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Interaction-Induced Delocalization of Two Particles in a Random Potential: Scaling Properties
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The localization lengtl¥, for coherent propagation of two interacting particles in a random potential
is studied using a novel and efficient numerical method. We find that the enhancemé&neér
the one-particle localization lengify satisfies the scaling relatiof,/&; = f(u/A;), whereu is the
interaction strength and, the level spacing of a wire of lengt#y. The scaling functiory is linear
over the investigated parameter range. This implies #aincreases faster witlk than previously
predicted. We also study a novel mapping of the problem to a banded-random-matrix model.

PACS numbers: 72.15.Rn, 71.30.+h

While much is known about the localization propertiesthe propagation of two harmonically bound particles in a
of one particle moving in a random potential [1], thererandom potential.
are few secured results about localization in the presence In this paper, we present a novel and efficient numerical
of interactions between the particles [2]. In view of thetechnigue to compute the two-particle localization length
complexity of the interplay of disorder and interaction, & directly from a microscopic model. This method
Dorokhov [3] and, very recently, Shepelyansky [4] ap-allows us to obtain accurate results over a wide range of
proached this problem by studying a simple special case—parameters for both bosons and fermions. Our main result
two interacting particles in a random one-dimensionals that &, obeys the scaling relatioéi,/ &, = f(u/A¢),
potential—and predicted that the interaction can lead to ahere A, is the single-particle level spacing of a wire
significant delocalization of the pair. A possible realiza-of length £,. We conjecture, based on our numerical
tion of this system are excitons in a disordered semiconresults, that the exact scaling functighis linear at the
ductor [3]. Furthermore, understanding the localizationcenter of the band. While our results qualitatively confirm
properties of two particles in a random potential may leadhe prediction that a short-range interaction can lead to
to new insights into the role of interactions in the Andersoncoherent propagation of the pair over distances much
insulator. larger than the one-patrticle localization length, this scaling

Shepelyansky [4] considered the motion of two particlegelation is inconsistent with the original prediction, Eq. (1).
interacting by a short-range interaction in a random potenk is an important consequence of our results that the
tial. Whenever the two particles are localized far aparenhancement o, sets in forweakerinteractions than
compared to the one-particle localization length, the effecpreviously predicted. We also derive and study a novel
of the interaction is only exponentially small. However, mapping of the problem to a banded-random-matrix model.
an interesting effect occurs when the two particles are loA combination of scaling with this banded-random-matrix
calized within about one one-particle localization lengthmodel suggests the possibility that the validity of our
of each other. In this case, Shepelyansky constructed girincipal results extends to quasi-one-dimensional wires.
approximate mapping of the problem to a banded-random- Our starting point is the Anderson Hamiltonidif,
matrix model. Studying this model numerically, he pre-for two spinless particles in a one-dimensional random
dicted thatindependently of the statistics of the particlespotential with an additional Hubbard-type interaction
and the sign of the interactiothere is the possibility of
coherent propagation of the two particles over distanced = tZ{|n,m)<n + 1,m| + |n,m)n,m + 1| + He.}
&, much larger than the one-particle localization length n,m

[4]. He found that n Zln,m>(Vn V) ml| + U @

& _ & 1)2 1 GA . j
2 =~ 32< ;) 1) The_ random site energidg, are dravyn unlfor_mly from
the interval[—W /2, W /2]. The hopping matrix element

whereu denotes the interaction strength anid the hop- ¢ will be set to unity in the following. We parametrize
ping matrix element.£; is measured in units of the lattice the disorder by the one-particle localization length [1]
constant. Subsequently, Imry [5] has given a Thoulessé; = 105(t/W)? in the absence of the interaction. For
type scaling argument supporting and generalizing thibosons, we choose an on-site interaction with matrix
result, and Frahnet al.[6] have studied the problem elements(n, m|U|n',m’y = ud, 4 8mmnm, fOr spinless
numerically using a transfer-matrix technique, finding afermions a nearest-neighbor interaction with matrix ele-
slower increase of, with &, than predicted by Eq. (1). ments (n,m|Uln',m') = u[8,m+1 + Snm—116n1Omm:-
Related results had been found earlier by Dorokhov [3] foiin the following our numerical method is described for
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bosons. The extension to fermions is straightforwardfunctions. Clearly, our method of computing is ac-
To study the two-particle localization properties of thecurate whenever the enhancement fadipfé; is suffi-
Hamiltonian (2) we focus on the matrix elements of theciently large. Deviations from the exagt arise for small
two-particle Green function u and smallé; where the enhancement is weak. For small
1 u this can be easily seen because the second factor in (7)
G=(E—-Ho—-U) (3) gives lim,_o & = 0, while the exact limit is£; /2.
between doub|y occupied Sltbﬁ, I’l>. We define the two- We have studied the tWO—partiCIe localization Iengﬁh
particle localization length¢, for coherent transport by for both fermions and bosons for one-particle localization
the exponential decrease with distance of these matrilengths 4.2 = &, = 105 and interaction strength =

