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Using the density-matrix renormalization-group technique we study the long-wavelength properties of
the spinS = 3/2 nearest-neighbor Heisenberg chain. We obtain an accurate value for the spin velocity
v = 3.87 = 0.02, in agreement with experiment. Our results show conclusively that the model belongs
to the same universality class as the= 1/2 Heisenberg chain, with a conformal central charge 1
and critical exponenyy = 1. [S0031-9007(96)00504-2]

PACS numbers: 75.10.Jm, 64.60.Ak

The study of one-dimensional spBteisenberg Hamil- 3/(2 + k) andk = 2S. This scenario was favored ini-
tonians has received considerable attention in recent yeatially by Affleck [13]. (b) The spinS integrable models
Their properties are important to experimentalists becausepresent unstable multicritical points in the phase diagram
they describe a number of materials with magnetic ionsnd the stable critical point is defined by tlfe= 1/2
arranged in chains [1,2]. The first quasi-1D antiferromag-Hamiltonian. Thus, the half-odd-integer sgnHeisen-
nets with spin 32 which found experimental interest are berg model is expected to be equivalent toithe 1 WZW
CsVCl;[3] and AgCrR.Sg [4]. For theorists the spin mod- model havinge = 1 andn = 1, independent of the value
els are among the simplest Hamiltonians where quanturaf S. This position was favored by Schulz and later on by
fluctuations are crucial. However, only the special casédaldane and Affleck [14,15].

S = 1/2 can be solved exactly [5]. In this case Luther Since the derivations of scenarios (a) and (b) involve
and Peschel [6] found that the spectrum is gapless, theseveral assumptions and approximations, unbiased numeri-
is no magnetic ordering in the ground state, and the spical studies are needed to decide which one is correct.
correlation functionw (/) = (S7,,S;) decays according to The § = 3/2 Heisenberg Hamiltonian is the simplest of

a power law|w(I)] ~ 1/1" with n = 1. Later Haldane the higher half-odd-integer spin models. Since there are
[7] proposed that for half-odd-integer spin the Heisenbergl degrees of freedom per site, the longest chains that can
Hamiltonian would behave as in the= 1/2 case, i.e., be exactly diagonalized with present computer capabili-
no energy gap and power-law decay of the spin correlaties have 14 sites. Previous numerical studies conducted
tion function, while in the integer case the spectrum wouldn such small chains gave conflicting results [16-18].
have an energy gap and the spin correlations would deMoreo, [16] analyzing the behavior of spin correlation
cay exponentially. Early numerical work confirmed this functions in lattices withv = 12, found = 0.6, while
conjecture [1,8,9] and power-law decay of the spin correZiman and Schulz [17] obtaineg = 1 by studying the
lation was found for half-odd-integer spin, yet the expo-behavior of the lowest triplet and singlet state energy gaps
nent n seemed to bé dependent. When the powerful also in chains wittiv = 12. A Monte Carlo calculation of
tools of conformal invariance started to be applied tothe spin correlation function [19] in chains with up to 128
one-dimensional quantum systems it became clear thaites provided exponents in disagreement with the SU(2)
the integrableS = 1/2 Hamiltonian at low energies is WZW scaling theory. The analysis of small systems is
equivalent to the SU(2) symmetric Wess-Zumino-Wittenhampered by the presence of logarithmic corrections which
(WZW) model with topological coupling constaht= 1 modify the power-law dependence of various quantities in
[10]. In this modelk is related to the central chargeby  asignificant way. In this Letter we will elucidate this prob-

¢ = 3k/(2 + k) and the critical exponeny is given by  lem numerically by studying sufficiently large systems that
3/(2 + k). ltwas also found [10] that a new class of inte- cannot be solved with exact diagonalization, and by Monte
grable antiferromagnetic Hamiltonians with arbitrary spinCarlo techniques only with considerable statistical error.
[11] were equivalent to the WZW model with= 2. For this purpose we will use the density-matrix

