VOLUME 76, NUMBER 26 PHYSICAL REVIEW LETTERS 24 UNE 1996

Shape of the Tail of a Two-Dimensional Sandpile
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We study the shape of the tail of a heap of granular material. A simple theoretical argument shows
that the tail adds a logarithmic correction to the slope given by the angle of repose. This expression is
in good agreement with experiments. We present a cellular automaton that contains gravity, dissipation,
and surface roughness and its simulation also gives the predicted shape. [S0031-9007(96)00515-7]

PACS numbers: 46.10.+z, 05.70.Jk

Many typical phenomena observed in granular materialsonstant velocity regime [9]. In this regime particles do
have been studied in the last years [1-3]. In order tanot accumulate at the top of the heap and the formation of
understand these phenomena simple models as well &g avalanches which can disturb the formation of smooth
computer intensive simulation techniques [4] have beeprofiles is not present. Therefore profiles do not depend
useful. In this Letter we discuss the shape of static heapan the flow rate at the top. They only depend on the type
of granular material. of grains used and gravity.

Sandpiles are almost perfect cones with a well defined In Fig. 1(a) we see the typical situation of two flat
angle of repose which depends on gravity and on the chasurfaces that define the angle of repose. We will, however,
acteristics of the material. Watching carefully, however,focus our attention on the small curved tails that can be
one notices the existence of curved tails at the bottom obbserved at the base of the heaps and obtain the analytical
the heaps to which not much attention has been paid in thexpression of their shape using a simple argument.
literature. Here we study in detail the shape of these tails. Taking pictures at different times we discovered that

We will present a simple experiment to obtain the profileit is possible to superpose the profiles of the tails by
of the tails in two dimensions. Then, we deduce ana simple horizontal shift [see Fig. 1(a)]. It seems that
analytical expression for their shape which agrees with outhe heap grows by putting layers of particles over one
experimental profiles. This expression has two paramete@nother. Each individual layer grows upwards from the
that depend on the material properties. Finally, we tesbottom to the top by stopping particles which are moving
the theory with data obtained from computer simulationsdown along the surface of the heap.
using cellular automata (CA). Several CA models have At the top of each incomplete layer there is a kink
been proposed in the past to study the behavior of granuldkinks are marked by arrows in Fig. 1(b)]. (In the case of
matter [5—8]. They include dissipation, which is the mostirregularly shaped particles or particles of different size one
important ingredient to capture the peculiarities of granulahas asperities of different size on the surface of the heap,
media. One such automaton is a lattice gas formulatiomnd the larger ones effectively act as the kinks discussed
by Peng and Herrmann [8] with rest particles and inelastidhiere.) The presence of such kinks reduces the slope of
collision rules. Using this model we have simulated two-the surface away from the angle of repose of the material.
dimensional heaps in a quasistatic regime and compardcet us describe the surface tyx) where# is the height
the resulting profiles with those predicted by our theory. and x the corresponding horizontal displacement. We

We built sandpiles in an easy and inexpensive experiehoose the origin at the center of the base of the heap, i.e.,
ment. Grains were poured at a slow rate of about 10 park(0) = h,, whereh,, is the height of the heap at the top,
ticles/sec from the top into the center of a rectangularand consider only > 0 since the heap is symmetric with
cell made of two parallel vertical glass plates of sizerespect to the origin. In the absence of kinks one would
30 X 25 cn? separated by a fixed distance of 2 mm. Ashaveh = h,, — yx wherey = tard and 6 is the angle
granular materials we used lead spheres, sugar, and pof repose. The presence of each kink increases this ideal
lenta. The grain diameter was 2 mm in the first case andalue of x by a certain valug which typically is of the
about 0.5 mm in the other two cases. In Fig. 1(a) we see size of a grain. lfp is the number of kinks per unit length
digitized image of the experiment showing the essentiallyn the vertical direction, we can express the slope of the
two-dimensional heaps that we obtain at different timessurface as a function gf as
We have studied the profiles of the heaps by recording digi- dh y
tized pictures taken by a VHS video camera at different — = @
stages of the evolution. The resolution of digitized im- dx L+ lyp
ages was 40 pixefsm. Particles falling down along the surface collide with the