elements, u = 1. We find that it is sufficient to use systems with
| 1 N = 500 sites except for the two largest values &f
— =— |lim —— In[n,n|Glm,m)|. (4) where we usedV = 1000. For each value of¢; we
&2 In=mi—z= = m| averaged over 50 realizations of the disorder. In Fig. 1 we

This identification is certainly reasonable as long as théave plotteds, /¢, as a function of«&, /¢ at the center of

doubly occupied sites do not effectively decouple from thethe band £ = 0). We have included data for ten values

remaining Hilbert space because of the interaction, i.e., asf » for each of five values [9] of,. The observed

long as the interaction strength is smaller than or of scaling behavior

the order of the hopping matrix element Our numerical ¢

approach exploits the observation that, for the interaction 52 fué /1) 9

U, a closed equation can be derived for these matrix 3

elements. This reduces the dimension of the relevarns the central result of this paper. While the data in Fig. 1

Hilbert space fromv? to N (with N' the number of sites) are for E = 0, we find that the same scaling behavior

which enables us to study systems with up to 1000 sitesholds also away from the center of the band [10].

The Dyson equation for the two-particle Green function is This scaling behavior implies that the scale for the in-
G = Gy + GoUG. (5) teraction strengtly is the energy /£, which can be inter-

preted as the single-particle level spacihg = 7t/¢; of
where Gy = (E — Hy)~! denotes the Green function in

the absence of the interaction. The interaction can be 77—
written asU = uP, where P denotes the projector onto

the doubly occupied site®|n, m) = &, ,|n,m). Hence,
multiplying the Dyson equation by on both sides and
writing U = uP?, one obtains a closed equation for
the two-particle Green function projected onto doubly“;s—2
occupied sites, !

G = Gy + uGoG . (6)

Here we defined; = PGP and Gy = PGoP. Solving
this equation folG' one has
. Gy 1
STyl ™
u 1/u — Gy £
In the site basis, the unperturbed Green functiGn 22
is a banded matrix whose matrix elements decreas !
exponentially with distance on the scalg/2. Therefore,
we compute &, using only the second factor in (7)
from which any long-range behavior @ must arise.
This is very useful for numerical purposes because this
factor can be interpreted as the Green function of the Ufl/t
“Hamiltonian” G, at “energy” 1/u. This enables us to : - .
employ the efficignt recur;ive Green-_function methoq for@&i%atioicﬂﬂgtﬁ gjt%f/ %é)_b](;gg%s/ t;nfg r(tbh)efévrvrgigggugg a
banded Hamiltonian matrices [7] to find the two-particlefunction of interaction strength and one-particle localization

localization length. We obtain the exaGt [8], length ¢,. Ten values ofu are included for each of the
* * five values of disorderW =5 (plusses),W = 4 (squares),
(n. n|Go(E) |m.m) = Z ¢i(n)(n)p; (m);(m) ®) W = 3 (triangles),W = 2 (crosses), andV = 1.5 (diamonds).
’ 0 ’ - E —E; — E; ’ The full lines show that the linear behavior for large,/:
, " _ . extrapolates tag,/&, = 1/2 for u — 0. The deviation from
by solving the Anderson model in the absence of the intertinear behavior for smallké; /¢ is most likely an artifact of our

action. Here theg; are the exact single-particle wave numerical method.
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a wire of length¢;. The scaling function in Fig. 1 can be distribution function we argue as follows. For definiteness,
fit well by a straight line for sufficiently large/A, while  consider a diagonal matrix element 6f. Because of
there are deviations from linear behavior for small valueghe localized nature of the wave functions there are of
of the scaling variable. It is natural to suppose that theséhe order of&; terms in the sum in (8). Furthermore,
deviations from linear behavior are an artifact of disregardnormalization implies that the wave functions are of order
ing the first factor in Eq. (7) in computing,. In fact, as  1/\/¢, within a region of size ;. Hence(n, n|Goln,n) ~
shown by the full line in Fig. 1, the linear behavior for (1/§f)Z,§Ll(l/xk), wherex, ~ —E; — E; is a random
largeu /A, extrapolates td, /¢, = 1/2foru/A¢ — 08S  yariable in the range-4¢ < x; < 4r. Thus, the matrix
expected for the exact two-particle localization length  glements of the Green function are given by averages
computed from the full expression for. Hence, one may gyer random variables whose second moments diverge.
conjecture that the exact scaling relation at the center of thQeglecting correlations between thg, the central-limit

band has the form theorem implies for sufficiently largg, that the diagonal
& 1 n CM 10 matrix elements have a Cauchy distribution of widith~
& ) Ag’ (10) 1/t [12]. The same argument can be made for the off-

where C ~ 0.17 for bosons and” ~ 0.18 for fermions diagonal matrix elements. Their widihis reduced by a

