbits at

neighboring lattice sites do not overlap, and the conce
of the WC is natural. However, this concept was appli
for overlapping orbits as well. According to AG, a
N ¿ r22

s ¿ 1 and not too smallnN , nN ¿ 1yNr2
s , the

cohesive energy of the WC; i.e., the energy per particle
the upper LL with respect to that in the UEL of the sam
density, is given by [15]

EWC
coh ­ 2

h̄vc

16pN

∑p
2

rs
1

3
2p

lnsNnN d
∏

2
1 2 nN

2
Eh .

(4)

Assuming that the WC is the ground state, AG found th
the one-particle density of states (DOS) consists of tw
narrow peaks separated by the gapEg ­ Eh (see also
Ref. [11]). In the limit of largeN , bothEg andjEWC

coh j are
much smaller thanEex, and so AG concluded that there
are two different scales for spin and charge excitations.

In this Letter we claim that fornN ¿ 1yNr2
s the ground

state is not the WC, but another type of CDW whose peri
is of orderRc. In contrast to the lowest LL, the optima
CDW period ismuch largerthan the average distance be
tween the electrons at the upper LL. The cohesive ene
of the CDW has the scaleEex and is given by

ECDW
coh ø 2fsnN drsh̄vc ln

µ
1 1

0.3
rs

∂
2

1 2 nN

2
Eh ,

(5)

where fsnN d ø 0.03 at nN ­
1
2 and fsnN d ~ nN at

1yNr2
s ø nN ø

1
2 . The DOS consists of two peaks

(Van Hove singularities) at the edges of the spectrum,
distance between them fornN , 1

2 being equal to

Eg ø
rsh̄vcp

2 p
ln

µ
1 1

0.3
rs

∂
1 Eh . (6)

Hence, we claim that all the important properties of th
N th LL are determined by thesinglescaleEex.

Let us compareEWC
coh andECDW

coh . The “hydrodynamic”
term is the same in both. Hence one has to compare o
the remaining terms. It is easy to see that the CDW st
wins over the WC providednN * 1yNr2

s .
Our CDW state can be roughly approximated by a sta

(3), with Ri forming patterns shown in Fig. 1. The aggre
gation of many particles in large domains of sizeRc al-
lows the system to achieve a lower value of the exchan
energy. At the same time, due to the fact that the dom
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FIG. 1. CDW patterns. (a) Stripe pattern. (b) Bubble patte
(c) WC. One cyclotron orbit is shown.

separation is chosen according to the special ringlike sh
of the wave functions at the upper LL, the actual char
density variations are not too large (of order20%). Hence,
the increase in the Hartree energy due to the domain f
mation is small. According to our numerical simulation
for N ­ 5 and rs ­ 0.5, at nN . 0.3 the optimal CDW
has a “stripe” structure [Fig. 1(a)]. AtnN , 0.3 a “bub-
ble” pattern [Fig. 1(b)] wins. The distance between th
“bubbles” in this pattern is of orderRc and remains ap-
proximately the same asnN decreases. Correspondingly
their diameter is given by,Rc

p
nN . At nN , 1yN where

it becomes of orderl the “bubbles” consist of single elec
trons, i.e., the CDW state becomes indistinguishable fro
the WC [Fig. 1(c)]. With further decrease innN , the dis-
tance between the electrons increases.

At this point we would like to address the issue o
the fractional states at high LL’s. We believe that
nN ¿ 1yN the fractional states cannot compete with th
CDW state. Indeed, the CDW state has a very low ene
because of the correlations in the positions of the guidi
centers on the length scaleRc, which is the largest length
scale in a not too dilute system. In the fractional state
just like in the WC, these correlations have the leng
scalel. Based on the example of the WC, it seems ve
plausible that the correlations of this type are much le
effective. On the other hand, there is no doubt that
nN ø 1yN the WC is the ground state. This leaves on
a narrow window in the vicinity ofnN ­ 1yN , where the
fractional states may or may not appear.

