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The three independent amplitudes describing the decay of orthopositronium to three photons are
evaluated in analytic form to one-loop order. The amplitudes are used to obtain thexoaderorder-
a? “square” contributions to the orthopositronium decay rate as integrals over the two-dimensional
phase space. The results for the decay rate contribution$’;are —10.286 606(10) (a/7)I'Lo and
I'»(squarg = 28.860(2) (a/7)*T'Lo, wherel'| ¢ is the lowest order rate. [S0031-9007(96)00486-3]

PACS numbers: 36.10.Dr, 12.20.Ds

The calculation of order? corrections to the or- [4—8]. An alternative amplitude based method was used
thopositronium ¢-Ps) decay rate is one of the most im- by Burichenko in his earlier calculation of the “square”
portant outstanding problems in bound-state QED. Theontribution to the ordet? rate [9].
experimental situation is not clear. The two highest preci- The decay of the massive vector particle orthopositro-
sion measurements [1,2] disagree strongly with the ordemium to three photons is analogous to the decay ofahe
a theoretical prediction, and seem to imply an unusuallyboson to three photons. A convenient formalism for the
large value for the still unknown order? coefficient. A Z — 3y process was given by Glover and Morgan [10].
more recent measurement [3] is in agreement with th&hey used Bose symmetry and gauge invariance to show

orderw result. that the matrix element
In this Letter, | report on a new approach to the
calculation of theo-Ps decay rate. | use a formalism of M = €], €5,,€5,,€aM" 1% (ky, K, k3) (1)

covariant decay amplitudes developed in the study of
boson decay to three photons. | have been able to evaludier the decay of a vector particle (momentum polar-
the one-loop-Ps— 3y amplitudes analytically in terms ization €) to three photons (momenta, polarizationse;)
of dilogarithms and other elementary functions. Usingcan be written in terms of just three independent ampli-
these one-loop amplitudes, | obtained greatly improvedudes. After writing the decay tensor in the manifestly
values for the order correction to the decay rate and the symmetric form
part of the order? correction to the decay rate coming
from the squares of the order-amplitudes. Knowledge
of the one-loop amplitudes allows one to find an analytic
form for the one-loop differential decay distribution, and a
convenient means for accurately calculating the one-loogvhere the sum is over the six permutations of
photon energy spectrum. the photon momentum vectors, they showed that
In most prior work on theo-Ps decay rate, the square M #1#2#:%(k, k,, k3) can be written in terms of ampli-
of the decay matrix element was computed directlytudesA;, A;, A3 as

1 (k5K ks’ ki
MBS (K ko, k3) = Ag(ky, ko, k — — gl kT - + As(ky, ko, k
(kv, k2, k3) 1(123),(1']%(](1'](3 8 )1(k2-k3 kl-k2> 2(k1, ko, k3)

o 1 kKks' L\ [(Kk . kiW ok
ky ks \ki ks ki ko ki ks \ki -k ko - ks

\ 1 kak,“l k/-LZk.u’}
X (ki g™ — kilg’“’”)} + As(ki, k2, k3) ( = g““‘)( i

MHP S () ey fer) = ZJ\/I"'”Z’”“(kl,kz,kﬁ, (2)
S3

ki - k3\ ki * k3 ky + k3
3)

The o-Ps— 3y decay rate is an integral over the two- where x; = E;/W is the normalized energy of thah
dimensional phase space [11] photon [withW = m + O(ma?) equal to half of theo-
| | | Ps mass] in theo-Ps rest frame, and/,, o, r,.n iS the

r = _f dmf dx; N My ol matrix element folo-Ps with spin component to decay
76873 Jo 1—x, A,%M 3 %‘ D to three photons with helicitied, A, A;. Glover and

4) Morgan showed how to calculafy, i, z,.» in terms of
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the amplitudesi|, A, A; in a two-photon center-of-mass
frame by using explicit forms for the photon aodPs spin
vectors. Since the spin averaged and helicity summed
square of the matrix element is an invariant, it can be used VAN
in the 0-Ps rest frame as well.

