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Critical Behavior of the S 5 3y2 Antiferromagnetic Heisenberg Chain
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Using the density-matrix renormalization-group technique we study the long-wavelength propertie
the spinS ­ 3y2 nearest-neighbor Heisenberg chain. We obtain an accurate value for the spin velo
y ­ 3.87 6 0.02, in agreement with experiment. Our results show conclusively that the model belon
to the same universality class as theS ­ 1y2 Heisenberg chain, with a conformal central chargec ­ 1
and critical exponenth ­ 1. [S0031-9007(96)00504-2]
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The study of one-dimensional spin-SHeisenberg Hamil-
tonians has received considerable attention in recent ye
Their properties are important to experimentalists beca
they describe a number of materials with magnetic io
arranged in chains [1,2]. The first quasi-1D antiferroma
nets with spin 3y2 which found experimental interest a
CsVCl3 [3] and AgCrP2S6 [4]. For theorists the spin mod
els are among the simplest Hamiltonians where quan
fluctuations are crucial. However, only the special ca
S ­ 1y2 can be solved exactly [5]. In this case Luth
and Peschel [6] found that the spectrum is gapless, th
is no magnetic ordering in the ground state, and the s
correlation functionvsld ­ kSz

i1lS
z
i l decays according to

a power lawjvsldj , 1ylh with h ­ 1. Later Haldane
[7] proposed that for half-odd-integer spin the Heisenb
Hamiltonian would behave as in theS ­ 1y2 case, i.e.,
no energy gap and power-law decay of the spin corre
tion function, while in the integer case the spectrum wo
have an energy gap and the spin correlations would
cay exponentially. Early numerical work confirmed th
conjecture [1,8,9] and power-law decay of the spin cor
lation was found for half-odd-integer spin, yet the exp
nent h seemed to beS dependent. When the powerfu
tools of conformal invariance started to be applied
one-dimensional quantum systems it became clear
the integrableS ­ 1y2 Hamiltonian at low energies is
equivalent to the SU(2) symmetric Wess-Zumino-Witt
(WZW) model with topological coupling constantk ­ 1
[10]. In this model,k is related to the central chargec by
c ­ 3kys2 1 kd and the critical exponenth is given by
3ys2 1 kd. It was also found [10] that a new class of int
grable antiferromagnetic Hamiltonians with arbitrary sp
[11] were equivalent to the WZW model withk ­ 2S.

Based on the SU(2) symmetry of the nonintegra
half-odd-integer spin Hamiltonians Schulz [12] sugges
the following possible scenarios: (a) The half-odd-integ
spin-S Heisenberg Hamiltonian belongs to the same u
versality class as the spin-S integrable model. In this
case both models would havec ­ 3kys2 1 kd and h ­
0031-9007y96y76(26)y4955(4)$10.00
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3ys2 1 kd and k ­ 2S. This scenario was favored ini
tially by Affleck [13]. (b) The spin-S integrable models
represent unstable multicritical points in the phase diag
and the stable critical point is defined by theS ­ 1y2
Hamiltonian. Thus, the half-odd-integer spin-S Heisen-
berg model is expected to be equivalent to thek ­ 1 WZW
model havingc ­ 1 andh ­ 1, independent of the valu
of S. This position was favored by Schulz and later on
Haldane and Affleck [14,15].

Since the derivations of scenarios (a) and (b) invo
several assumptions and approximations, unbiased num
cal studies are needed to decide which one is corr
The S ­ 3y2 Heisenberg Hamiltonian is the simplest
the higher half-odd-integer spin models. Since there
4 degrees of freedom per site, the longest chains that
be exactly diagonalized with present computer capab
ties have 14 sites. Previous numerical studies condu
in such small chains gave conflicting results [16–1
Moreo, [16] analyzing the behavior of spin correlatio
functions in lattices withN # 12, found h ø 0.6, while
Ziman and Schulz [17] obtainedh ø 1 by studying the
behavior of the lowest triplet and singlet state energy g
also in chains withN # 12. A Monte Carlo calculation of
the spin correlation function [19] in chains with up to 12
sites provided exponents in disagreement with the SU
WZW scaling theory. The analysis of small systems
hampered by the presence of logarithmic corrections wh
modify the power-law dependence of various quantities
a significant way. In this Letter we will elucidate this pro
lem numerically by studying sufficiently large systems th
cannot be solved with exact diagonalization, and by Mo
Carlo techniques only with considerable statistical erro

