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Interaction-Induced Delocalization of Two Particles in a Random Potential: Scaling Properties
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(Received 5 April 1995; revised manuscript received 11 July 1995)

The localization lengthj2 for coherent propagation of two interacting particles in a random potential
is studied using a novel and efficient numerical method. We find that the enhancement ofj2 over
the one-particle localization lengthj1 satisfies the scaling relationj2yj1 ­ fsuyDjd, whereu is the
interaction strength andDj the level spacing of a wire of lengthj1. The scaling functionf is linear
over the investigated parameter range. This implies thatj2 increases faster withu than previously
predicted. We also study a novel mapping of the problem to a banded-random-matrix model.

PACS numbers: 72.15.Rn, 71.30.+h
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While much is known about the localization properti
of one particle moving in a random potential [1], the
are few secured results about localization in the prese
of interactions between the particles [2]. In view of th
complexity of the interplay of disorder and interactio
Dorokhov [3] and, very recently, Shepelyansky [4] a
proached this problem by studying a simple special cas
two interacting particles in a random one-dimension
potential—and predicted that the interaction can lead t
significant delocalization of the pair. A possible realiz
tion of this system are excitons in a disordered semic
ductor [3]. Furthermore, understanding the localizati
properties of two particles in a random potential may le
to new insights into the role of interactions in the Anders
insulator.

Shepelyansky [4] considered the motion of two partic
interacting by a short-range interaction in a random pot
tial. Whenever the two particles are localized far ap
compared to the one-particle localization length, the eff
of the interaction is only exponentially small. Howeve
an interesting effect occurs when the two particles are
calized within about one one-particle localization leng
of each other. In this case, Shepelyansky constructed
approximate mapping of the problem to a banded-rando
matrix model. Studying this model numerically, he pr
dicted thatindependently of the statistics of the particle
and the sign of the interactionthere is the possibility of
coherent propagation of the two particles over distan
j2 much larger than the one-particle localization lengthj1
[4]. He found that

j2

j1
ø

j1

32

µ
u
t

∂2

, (1)

whereu denotes the interaction strength andt is the hop-
ping matrix element.j1 is measured in units of the lattic
constant. Subsequently, Imry [5] has given a Thoule
type scaling argument supporting and generalizing t
result, and Frahmet al. [6] have studied the problem
numerically using a transfer-matrix technique, finding
slower increase ofj2 with j1 than predicted by Eq. (1)
Related results had been found earlier by Dorokhov [3]
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the propagation of two harmonically bound particles in
random potential.

In this paper, we present a novel and efficient numeri
technique to compute the two-particle localization leng
j2 directly from a microscopic model. This metho
allows us to obtain accurate results over a wide range
parameters for both bosons and fermions. Our main re
is that j2 obeys the scaling relationj2yj1 ­ fsuyDjd,
where Dj is the single-particle level spacing of a wir
of length j1. We conjecture, based on our numeric
results, that the exact scaling functionf is linear at the
center of the band. While our results qualitatively confir
the prediction that a short-range interaction can lead
coherent propagation of the pair over distances mu
larger than the one-particle localization length, this scali
relation is inconsistent with the original prediction, Eq. (1
It is an important consequence of our results that
enhancement ofj2 sets in forweaker interactions than
previously predicted. We also derive and study a no
mapping of the problem to a banded-random-matrix mod
A combination of scaling with this banded-random-matr
model suggests the possibility that the validity of o
principal results extends to quasi-one-dimensional wire

Our starting point is the Anderson HamiltonianH0
for two spinless particles in a one-dimensional rando
potential with an additional Hubbard-type interactionU,

H ­ t
X
n,m

hjn, ml kn 1 1, mj 1 jn, ml kn, m 1 1j 1 H.c.j

1
X
n,m

jn, ml sVn 1 Vmd kn, mj 1 U . (2)