The novel ground state enables us to explain two
teresting experimental findings. One is the magnitude
a pseudogap in the tunneling DOS, first observed in e
periments on a single quantum well [16] and, recently,
double quantum well high-mobility GaAs systems [17,18
The pseudogapEtun appears to be linear in magneti
field for 1 # N # 4 [18]. Theoretically, the pseudogap
is given byEtun ­ 2Eg. The additional factor of 2 arises
because the tunneling DOS is the convolution of the DO
of the two wells. For the parameters of Ref. [18] Eq. (6
leads toEtun ø 0.52h̄vc, which compares favorably with
the experimental value of0.45h̄vc [18]. In the experimen-
tal range of parameters the “hydrodynamic” term dom
nates, and our result is only35% larger than that of AG,
2Eh. However, in the limitN ¿ 1 we predict a much
wider pseudogap with a linear instead of an approximat
quadratic dependence on the magnetic field. Note t
even for1 # N # 4 the dependence, which we predict,
not much different from the linear one. Recently, Levito
and Shytov [19] obtained an expression forEtun similar
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but not identical to ours without studying the ground sta
of the system. We believe that only the CDW ground st
can justify this type of expression.

Another important application of the proposed pictu
concerns the conductivity peak width of the integ
quantum Hall effect in high-mobility structures where th
disorder is believed to be long range. A semiclassi
electrostatic model of Efros [20] predicts that the electr
liquid is compressible in a large fraction of the samp
area. If the compressible liquid is considered to
metallic, then the conductivity peaks are necessa
wide [20], which is indeed observed at relatively hig
temperatures [21]. However, it is well known that at lo
temperatures the peaks are narrow (see, e.g., Ref. [2
which may result from the pinning of the compressib
liquid [23]. The fine CDW structure of the compressib
liquid (Fig. 1) makes such a pinning possible even thou
the disorder is long range. Note that, although the pinn
prohibits sliding of the CDW as a whole, the current c
still flow along the boundaries of the filled and emp
regions (the “bulk edge states”). Precisely atnN ­

1
2 , the

bulk edge states form a percolating network, which lea
to a narrow peak in conductivity with, in certain mode
[24], a universal height0.5e2yh.

We start our analysis by writing down the HF cohesi
energy of the electrons at the upper partially filled L
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(cf. Refs. [1,2]),

ECDW
coh ­

nL

2nN

X
qfi0

ũHFsqd jeDsqdj2. (7)

Here and below we use tilde for Fourier transforme
quantities,L is the size of the system,nL ­ s2pl2d21, and
Dsrd is the CDW order parameter. It is proportional to th
guiding center density at the pointr. For instance, the WC
corresponds toDsrd in the form [2]

Dsrd ø
2

L2

X
i

exp

∑
2

sr 2 Rid2

l2

∏
. (8)

The HF interaction potential̃uHFsqd entering Eq. (7)
is the difference of the direct and the exchange term
ũHFsqd ­ ũHsqd 2 ũexsqd, which are further defined by

nLũexsqd ­ uHsql2d, nLũHsqd ­
e2F2sqd
q´sqdl2

, (9)

Fsqd ­ e2q2l2y4LN sq2l2y2d , (10)
LN being the Laguerre polynomial. Following Ref. [9
(see also Ref. [25]), the screening by the lower LL’s
explicitly taken into account with the help of the dielectr
constant

´sqd ­ k

Ω
1 1

2
qaB

f1 2 J2
0 sqRcdg

æ
. (11)

From Eqs. (9) and (10) an asymptotic expression
ũHFsqd can be derived,
nLũHFsqd ø
h̄vc

p

Ω
1

2qRc
2

rsp
2

ln

µ
1 1

r21
sp

2 qRc

∂
1

sins2qRcd
2qRcf1 1 srsy

p
2 dg

æ
2 Eh . (12)
d

est
er

ve
We want to find the distribution of the guiding cente
densityDsx, yd that minimizes the energy. Generally, th
is a nontrivial problem because the HF equations ha
to be solved self-consistently. However, if the CDW
unidirectional, i.e., ifDsx, yd does not depend ony, the
self-consistency condition is simply