For this purpose we will use the density-matr
renormalization-group technique (DMRG) [20] keepin
up to m ­ 1200 states per block and considering chai
up toN ­ 60 sites. The large number of statesm used in
these calculations was dictated by (i) the use of perio
(instead of open) boundary conditions which requi
more states [20] and (ii) the subsequent finite size anal
© 1996 The American Physical Society 4955
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tant
.g.,
of the data which involves power laws combined w
logarithmic dependencies and thus requires high accu
of the data even for the largest systems conside
For the largest chains we estimate that the ground s
energy has an absolute error of less than7 3 1026, by
considering differentm values. Our results for sma
systems,N # 14, agree with exact calculations [9,21,2
and the ground state energy is exact up toN ­ 12.

To calculate the conformal central chargec (or equiva-
lently k) we account for the finite-size corrections of t
ground-state energy per site,E0yN, as derived from the
WZW theory [15]

E0

N
­ e` 2

yp

6N2

∑
3k

2 1 k
1

3k2

8 ln3sBNd

∏
2

S
N4 . (1)

The coefficientB depends on the effective coupling co
stant (see below) and can be dropped only in the largN
limit [23]. The last higher-order term reflects a finite si
correction to the conformal charge. In principle Eq.
may be fitted with five free parameters; however, we fou
that more accurate results are obtained by an indepen
calculation of the spin velocityy and ofB.

The spin velocity can be determined numerica
from the excitation energyDq ­ Es2pyNd 2 Es0d ­
y sins2pyNd, whereEs2pyNd is the energy of the firs
excited state with the lowest nonzero momentum obtai
from the spin excitation spectrum [24] and the Davids
algorithm [25] (with estimated absolute error.1022).
Studying the behavior ofDqyN vs sins2pyNdyN, as
shown in Fig. 1, to minimize the errors, we obtain a rat
precise value for the spin velocityy ­ 3.87 6 0.02. This
implies an enhancement factor of 1.29 with respect to
spin-wave resultysw ­ 2S ­ 3. This factor is signifi-
cantly lower than the valuepy2 for the spin-1y2 chain
(where ysw ­ 1) thus implying that the quantum reno
malization of the low-lying spin excitations is weake
er

in
he

the

n
g

FIG. 1. Excitation energyDqyN vs sins2pyNdyN . The linear
interpolation yields the spin velocity (slope)y ­ 3.87 6 0.02
(full line).
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Our y is higher than the valuey ­ 3.64 6 0.08 given by
Yamamoto [26]. The latter was calculated using a wor
line Monte Carlo approach with larger error bars in t
excitation energies (,10% as estimated from the figures
The velocity is in good agreement with the measured sp
wave velocityy ­ 1.26ysw for the spin-3y2 chain system
CsVCl3 [3]. Mutka, Payen, and Molinié [4] argued tha
their experimental results for the uniform susceptibili
of the spin-3y2 chain system AgCrP2S6 are consistent
with spin-1y2, i.e., supporting universality. Their valu
for the spin velocityy ­ 1.53ysw appears too high in
view of our results. The discrepancy between the exp
mental values may be partly attributed to the difficul
in extracting the exchange constantJ from the uniform
susceptibility [27].

The value of the coupling constantg of the conformal
field theory can be determined directly by writing Eq. (
in its equivalent form

E0

N
­ e` 2

yp

6N2

∑
3k

2 1 k
1

s2pgd3
p

3 k

∏
2

S
N4

, (2)

where

gsg0, N, kd ­
g0

1 1
4pg0p

3 k
lns N

l0
d

(3)

and

B ­
eg21

eff

l0
, geff ­

4p
p

3 k
g0 . (4)

From Eqs. (2) and (3) and the velocity given above
find e` ­ 22.82833s1d, k ­ 1.00s1d, and the coupling
constant g0 ­ gsl0 ­ 20d ­ 0.055s5d. The error was
estimated using different subsets of the data. The cons
S depends on the smallest system included in the fit, e
for N $ 12 we found S ­ 20. From Eq. (4),B ­ 0.6
andgeff ­ 0.4.