Based on the SU(2) symmetry of the nonintegrableenormalization-group technique (DMRG) [20] keeping
half-odd-integer spin Hamiltonians Schulz [12] suggestedip to m = 1200 states per block and considering chains
the following possible scenarios: (a) The half-odd-integeup toN = 60 sites. The large number of statesused in
spin-S Heisenberg Hamiltonian belongs to the same unithese calculations was dictated by (i) the use of periodic
versality class as the spB-integrable model. In this (instead of open) boundary conditions which requires
case both models would have= 3k/(2 + k) andp =  more states [20] and (ii) the subsequent finite size analysis

0031-9007 96/ 76(26)/4955(4)$10.00  © 1996 The American Physical Society 4955



VOLUME 76, NUMBER 26 PHYSICAL REVIEW LETTERS 24 UNE 1996

of the data which involves power laws combined with Our v is higher than the value = 3.64 = 0.08 given by
logarithmic dependencies and thus requires high accuracyamamoto [26]. The latter was calculated using a world-
of the data even for the largest systems consideredine Monte Carlo approach with larger error bars in the
For the largest chains we estimate that the ground sta&xcitation energies~<10% as estimated from the figures).

energy has an absolute error of less tiar 107°, by
considering differentm values. Our results for small
systemsN = 14, agree with exact calculations [9,21,22]
and the ground state energy is exact upgite= 12.

To calculate the conformal central chargéor equiva-

The velocity is in good agreement with the measured spin-
wave velocityy = 1.26v, for the spin-32 chain system
CsVCI; [3]. Mutka, Payen, and Molinié [4] argued that
their experimental results for the uniform susceptibility
of the spin-32 chain system AgCrfSg are consistent
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lently k) we account for the finite-size corrections of the with spin-1/2, i.e., supporting universality. Their value
ground-state energy per sitEy/N, as derived from the for the spin velocityv = 1.53v,w appears too high in
WZW theory [15] view of our results. The discrepancy between the experi-

mental values may be partly attributed to the difficulty
— . [ } (1) in extracting the exchange constahtfrom the uniform

* susceptibility [27].

The value of the coupling constagptof the conformal

The coefficientB depends on the effective coupling con- field theory can be determined directly by writing Eq. (1)
stant (see below) and can be dropped only in the I&tge-in its equivalent form
limit [23]. The last higher-order term reflects a finite size

correction to the conformal charge. In principle Eq. (1) 20—, _ ¥7 [ 3k (2775’)3} _ i, )
may be fitted with five free parameters; however, we found N 6N2L2 + k V3k N4

that more accurate results are obtained by an independep,ere

calculation of the spin velocity and ofB.

The spin velocity can be determined numerically (g0.N.k) = 80 3)
from the excitation energyd\, = EQ2w/N) — E(0) = £180. 4 1+ 28N
vsin2aw/N), where EQ#/N) is the energy of the first Y3k T
excited state with the lowest nonzero momentum obtainegnd
from the spin excitation spectrum [24] and the Davidson -
algorithm [25] (with estimated absolute erre¢1072). B = efr Geft = 4480- %)
Studying the behavior ofA,/N vs sin2z/N)/N, as lo ~ V3k

shown in Fig. 1, to minimize the errors, we obtain a rathe
precise value for the spin velocity = 3.87 = 0.02. This
implies an enhancement factor of 1.29 with respect to th
spin-wave resultw,, = 25 = 3. This factor is signifi-
cantly lower than the valuer/2 for the spin-¥2 chain
(where vg,, = 1) thus implying that the quantum renor-
malization of the low-lying spin excitations is weaker.

"From Egs. (2) and (3) and the velocity given above we
find e, = —2.82833(1), k = 1.00(1), and the coupling
Zonstant go = g(lp = 20) = 0.055(5). The error was
estimated using different subsets of the data. The constant
S depends on the smallest system included in the fit, e.g.,
for N = 12 we found S = 20. From Eq. (4),B = 0.6
andgerr = 0.4.

Using the previous values of and B and from a
three parameter fit of Eq. (1) usiny = 8 we obtain
consistentlye,, = —2.82833,k = 1 £ 0.01, andS = 15
(Fig. 2). Our ground-state energy is considerably lower
than the energy.. = —2.8248 obtained in a recent Monte
Carlo study Ref. [28], where B/N? scaling of the energy
was assumed. From our results forwe conclude that
¢ = 1.00 = 0.01.