The random site energiesVn are drawn uniformly from
the intervalf2Wy2, Wy2g. The hopping matrix elemen
t will be set to unity in the following. We parametrize
the disorder by the one-particle localization length [
j1 ­ 105styWd2 in the absence of the interaction. Fo
bosons, we choose an on-site interaction with mat
elementskn, mjUjn0, m0l ­ udn,n0dm,m0dn,m, for spinless
fermions a nearest-neighbor interaction with matrix e
ments kn, mjUjn0, m0l ­ ufdn,m11 1 dn,m21gdn,n0dm,m0.
In the following our numerical method is described fo
© 1996 The American Physical Society 491
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bosons. The extension to fermions is straightforwa
To study the two-particle localization properties of th
Hamiltonian (2) we focus on the matrix elements of t
two-particle Green function

G ­ sE 2 H0 2 Ud21 (3)

between doubly occupied sitesjn, nl. We define the two-
particle localization lengthj2 for coherent transport by
the exponential decrease with distance of these ma
elements,

1
j2

­ 2 lim
jn2mj!`

1
jn 2 mj

ln jkn, njGjm, mlj . (4)

This identification is certainly reasonable as long as
doubly occupied sites do not effectively decouple from t
remaining Hilbert space because of the interaction, i.e.
long as the interaction strengthu is smaller than or of
the order of the hopping matrix elementt. Our numerical
approach exploits the observation that, for the interact
U, a closed equation can be derived for these ma
elements. This reduces the dimension of the relev
Hilbert space fromN2 to N (with N the number of sites)
which enables us to study systems with up to 1000 si
The Dyson equation for the two-particle Green function

G ­ G0 1 G0UG , (5)

where G0 ­ sE 2 H0d21 denotes the Green function i
the absence of the interaction. The interaction can
written asU ­ uP, whereP denotes the projector onto
the doubly occupied sites,Pjn, ml ­ dn,mjn, ml. Hence,
multiplying the Dyson equation byP on both sides and
writing U ­ uP2, one obtains a closed equation fo
the two-particle Green function projected onto doub
occupied sites,

G̃ ­ G̃0 1 uG̃0G̃ . (6)

Here we definedG̃ ­ PGP and G̃0 ­ PG0P. Solving
this equation forG̃ one has

G̃ ­
G̃0

u
1

1yu 2 G̃0
. (7)

In the site basis, the unperturbed Green functionG̃0
is a banded matrix whose matrix elements decre
exponentially with distance on the scalej1y2. Therefore,
we computej2 using only the second factor in (7
from which any long-range behavior ofG must arise.
This is very useful for numerical purposes because t
factor can be interpreted as the Green function of
“Hamiltonian” G̃0 at “energy” 1yu. This enables us to
employ the efficient recursive Green-function method
banded Hamiltonian matrices [7] to find the two-partic
localization length. We obtain the exactG̃0 [8],

kn, njG̃0sEd jm, ml ­
X
i,j

fisndfjsndfp
i smdfp

j smd
E 2 Ei 2 Ej

, (8)

by solving the Anderson model in the absence of the int
action. Here thefi are the exact single-particle wav
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functions. Clearly, our method of computingj2 is ac-
curate whenever the enhancement factorj2yj1 is suffi-
ciently large. Deviations from the exactj2 arise for small
u and smallj1 where the enhancement is weak. For sm
u this can be easily seen because the second factor in
gives limu!0 j2 ­ 0, while the exact limit isj1y2.

We have studied the two-particle localization lengthj2
for both fermions and bosons for one-particle localizati
lengths 4.2 # j1 # 105 and interaction strengths0 #

u # 1. We find that it is sufficient to use systems wi
N ­ 500 sites except for the two largest values ofj1

where we usedN ­ 1000. For each value ofj1 we
averaged over 50 realizations of the disorder. In Fig. 1
have plottedj2yj1 as a function ofuj1yt at the center of
the band (E ­ 0). We have included data for ten value
of u for each of five values [9] ofj1. The observed
scaling behavior

j2

j1
­ f̃suj1ytd (9)

is the central result of this paper. While the data in Fig
are for E ­ 0, we find that the same scaling behavi
holds also away from the center of the band [10].