Using the previous values ofy and B and from a
three parameter fit of Eq. (1) usingN $ 8 we obtain
consistentlye` ­ 22.828 33, k ­ 1 6 0.01, andS ­ 15
(Fig. 2). Our ground-state energy is considerably low
than the energye` ­ 22.8248 obtained in a recent Monte
Carlo study Ref. [28], where a1yN2 scaling of the energy
was assumed. From our results fork we conclude that
c ­ 1.00 6 0.01.

To obtain the critical exponent we calculated the sp
correlation function keeping 1000 states per block. T
absolute error for the largest system is lower than1023.
We found that the scaling behavior obeyed by the spin1y2
chain [23,29] is absent in this case and we extrapolated
finite-size data with a quadratic polynomial in1yN2. The
correlation function in the thermodynamic limit is show
in Fig. 3. We interpolated this correlation function usin
the theoretical prediction [15]

vsl, `d ­ a

p
lnsBld
lh

, (5)
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FIG. 2. Scaling of the ground state energyE0yN . Interpola-
tion including logarithmic corrections yields the central cha
c ­ 1.00 6 0.01 and an extrapolated valuee` ­ 22.828 33
(full line).

and obtaineda ­ 2.06, B ­ 0.56, and h ­ 1.02. This
fit is presented in Fig. 3 where we added the correlati
for S ­ 1y2 to show that in both cases they have t
same multiplicative logarithmic corrections, the coupli
constant being smaller forS ­ 1y2 [23]. We note that
a ­ vsl0, `dpgeff l0 andB follows from Eq. (4). Using
the value forgeff given above and the extrapolated val
for vsl0, `d we obtain a ­ 2.07 and B ­ 0.6. Thus
the parameters obtained from the correlation function
in complete agreement, whithin error bars, with tho
obtained from the scaling of the ground-state energy.

On the other hand, if we assumeh ­ 1, we can analyze
lvsl, `dyl0vsl0, `d ­

p
gsl0dygsld. This ratio directly
nc
ic
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FIG. 3. Extrapolated and normalized spin correlation fu
tions. The fit which includes the multiplicative logarithm
correction givesh ­ 1.02 (full line) and coefficients that are in
agreement with those obtained from the scaling of the ene
The correlation function and fit of the spin-1y2 chain [23] is
shown for comparison. Inset: normalized correlation functio
multiplied by l, showing the logarithmic correction.
s

e
e

reflects the dependence on the coupling function [23] a
a single parameter fit yieldsgsl0 ­ 20d ­ 0.052.

The critical exponenth can also be calculated from th
scaling of singlet and triplet excitation energies [15]:

Di ­
Ei 2 E0

N

­
2py

N2

∑
hi

2
2

SL ? SR

lnsBNd

∏
1

bi

N2 ln2sBNd
. (6)

Here hiy2 (i ­ s, t) is the scaling dimension of the
corresponding primary field, andSL andSR are the spin
operators related to the energy levels of the conform
field theory describing the fixed point, with spin quantu
numberssL andsR. According to the WZW mapping

SL ? SR ­
1
2

fsss 1 1d 2 sLssL 1 1d 2 sRssR 1 1dg ,

(7)

wheres is the total spin number. The triplet states ­ 1
and the first singlet excitations ­ 0 (for both casessL ­
sR ­ 1y2) become degenerate in the thermodynamic lim
Therefore, if we take the appropriate linear combinati
of Eq. (6) for these excitations, the leading logarithm
corrections are canceled out:

D ­
1

4N
fsEs 2 E0d 1 3sEt 2 E0dg

­
pyh

N2 1
b

N2 ln2sBNd
. (8)

This quantity has been used before in Ref. [17] to estim
h using three system sizes, i.e.,N ­ 8, 10, and 12 sites
with the resulth . 1. We reached an excellent inte
polation of our data (including aS0yN4 term), shown in
Fig. 4, leading toh ­ 1.018, b ­ bs 2 3bt ­ 25.4, and
S0 ­ 80.
-

y.

s
FIG. 4. Scaling of the triplet gap (circles) and the combin
gapD (diamonds). Equations (6) and (8) were used to extr
the exponenth (full lines).
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We also obtained a good fit for the triplet finite-si
gap (Dt), also shown in Fig. 4, but we were forced
add the subleading termssss,fln lnsBNdg2y ln4sBNd and
S00yN4ddd to obtain convergence. In this case our results
h ­ 0.977, bt ­ 34, andS00 ­ 83. For the interpolation
we have used the values for the velocity andB calculated
earlier.