To obtain the critical exponent we calculated the spin
correlation function keeping 1000 states per block. The
absolute error for the largest system is lower than3.

We found that the scaling behavior obeyed by the $pih
chain [23,29] is absent in this case and we extrapolated the
finite-size data with a quadratic polynomial idN2. The
correlation function in the thermodynamic limit is shown
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5 010 020 in Fig. 3. We interpolated this correlation function using
sin2r/N)/N the theoretical prediction [15]
FIG. 1. Excitation energp,/N vs sin2«/N)/N. The linear
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interpolation yields the spin velocity (slope)= 3.87 * 0.02
(full line).
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-2.820 ; ; ; reflects the dependence on the coupling function [23] and
E/N a single parameter fit yieldg(l, = 20) = 0.052.
-2.830 | : The critical exponenty can also be calculated from the
scaling of singlet and triplet excitation energies [15]:
-2.840 \‘\ q
E; — E
RN A = TO
-2.850 \‘\ 1
\ _ Wzv[n__SL SRi|+ b . (©)
-2.860 | L ] N 2 In(BN) NZ?In*(BN)
S Here 5;/2 (i = s,t) is the scaling dimension of the
2870 1 1 corresponding primary field, argf, andSg are the spin

operators related to the energy levels of the conformal
-2880 oo Y Yo oo field theory describing the fixed point, with spin quantum
1IN numberss; andsg. According to the WZW mapping
FIG. 2. Scaling of the ground state enerBy/N. Interpola- 1
tion including logarithmic corrections yields the central charge Sy, - Sg = — [s(s + 1) — sz.(sz + 1) — sg(sg + 1)],
¢ = 1.00 = 0.01 and an extrapolated value, = —2.82833 2
(full line). (7)

wheres is the total spin number. The triplet state= 1
and obtained: = 2.06, B = 0.56, andn = 1.02. This and the first singlet excitation = 0 (for both cases; =
fit is presented in Fig. 3 where we added the correlationszy = 1/2) become degenerate in the thermodynamic limit.
for § = 1/2 to show that in both cases they have theTherefore, if we take the appropriate linear combination
same multiplicative logarithmic corrections, the couplingof Eq. (6) for these excitations, the leading logarithmic
constant being smaller fof = 1/2 [23]. We note that corrections are canceled out:
a = w(ly,»),/get lo and B follows from Eq. (4). Using

the value forg.sr given above and the extrapolated value A = 1 [(E; — Eo) + 3(E, — Ep)]

for w(ly,) we obtaina = 2.07 and B = 0.6. Thus 4N

the parameters obtained from the correlation function are TUn b

in complete agreement, whithin error bars, with those = + : (8)
P g ’ ' N2 N2In%(BN)

obtained from the scaling of the ground-state energy.
On the other hand, if we assume= 1, we can analyze This quantity has been used before in Ref. [17] to estimate
lo(l,°)/lyw(ly,*) = /g(lo)/g(l). This ratio directly —n using three system sizes, i.&/,= 8, 10, and 12 sites
with the resultn = 1. We reached an excellent inter-
polation of our data (including &'/N* term), shown in

04 1 3 S—— : Fig. 4, leadingtop = 1.018,b = by, — 3b;, = —5.4,and
— S’ = 80.
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FIG. 3. Extrapolated and normalized spin correlation func-
tions. The fit which includes the multiplicative logarithmic ¢ s ‘ s
correction givesy = 1.02 (full line) and coefficients that are in 0.000 0.005 1/N? 0.010 0.015
agreement with those obtained from the scaling of the energy.

The correlation function and fit of the spin chain [23] is FIG. 4. Scaling of the triplet gap (circles) and the combined
shown for comparison. Inset: normalized correlation functionsggap A (diamonds). Equations (6) and (8) were used to extract
multiplied by, showing the logarithmic correction. the exponent; (full lines).
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