This scaling behavior implies that the scale for the
teraction strengthu is the energytyj1 which can be inter-
preted as the single-particle level spacingDj ­ ptyj1 of

FIG. 1. Scaling plotj2yj1 ­ f̃suj1ytd for the two-particle
localization lengthj2 of (a) bosons and (b) fermions as
function of interaction strengthu and one-particle localization
length j1. Ten values ofu are included for each of the
five values of disorderW ­ 5 (plusses),W ­ 4 (squares),
W ­ 3 (triangles),W ­ 2 (crosses), andW ­ 1.5 (diamonds).
The full lines show that the linear behavior for largeuj1yt
extrapolates toj2yj1 ­ 1y2 for u ! 0. The deviation from
linear behavior for smalluj1yt is most likely an artifact of our
numerical method.
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a wire of lengthj1. The scaling function in Fig. 1 can be
fit well by a straight line for sufficiently largeuyDj while
there are deviations from linear behavior for small valu
of the scaling variable. It is natural to suppose that the
deviations from linear behavior are an artifact of disregar
ing the first factor in Eq. (7) in computingj2. In fact, as
shown by the full line in Fig. 1, the linear behavior fo
largeuyDj extrapolates toj2yj1 ­ 1y2 for uyDj ! 0 as
expected for the exact two-particle localization lengthj2
computed from the full expression forG̃. Hence, one may
conjecture that the exact scaling relation at the center of
band has the form

j2

j1
­

1
2

1 C
juj

Dj

, (10)

where C ø 0.17 for bosons andC ø 0.18 for fermions
[11]. We used the fact that at the center of the ba
there is an exact symmetry between attractive and repuls
interactions so thatj2 depends only on the absolute valu
of u. Note that while this result is presumably valid fo
arbitrary values ofj1, one expects the scaling relation t
break down for largeu whereuyt should become a relevan
parameter due to density-of-state effects.

Shepelyansky’s original prediction, Eq. (1), isnot con-
sistent with the scaling relation (9). E.g., at the ce
ter of the band our results show that whilej2 depends
quadratically onj1 as previously predicted, it exhibits
an unexpected linear (instead of quadratic) depende
on the interaction strengthu. More generally, the scal-
ing (9) implies that the enhancement effect sets in f
weaker interactionsu , tyj1 [compared tou , tyj

1y2
1

according to Eq. (1)] than originally predicted. This re
sult is surprising in view of the following estimate. I
may be argued [5] thatj2 should deviate fromj1 once
the two-particle product statesjfi , fjl of (unperturbed)
energyEi,j are strongly mixed by the interactionU. Ac-
cording to perturbation theory, strong mixing occurs whe
kf1, f2jUjf3,f4lysE1,2 2 E3,4d is of order unity. Each
jfi, fjl is typically coupled appreciably toj2

1 states.
The corresponding matrix element can be estimated [4
as uyj

3y2
1 and the energy denominator astyj

2
1 . Thus,

according to this estimate, strong mixing occurs on
u , tyj

1y2
1 . Since this interaction strength is large com

pared toDj, a comparison with our result would sugge
that, surprisingly, strong mixing of the two-particle prod
uct states is not necessary for the enhancement of the t
particle localization length.

Originally, Shepelyansky [4] approached the proble
by an approximate mapping to a banded-random-ma
model. We have also investigated an alternative rando
matrix model which is suggested by Eq. (7) due to th
band-matrix structure of̃G0. An extension of this banded-
random-matrix model will be applied below to study tw
interacting particles in a quasi-one-dimensional wire.
contrast to ordinary banded random matrices we fi
that the matrix elementsg of G̃0sE ­ 0d have a Cauchy
distribution, Psgd ­ sGypdysG2 1 g2d. To obtain this
s
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distribution function we argue as follows. For definitenes
consider a diagonal matrix element ofG̃0. Because of
the localized nature of the wave functions there are
the order ofj2

1 terms in the sum in (8). Furthermore
normalization implies that the wave functions are of ord
1y

p
j1 within a region of sizej1. Hence,kn, njG̃0jn, nl ,

s1yj
2
1 d

Pj
2
1

k­1s1yxkd, wherexk , 2Ei 2 Ej is a random
variable in the range24t & xk & 4t. Thus, the matrix
elements of the Green function are given by averag
over random variables whose second moments diver
Neglecting correlations between thexk, the central-limit
theorem implies for sufficiently largej1 that the diagonal
matrix elements have a Cauchy distribution of widthG ,
1yt [12]. The same argument can be made for the o
diagonal matrix elements. Their widthG is reduced by a
factor of exps22jn 2 mjyj1d. As shown in Fig. 2, these
conclusions are well supported by numerical results.