Dsxd ­ Qf2eHFsxdgyL2, (13)

eHFsxd ­
X
qfi0

nLũHFsqdeDsqx̂deiqx , (14)

where eHFsxd is the HF self-energy,Qsxd is the step
function, andx̂ is a unit vector in thex direction. The
meaning of this condition is that the states above
Fermi level are empty and below the Fermi level are fille

For N . 0 the Hartree potential̃uHsqd necessarily has
zeros due to the factorFsqd containing the Laguerre
polynomial [Eqs. (9) and (10)]. The first zero,q0, is
approximately given byq0 ø 2.4yRc. The exchange
potential is always positive; hence, there existq where
the total HF potential̃uHF is negative [in agreement with
Eq. (12)]. This leads to the CDW instability because t
energy can be reduced by creating a perturbation at an
such wave vectors (cf. Ref. [1]).

In the parameter range0.06 , rs , 1 andN , 50 well
covering all cases of practical interest, the HF potentia
negative at allq . q0 and reaches its lowest value ne
r

ve
s

e
.

e
of

is
r

q ­ q0 (see Fig. 2). One can guess then that the low
energy CDW is the one with the largest possible [und
the conditions (13) and (14)] value ofjeDsq0x̂dj. The CDW
having this property consists of alternating stripsDsxd ­ 0
andDsxd ­ 1yL2 [Fig. 1(a)], and nonzeroeDsqd are given
by

eDsqx̂d ­
q0

pq
sin

µ
pnNq

q0

∂
, (15)

providedq is an integer multiple ofq0. Our numerical
simulations showed that atnN close to 1

2 this is indeed
the correct type of the solution in the specified abo
range ofrs andN, but q0 should be replaced by a slightly

FIG. 2. The Hartree, exchange, and HF potentials inq space
for N ­ 5 andrs ­ 0.5.
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smaller value of2.3yRc corresponding to the spatial perio
of 2.7Rc.

Having established the functional form ofDsxd, let
us estimate the cohesive energyECDW

coh . Performing the
summation in Eq. (7) with the help of Eqs. (12) and (15
one recovers Eq. (5). As for the DOS, it is given b
snLq0ypd jdeHFydxj21. It can be verified thateHFsxd
reaches its lowest and largest values atx ­ 0 and x ­
pyq0, respectively. These extrema result in the Van Ho
singularities at the edges of the spectrum separated
the gapEg ­ 2jes0dj. Equation (6) now follows from
Eqs. (12), (14), and (15).

So far we discussed the unidirectional CDW, which c
be analyzed at least partially analytically. 2D CDW pa
terns were studied numerically. We restricted the cho
of Dsrd to the form (8) suggested by the WC state. Rec
that in the WC stateRi coincide with the sites of a tri-
angular lattice with densitynNnL. In the simulations we
used a different set ofRi , corresponding to the triangula
lattice with the densitynL. The fractionnN of the total of
50 3 50 lattice sites was initially randomly populated, an
then the energy was numerically minimized with respec
different rearrangements of the populated sites. The
pression for the energy follows from Eqs. (7) and (8):

E ø
1
2

X
i,j

gHFsRi 2 Rjd sni 2 nN d snj 2 nN d , (16)

whereegHFsqd ­ exps2 1
2 q2l2d ũHFsqd andni is the occu-

pancy of theith site. In this notation the energy has
transparent interpretation of pairwise interaction among
single-electron statesjc

y
Ri

l. In the actual simulations we
used a slightly more accurate expression withgHFsrd re-
placed bygHFsrdyf1 2 exps2r2y2l2dg (cf. Refs. [9,13]).
The patterns obtained from the simulations are schem
cally shown in Fig. 1 and were discussed above.

In conclusion, we have argued that the ground state
partially filled upper LL in a weak magnetic field is a CDW
with a large period of orderRc. Based on this, we were
able to explain several important experimental results.
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