The heaps are grown in steady state, in the sense thkihks and can be accumulated on top of them with some
only a few grains move simultaneously, being in therater or continue to move downwards to the next layer.
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(H) of h. Since the number of particles aggregated per vertical
unit length is the variation of the vertical flux, we have

o®/oh = B, whereB is a constant and sinc@(0) = 0

we obtaind® = Bh. Putting everything together the slope

of the surface as a function @f is given by

dh _ Y

= 2
dx 1+ ly/rh )
After integration we obtain the final expression
w= = gy B 3)
0% h

which shows a logarithmic correction to the angle of re-
pose. v = tard is the classical dynamic friction coeffi-
cient andl, = [/r describes the typical extra horizontal
displacement a particle must undergo before it sticks. Both
constants characterize the granular material. In Fig. 1(c)
we show the average over 10 different profiles represent-
ing the deviation from the straight profile. Error bars are
the standard deviations for each valuehof The surface
fitis for y = 0.98 and/, = 1.5 mm. It is very interest-
ing to note that for the three materials used here we find
consistence with = 1/3.

In the following we will check our formula using nu-
merical simulations. We consider a lattice gas automaton
(LGA) at integer time steps = 0, 1,2, ... with particles
located at the sites of a two-dimensional triangular lattice
of sizeL. Gravity acts downward in the vertical direction
and forms an angle of 3@vith the closest lattice axis. At
each site there are seven bit variables which refer to the ve-
locitiesv; (i = 0,1,2,...,6). Herev; (i = 1,...,6) are
the nearest neighboring (NN) lattice vectors and= 0
-2 : ; refers to the rest state (zero velocity). Each state can be

o 20 40 60 either occupied by a single particle or empty. Therefore,

h(mm) the number of particles per site has a maximal value of
seven and a minimal value of zero.

FIG. 1. (a) Digitized image of a heap of the polenta. The ; i ; iai
diameter of the grains is about 0.5 mm. The height of the The tme evolution of the LGA consists of a collision

heap is 16 cm. Different gray levels show the pile at differentStep and a propagation step. In the collision step particles

stages of growth. The superposed continuous lines in botkan char_lge their VelQCitieS due to C0|“5i.0n5_and in th.e
figures are fits obtained from Eqg. (3) by taking the valuespropagation step particles move in the direction of their

y =098 and/, = 1.5 mm. (b) Tail of a pile made of lead velocities to the NN sites where they collide again.
isapk:eer;este\;vrgliqn a?tir?Ia%etﬁ:)r?zfo%tgllmk'inIgn?m(ﬁﬂe%b%ervgrr%%glefhe system is updated in parallel. Only the collisions
(Cgl Deviation of t%e shape from the straight profﬁe for the SPecified .in Fig. 2 can deviate th.e_trajectories. of particles
same material. Data are averages obtained from 10 differedffOm straight lines with probabilities depending on the
samples. Error bars represent the standard deviations of trdissipation parametep. If p is not zero, energy can
averaged values. Continuous line represents the same fit of (d)e dissipated during the collision. This is a crucial
property of granular materials and yields among others
an instability towards cluster formation [10].
r depends ori and on the properties of the grains (shape, The two collisions shown on the lower part of Fig. 2
roughness, coefficient of restitution). Letus cBllz) the temporarily allow more than one particle on a site.
flux of particles pulled down by gravity along the surface.However, immediately after the collision step, the extra
Since the experiments were performed in steady state, omest particles randomly hop to NN sites until they find a
has the relationi®/dh = rdp. The fact that the heap site with no rest particle, and there they stop.
grows by a shift of the profile in the horizontal direction We incorporate the driving force, namely, gravityby
means that the aggregation rate of particles is independesétting a rest particle into motion with probabiligy/2
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its momentum and is aggregated to the heap after the re-

\/ distribution process described above has taken place.

=
N

We perform simulations for systems of size= 512
typically iterating 3 X 10° time steps. Most of the
computer work was performed on a CM-5. As in the
experiment we add few particles (one every 8 time steps)
to be in a quasistatic regime. In that case the profile
does not depend on the history of the system. Resulting
configurations are shown in Fig. 3(a).

For all parameter values the profiles have an angle
of repose of 60 corresponding toy = /3 which is

p/3 X p/3 determined by the geometry of the underlying lattice. The

w
7

tail shows the presence of kinks which reduce the slope.
The different gray levels correspond to different time
steps. One notes that as in the experiment the surfaces
of the heap are just horizontally displaced in time.