We argue that, for sufficiently largeu, the resulting
banded-random-matrix model predictsj2 , j

2
1 in agree-

ment with Eq. (1) when neglecting correlations betwe
the matrix elements. This result would follow immed
ately from analytical results for banded random matric
if the distribution of the matrix elements had a finite var
ance. In this case, the localization length is proportion
to the square of the bandwidth [13]. The same result ho
true for banded Cauchy matrices for the following re
son: Since the eigenstates of the banded Cauchy matrix
localized, they effectively sample only a finite numbe

FIG. 2. Distributions of diagonal and off-diagonal matri
elementsg of the projected two-particle Green functioñG0 for
j1 ­ 46.6 (solid lines). The dashed lines are fits by Cauch
distributions. Their widthG decreases exponentially awa
from the diagonal on the scalej1y2 as shown in the lower
inset. The upper inset showsj2 vs j1 as obtained from the
banded-random-matrix model discussed in the text. These d
obtained for systems with106 sites confirm our arguments tha
j2 , j

2
1 in this model.
493
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of matrix elements drawn from the Cauchy distributio
Hence, there exists a corresponding typical largest ma
elementgmax [12]. Beyondgmax the Cauchy distribution
can be cut off, and the resulting effective distribution
matrix elements has a finite variance. This implies th
banded Cauchy matrices belong to the same universa
class as ordinary banded random matrices. We confirm
this conclusion numerically by computing the localizatio
length of banded Cauchy matrices as a function of ba
width as shown in the upper inset of Fig. 2. We have a
studied theu dependence ofj2 predicted by this banded
random-matrix model. However, we find that thej2 com-
puted from this model doesnot exhibit the scaling (9)
found for the exact solution. Presumably, this is due
correlations between the matrix elements ofG̃0. For ex-
ample, correlations in the exactG̃0 are implied by Eq. (8)
for exceptionally large matrix elements. Large matrix e
ments are due to small energy denominators. Each pro
state with energy close toE leads to a correlatedj1 3 j1

block of large matrix elements iñG0. Such correlations
are neglected in the banded-random-matrix model.

It is an interesting problem to study two-particle loca
ization in more than one dimension. In the absence
an understanding of the physical origin of the scaling p
rameteruyDj, it is not clear how to generalize our resul
to these cases. For quasi-one-dimensional wires wit
finite number of channelsM, one easily derives a gene
alized banded-random-matrix-model. Assuming that t
banded-random-matrix model again correctly predicts
dependence ofj2 on the bandwidth and combining th
result with scaling suggests that the scaling function
mains linear. For quasi-one-dimensional wires we c
order the doubly occupied sites sequentially along the l
gitudinal direction. Whenj1 is larger than the transvers
dimensions of the wire, the bandwidth of̃G0 is equal
to Mj1, yielding a corresponding “localization length
sMj1d2. The actual localization length in the longitud
nal direction is smaller by a factorM, hencej2 , Mj

2
1 .

Finally, assuming the above scaling behavior and not
that Dj , tyMj1, we obtain a linear scaling function
j2yj1 , jujyDj.

In summary, we have studied the interaction-induced
localization of two particles in a one-dimensional rando
potential by a novel and efficient numerical approach. W
have found that the two-particle localization lengthj2 for
coherent propagation of the two particles satisfies the s
ing relationj2yj1 ­ fsuyDjd as a function of interaction
strengthu and one-particle localization lengthj1. This
implies that the effect sets in for weaker interactions th
previously predicted. At the center of the band our d
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suggest that the scaling function is linear. At present,
do not have a good physical understanding of this u
expected scaling behavior. It will be interesting to se
whether the scaling found in this paper can be generaliz
to higher dimensions or whether it is a specific feature
one dimension.

It would also be interesting to study implications o
coherent propagation due to interactions at finite parti
density. Our numerical approach can be extended to st
the propagation of quasiparticle pairs in the Anders
insulator. This will be the subject of a separate publicatio
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