The decay amplitudes can be written as

A =AY 4 AV 4 AP 4 (5)
o FIG. 1. The lowest-ordes-Ps— 3y decay graph.
for i = 1,2,3, where the superscript indicates the power

of a above that of the lowest-order amplituda§’ =  The lowest-ordep-Ps— 3y amplitudes in this formal-
ALO [Terms of orderAEz) and higher also contain factors 1SM are partlgularly simple. The Iowest-order.decay ma-
of In(1/a).] The expressions for the squalesy, ,, x> trix element in theo-Ps rest frame, from the diagram of

contain parts of the form Fig. 1, is [7,8] 3
. ), (0) O () (= (0) () (1) _ _ima 1 1
AZA] - Ai A] + [Al A] + Ai A] ] + Ai Aj MLO " X153 4
+ (A AP + AP AP+ (6) Do
Y S X tr{yes[y(—p + k3) + mlyely(p — ki) + m]

for various combinations of and . TheAEO)*AE-O) terms X yei(yN + 1)ye(yN — 1)}, @)

give the lowest-order differential decay distribution. The . . oz L .
A0 D 0 e ordes. correction wherep = mN with N = (1,0) the timelike unit vector.
i Aj i Aj g v The amplitudesA, A;, A3 are found by calculating the

and theASl)*Aﬁ-l) andAEO)*A?) + A§2)*A§-0) terms give the trace forMy o and identifying the appropriate parts. One

orderw? corrections. writes the tensor matrix element as
|
MP (kg Koy ks) = —Ag (ks ko, ko) kS KKK - ka) (ke k)] + Ak ko k)RS KT RSk
X [(k1 - ko) (ko - k3) (ks - k)] + Aslkr, ko, ka)kS K37k k(K - k3)* (ko - k3)] ™' + -+ (8)

and findsA, by taking the coefficient ok’ k“k*k*,  BY + 0(a?). This only affects the self-energy, inner

etc. Theresultis vertex, and outer vertex graphs, making them unrenor-
AYO(x), x2,x3) = 0, (9a) Mmalized graphs. There is a nﬁg)MLo left over. Next, |
o replace Coulomb gauge photons by Feynman gauge pho-
ALO(x1, 30, x3) = 16i7a’ X1X2X3 , (9b) tons through the use of
X1X2X
o 19253 DS, (0) = DL, (0) + bu(0)€, + €,b,(€), (11a)
A" (x1,x2,x3) =0, (9¢)
in terms of the variables, xo, x3 With ¥ = 1 — x;. bu(t) = ey [—€. +2(€- N)N.].  (11b)
These variables satisfy the energy conservationAdaw
x; + x3 = 2, and give the scalar products - k; = 2X; . . . . -
with {i, j, k} any permutation of1,2,3}. The integral of 3 L
Eq. (4) forI'Lo can be done analytically, giving the Ore "™ “MN:} N M “WW:?
and Powell result for the lowest-order rate [12] an vy s s w
2
I'o = — (7% — 9)ma®. (10) ® ® ©
97T WA/ RVAVAV,V, AN
The graphs contributing to the order-corrected de- ”W““f; o o
cay amplitudes in the renormalized Coulomb gauge ar__ e "

shown in Fig. 2. It is most convenient to actually cal-
culate these graphs with Feynman gauge virtual photons. @ © ®

As a first step in the transformation from Coulomb gaugeFIG. 2. Graphs contributing to the-Ps decay amplitudes
to Feynman gauge virtual photons, | add back in the¢hrough ordera. They are the (a) self-energy, (b) outer