For this model the parameters in Eq. (3) are easily

p -p determined. On the one hand, we use as unit length the
distance between NN sites on the underlying lattice which

(a)
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FIG. 2. Caollision rules of the cellular automaton. Arrows
represent moving particles and full dots stand for rest particles. {b]
The number next to each configuration is the probability for

that transition.

along one of the two lattice directions which form an
angle of 30 with the direction of gravity, however, only if
the site below is empty at that time. Rest particles that are
already on the heap can only be accelerated by gravity if
at least one of the two NN sites in the direction of gravity
does not yet belong to the heap.

During the evolution, we add particles at a fixed rate
from one site at the top to the system. Gravity moves
these particles down until they collide with the hard wall
at the bottom. A particle colliding with the bottom is
either reflected with probability — p in the specular di- FIG. 3. (a) Heap of 80000 particles obtained in a quasistatic
rection or stopped with probability losing its momen- regime adding one particle every 8 time steps. The different

; ; ay levels visualize the growth after every 160000 steps of
tum. In the second case the resuiting rest particle belon%i/olution. Continuous lines are fits obtained from Eq. (3).

to the growipg heap', and we _Iabel thf"‘t particle in order(b) Deviations from the straight line of averaged profiles
to store the information that it is sustained by the bottonpptained from 16 independent samples. The fit is the same

plate. Every particle colliding with these particles losesas in (a).

0 40 80 120
X
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we choose to be unity giving= 1. On the other hand, translational invariance which we have observed experi-
r = 1/3 because every particle colliding with a kink is mentally so thapg = ¢’nh. One therefore obtains
aggregated to the heap and then redistributed randomly to

one of the three empty NN sites. Only one of these site dh _ _ V3 (5)
particles will aggregate on top of a layer. dx 1+ 3(/rh — ¢'ngh)’

In Fig. 3(b) we have plotted an average of 16 inde- , . . : .
pendent profiles in the same manner as in Fig. 1(b). TthhICh after integration gives
continuous line is the shape resulting from Eg. (3) with hy — h 1 P
y = +/3 andl, = 3. Our formula is in excellent quanti- = e [1—c(h+ hp)]+r"In o (6)
tative agreement with the simulation.

In order to include into the CA the sticking of particles where ¢ = (v/3/2)c’n is a constant. In Fig. 4 we also
typical for wet sand we introduce a new parameter, namelyghow the fits obtained from this expression usirfig=
the probabilityn that one particle stopped and aggregated).39 and r = 0.35. We have checked thaty = 4 in
after a collision with the heap is “blocked.” Gravity can agreement with the argument for<< 100. If 2 becomes
only move a blocked particle if none of the two NN siteslarger than 100, the density of blocked particles saturates to
below belongs to the heap and then the particle is no longero = 0.28.
blocked. Introducing these rules the slope of the surfaces We have studied experimentally, theoretically, and nu-
of the heaps can be larger than°@fcause each blocked merically with a cellular automaton the tail of sandpiles.
particle can support rest particles. The theoretical argument giving the shape of the tail is

Averaged profiles fom = 0.002 and0.004 are shown based on the experimentally observed translational invari-
in Fig. 4. We observe that now there is no well definedance and uses mass conservation. One finds that the tail
angle of repose as in the case of dry sand. The profile cagpnstitutes a logarithmic correction to the naive straight
be calculated using very similar arguments to those useslope given by the angle of repose. The analytic expres-
before. sion fits very well to the experimental shape and to the two-

Let po be the vertical density of blocked particles on dimensional heaps obtained with a cellular automaton.
the surface. The relation between the slope of the profile We are indebted to S. Roux for fruitful discussions, to

andp, is then P. Petitieans and D. Hoang for help on the experimental
dh J3 work, and to H. Puhl for much help on the computer.
—_ = - , (4) J.J.A. thanks the CNCPST for a generous grant of
dx 1+ 3(p = po) computer time on the CM-5 and is grateful for an
because the presence of each blocked particle on tHyuda parcial(PB91-0709) and a postdoctoral grant from
surface reduces the value.oby [ = 1. DGICYT.

Itis easy to find a relation betwegnandiz. On the one
hand, pg « n®. On the other handp « i due to the
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