In conclusion, we have found very accurate values
the spin velocity, the central chargec, and the critical ex-
ponenth for the Heisenberg Hamiltonian withS ­ 3y2
using the DMRG technique that allowed us to study su
ciently large chains with negligible error. We foundc ­
1.00 6 0.01 and h ­ 1.02 6 0.02 which shows, within
error bars, that this model belongs to the same unive
ity class as theS ­ 1y2 Heisenberg model and the WZW
model with k ­ 1. The k ­ 2S ­ 3 WZW model with
c ­ 9y5 and h ­ 3y5 can be ruled out. These valu
have been obtained by an analysis of the ground-state
ergy, the lowest singlet and triplet excitation energies
well as the spin correlation function. We have found
excellent agreement between the parameters deduced
these different data sets. Apart from a larger coupling c
stant the correlation function of the spin-3y2 chain has the
same multiplicative logarithmic corrections as for spin 1y2.

We thank I. Affleck, A. Muramatsu, and I. Pesch
for useful comments and H. Scherrer for computatio
support. This work was supported in part by ONR un
N00014-93-0495 and NSF under DMR-95-20776 and
E.U. Grant No. ERBCHRX CT94.0438.

[1] J. Sólyom and T. A. L. Ziman, Phys. Rev. B30, 3980
(1984); R. Botet, R. Jullien, and M. Kolb, Phys. Rev.
28, 3914 (1983).

[2] M. Niel et al., Physica B & C86B & C–88B & C, 702
(1977).

[3] S. Itoh, K. Kakurai, Y. Endoh, and H. Tanaka, Phys
(Amsterdam)213B & 214B, 161 (1995).
4958
e

r

-

l-

n-
s

om
-

l
r
y

[4] H. Mutka, C. Payen, and P. Molinié, Europhys. Le
21(5), 623 (1993).

[5] H. A. Bethe, Z. Phys.71, 205 (1931).
[6] A. Luther and I. Peschel, Phys. Rev. B12, 3908 (1975).
[7] F. D. M. Haldane, Bull. Am. Phys. Soc.27, 181 (1982);

Phys. Lett.93A, 464 (1983).
[8] R. Botet and R. Jullien, Phys. Rev. B27, 613 (1983);

H. Betsuyako and T. Yokota, Phys. Rev. B33, 6505
(1986); H. W. J Blöte, Physica B & C93B & C, 93
(1978).

[9] A. Moreo, Phys. Rev. B35, 8562 (1987).
[10] I. Affleck, Phys. Rev. Lett.56, 746 (1986);56, 2763

(1986).
[11] L. Takhtajan, Phys. Lett.87A, 479 (1982); J. Babudjian

Nucl. Phys.B215, 317 (1983).
[12] H. J. Schulz, Phys. Rev. B34, 6372 (1986).
[13] I. Affleck, Nucl. Phys.B265 [FS15], 409 (1986).
[14] I. Affleck and F. D. M. Haldane, Phys. Rev. B36, 5291

(1987).
[15] I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, J. Ph

A 22, 511 (1989).
[16] A. Moreo, Phys. Rev. B36, 8582 (1987).
[17] T. Ziman and H. J. Schulz, Phys. Rev. Lett.59, 140

(1987).
[18] C. C. Alcaraz and A. Moreo, Phys. Rev. B46, 2896

(1992).
[19] Shoudan Liang, Phys. Rev. Lett.64, 1597 (1990).
[20] S. R. White, Phys. Rev. Lett.69, 2863 (1992); Phys. Rev

B 48, 10 345 (1993).
[21] J. B. Parkinson and J. C. Bonner, Phys. Rev. B32, 4703

(1985).
[22] H. Q. Lin, Phys. Rev. B42, 6561 (1990).
[23] K. Hallberg, P. Horsch, and G. Martı´nez, Phys. Rev. B52,

R719 (1995).
[24] K. Hallberg, Phys. Rev. B52, 9827 (1995).
[25] E. R. Davidson, J. Comput. Phys.17, 87 (1975).
[26] S. Yamamoto, Phys. Rev. Lett.75, 3348 (1995).
[27] H. Mutka (private communication).
[28] Gang Sun and Fu-Cho Pu, Physica (Amsterdam)193B,

243 (1994).
[29] T. A. Kaplan, P. Horsch, and J. Borysowicz, Phys. Rev

35, 1877 (1987).