Coulomb gauge wave function renormalization counterYertex, (c) inner vertex, (d) double vertex, (€) ladder, and (f)
1) _ annihilation contributions. The ladder graph (e) contains the

term B¢ = —(a/4m) (477_,u2/_m2)6I‘(e) [13], where the  |owest order amplitudes as well as ordereorrections. The
wave function renormalization constant ¢ = 1 +  wave function factors are implicit in these graphs.
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The lowest-order Ward identity discussed in detail in Refs. [7,8]. The result is that
yt=1[y(g+ 0 —m]l—(yqg—m) (12)

M; = ‘1 + i(2“’\& - 1)]MLO + Mps. (14)
. . L . . T
is used to combine the longitudinal terms into a single

“gauge correction term,” which is [7] The subtracted ladder graph is
- _ 4 d*e
Mgce - ( 2Ina I)ML(). (13) Mps = —ia"m %f m
2002 2 -1
The virtual photons in the graphs of Fig. 2 are now in X [ 26p) (€7 + 26p)Z(0)]
Feynman gauge. B _ tr(0) B
The ladder graph Fig. 2(e) requires special care in its x ‘[tr(€) ()] Z(0) [2(6) = 2O, (19)

evaluation since it contains the lowest order contribution.
This contribution can be identified and subtracted out, asvith

|
tr(0) = zul{y [y(€ — p) + mlyesly( — p + k3) + mlyely( + p — k) + mlyel[y(¢ + p) + m]

X yu(yN + )ye(yN — 1}, (16)
| 1
and Gii(x1,x3) = 8—)_61[10(961,163) + I (x1,x3)]
Z() =[( — p + k) — m*][(t + p — k1)* — m*]. |
(17) - 8_)_(3[10()63,)61) + I (x3,x1)], (21a)

The subtraction in Eq. (15) takes away t#f¥ndependent |
part of t(€)/Z(€), which has an infrared singularity. This G,(x;, x3) = -
binding singularity, appropriately regulated by the binding 16x1%)
energy and nonvanishing relative three-momentum of the
bound state, produced the lowest-order contributioi to
shown in Eq. (14).

| used the Passarino-Veltman formalism [14] to SYSG5(x1, x3) = —
tematize the evaluation of the one-loop momentum space ~ 16xx3
integrals. In this approach, tensor integrals like

[(1 = 2x)Io(x1, x3) — Ii(x1,x3)]

+ [Lo(x3,x1) + Ii(x3,x1)], (21b)

16x1 X3

[o(x1,x3) + I1(x1,x3)]

1_ [(1 — 2x3)Io(x3, x1) — I(x3,x1)],

f ﬂ orgY ... (18) 16x3X3
im [0 + mi][-(€ + p1)? + m3]--- (21c)
are reduced algebraically to expressions containing Onl%here
scalar integrals of the form
4 1 . .
f d—€ 5 1 5 . (19) Io(x1,x3) = ———=[Lia2(r+,0) — Li2(r—,0)], (22a)
im? [ + mil[=( + p1P + m3]--- ExEs

The_ scalar integrals are the qnly ones thatl must actuallyl(xl,)g) _ In<ﬂ> _ 2_ arctar( X3 ) i

be integrated. A slight modification of this procedure (x1 —x3) \x3 \/X3X3 X3

is required for the ladder graph since the corresponding (22b)

scalar integral contains a binding singularity. There, the

procedure was based on the vector integral with r- = /X * x1%3/x3 and 6 = arctan/x;/x;.
py The dilogarithm function Li(r, 8) is discussed in Lewin

] ._2m6gu{[_52][_€2 — 20p][—€* + 2¢p] [15]. Difficulty in the numerical evaluation of this vector
LT

integral was the main cause of uncertainty in previous
X[—(€+p—Kk)?+ m?][-(¢ — p + k3)*> + m*]}"!  calculations of the one-loop corrections to the decay rate

= Gup" + Gk + Gizky. (20)

Performing this vector integral for thé;; functions was integrals were found algebraically using a routine written
the heart of the calculation. | found that in the MATHEMATICA programming language.
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