[11]. We used the fact that at the center of the banaa(:tolr of ex—2|n _” ml/&1). ,gsbshown in Filg. 2, lthese
there is an exact symmetry between attractive and repulsiye?n¢lusions are well supported by numerical results.

interactions so that, depends only on the absolute value W€ argue that, for sufficiently large, the resulting
of u. Note that while this result is presumably valid for Panded-random-matrix model prediafs ~ ¢i in agree-

arbitrary values of,, one expects the scaling relation to Ment with Eq. (1) when neglecting correlations between

break down for large whereu/r should become a relevant e matrix elements. - This result would follow immedi-
parameter due to density-of-state effects ately from analytical results for banded random matrices

Shepelyansky’s original prediction, Eq. (1),rist con- if the distribgtion of the matri>§ elt_aments haq a finite \{ari-
sistent with the scaling relation (9). E.g., at the cen-2nce: In this case, the IO(_:allzatlon length is proportional
ter of the band our results show that whife depends to the square of the bandwidth _[13]. The same re;ult holds
quadratically ong, as previously predicted, it exhibits true fo_r banded.Cauchy matrices for the following rea-
an unexpected linear (instead of quadratic) dependen n:_Slnce the eigenstates of the banded Ca'ughy matrix are
on the interaction strength. More generally, the scal- °ocalized, they effectively sample only a finite number

ing (9) implies that the enhancement effect sets in for
weaker interactions: ~ ¢/£; [compared tou ~ t/f{/2

according to Eq. (1)] than originally predicted. This re- I 10° _

sult is surprising in view of the following estimate. It 10 B [ wai

may be argued [5] tha#, should deviate from¢, once g In-m|=10 F £~ &
the two-particle product statds;, ¢;) of (unperturbed) - 10 A
energyE; ; are strongly mixed by the interactidi. Ac- o1p 10 ¢ 100

cording to perturbation theory, strong mixing occurs when
(b1, D2|U|d3, ha)/(E12 — Esz4) is of order unity. Each i
|#i, ¢;) is typically coupled appreciably tg¢] states. 10t |
The corresponding matrix element can be estimated [4,5] E )
as u/f*f/2 and the energy denominator ag¢;. Thus, L o
according to this estimate, strong mixing occurs once 102 (g
u~ t/f}/z. Since this interaction strength is large com- E b o100
pared toA,, a comparison with our result would suggest - 10+
that, surprisingly, strong mixing of the two-particle prod- 10-0 10-5
uct states is not necessary for the enhancement of the two-
particle localization length. T
Originally, Shepelyansky [4] approached the problem 0.01 0.1 1 10
by an approximate mapping to a banded-random-matrix g
model. We have also investigated an alternative randonf g 2. Distributions of diagonal and off-diagonal matrix
matrix model which is suggested by Eq. (7) due to theslementsg of the projected two-particle Green functidh, for
band-matrix structure af,. An extension of this banded- ¢, = 46.6 (solid lines). The dashed lines are fits by Cauchy

random-matrix model will be applied below to study two ?iStribtlrl]ﬂog_S- Th?if Wiﬂthr dlgc/rgases ﬁXDOH_enttir?”yl away
; ; : ; A : : rom the diagonal on the scalg /2 as shown in the lower
interacting particles in a quasi-one-dimensional wire. N cet The Upper inset shows vs £, as obtained from the

contrast to ordinary banded random matrices we fing)anded-random-matrix model discussed in the text. These data
that the matrix elementg of Go(E = 0) have a Cauchy obtained for systems with0° sites confirm our arguments that
distribution, P(g) = (I'/7)/(I'> + g%). To obtain this & ~ ¢} in this model.
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of matrix elements drawn from the Cauchy distribution.suggest that the scaling function is linear. At present, we
Hence, there exists a corresponding typical largest matrido not have a good physical understanding of this un-
elementg.x [12]. Beyondgn.x the Cauchy distribution expected scaling behavior. It will be interesting to see
can be cut off, and the resulting effective distribution ofwhether the scaling found in this paper can be generalized
matrix elements has a finite variance. This implies thato higher dimensions or whether it is a specific feature of
banded Cauchy matrices belong to the same universalifgne dimension.
class as ordinary banded random matrices. We confirmed It would also be interesting to study implications of
this conclusion numerically by computing the localizationcoherent propagation due to interactions at finite particle
length of banded Cauchy matrices as a function of banddensity. Our numerical approach can be extended to study
width as shown in the upper inset of Fig. 2. We have alsdhe propagation of quasiparticle pairs in the Anderson
studied thex dependence of, predicted by this banded- insulator. This will be the subject of a separate publication.
random-matrix model. However, we find that thecom- One of us (F.v.0.) is particularly indebted to B. Alt-
puted from this model doesot exhibit the scaling (9) shuler and A. Luther for important discussions which
found for the exact solution. Presumably, this is due tceventually led to a significant revision of a previous ver-
correlations between the matrix elementsGaf For ex-  sion of the manuscript. We also acknowledge useful dis-
ample, correlations in the exa6y are implied by Eq. (8) cussions with G. Hackenbroich, B. Huckestein, A. Miiller-
for exceptionally large matrix elements. Large matrix ele-Groeling, D. L. Shepelyansky, and H. A. Weidenmdiller.
ments are due to small energy denominators. Each product
state with energy close tB leads to a correlated, X ¢;
block of large matrix elements iGy. Such correlations
are neglected in the banded-random-matrix model.
e ey P00 s oo 039, ©

- . . [2] For a review, see D. Belitz and T.R. Kirkpatrick, Rev.
an understanding of the physical origin of the scaling pa-"~ ;.4 Phys.66, 261 (1994).
rameteru/A,, itis not clear how to generalize our results 3) o N Dorokhov, Zh. Eksp. Teor. Fifig, 646 (1990) [Sov.
to these cases. For quasi-one-dimensional wires with a ~ phys. JETP71, 360 (1990)].
finite number of channeld/, one easily derives a gener- [4] D.L. Shepelyansky, Phys. Rev. Letf3, 2607 (1994);
alized banded-random-matrix-model. Assuming that this  F. Borgonovi and D. L. Shepelyansky, Nonlineardy877
banded-random-matrix model again correctly predicts the  (1995).
dependence of, on the bandwidth and combining the [5] Y. Imry, Europhys. Lett30, 405 (1995).
result with scaling suggests that the scaling function re-[6] K. Frahm, “A. Mdller-Groeling, J.-L. Pichard, and
mains linear. For quasi-one-dimensional wires we can  D- Weinmann, Europhys. Let81, 169 (1995); D. Wein-
order the doubly occupied sites sequentially along the lon- rgﬁ;sn'RA(‘;VME;L?%GEOS%'&'%;&)L)' Pichard, and K. Frahm,
gitudinal direction. Wherg, is larger than the transverse : - ’ :
dimensions of the wire, the bandwidth 6f, is equal [7] B. Huckestein, Rev. Mod. Phy&7, 357 (1995).

T o Y . [8] Note that this Green function is properly symmetrized al-
to M¢,, yielding a corresponding “localization length though this may not be apparent because of the projection

[1] For a review, see B. Kramer and A. MacKinnon, Rep.

(M&))?>. The actual localization length in the longitudi- onto doubly occupied sites.

nal direction is smaller by a factde, hence&, ~ M&7. [9] We have not included our data fé¥ = 1 (¢, = 105) in
Finally, assuming the above scaling behavior and noting  Fig. 1. While they are consistent with a linear scaling
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In summary, we have studied the interaction-induced del10] F. von Oppen and T. Wettig (unpublished).
localization of two particles in a one-dimensional randoml11] Note that the dependence @b on &, involves both a
potential by a novel and efficient numerical approach. We  !n€ar and a quadratic term. From a double-logarithmic
have found that the two-particle localization lengthfor plot of &, vs ¢, over a limited parameter range, this

. . g dependence was identified in Ref. [6] as a power law with
coherent propagation of the two particles satisfies the scal- noninteger exponent between one and two.

ing relationé>/&1 = f(u/A;) as a function of interaction [19] g g., see J.-P. Bouchaud and A. Georges, Phys. Fa5.
strengthu and one-particle localization lengy. This 127 (1990).

implies that the effect sets in for weaker interactions thar13] Y.V. Fyodorov and A.D. Mirlin, Phys. Rev. Lett57,
previously predicted. At the center of the band our data 2405 (1991).
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