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Analytic Evaluation of the Orthopositronium-to-Three-Photon Decay Amplitudes
to One-Loop Order
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The three independent amplitudes describing the decay of orthopositronium to three photons
evaluated in analytic form to one-loop order. The amplitudes are used to obtain the order-a and order-
a2 “square” contributions to the orthopositronium decay rate as integrals over the two-dimension
phase space. The results for the decay rate contributions areG1 ­ 210.286 606s10d saypdGLO and
G2ssquared ­ 28.860s2d saypd2GLO, whereGLO is the lowest order rate. [S0031-9007(96)00486-3]

PACS numbers: 36.10.Dr, 12.20.Ds
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The calculation of order-a2 corrections to the or
thopositronium (o-Ps) decay rate is one of the most i
portant outstanding problems in bound-state QED.
experimental situation is not clear. The two highest pr
sion measurements [1,2] disagree strongly with the or
a theoretical prediction, and seem to imply an unusu
large value for the still unknown order-a2 coefficient. A
more recent measurement [3] is in agreement with
order-a result.

In this Letter, I report on a new approach to
calculation of theo-Ps decay rate. I use a formalism
covariant decay amplitudes developed in the study oZ
boson decay to three photons. I have been able to eva
the one-loopo-Ps! 3g amplitudes analytically in term
of dilogarithms and other elementary functions. Us
these one-loop amplitudes, I obtained greatly impro
values for the order-a correction to the decay rate and t
part of the order-a2 correction to the decay rate comi
from the squares of the order-a amplitudes. Knowledg
of the one-loop amplitudes allows one to find an anal
form for the one-loop differential decay distribution, an
convenient means for accurately calculating the one-
photon energy spectrum.

In most prior work on theo-Ps decay rate, the squa
of the decay matrix element was computed dire
o
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[4–8]. An alternative amplitude based method was u
by Burichenko in his earlier calculation of the “squar
contribution to the order-a2 rate [9].

The decay of the massive vector particle orthoposi
nium to three photons is analogous to the decay of thZ
boson to three photons. A convenient formalism for
Z ! 3g process was given by Glover and Morgan [1
They used Bose symmetry and gauge invariance to s
that the matrix element

M ­ ep
1m1

ep
2m2

ep
3m3

eaMm1m2m3ask1, k2, k3d (1)

for the decay of a vector particle (momentumP, polar-
ization e) to three photons (momentaki , polarizationsei)
can be written in terms of just three independent am
tudes. After writing the decay tensor in the manifes
symmetric form

Mm1m2m3ask1, k2, k3d ­
X
S3

Mm1m2m3ask1, k2, k3d , (2)

where the sum is over the six permutations
the photon momentum vectors, they showed t
Mm1m2m3ask1, k2, k3d can be written in terms of ampli
tudesA1, A2, A3 as
Mm1m2m3ask1, k2, k3d ­ A1sk1, k2, k3d
1

k1 ? k3

√
k

m1

3 k
m3

1

k1 ? k3
2 gm1m3

!
ka

1

√
k

m2

3

k2 ? k3
2

k
m2

1

k1 ? k2

!
1 A2sk1, k2, k3d

3

(
1

k2 ? k3

√
ka

1 k
m1

3

k1 ? k3
2 gam1

! √
k

m2

1 k
m3

2

k1 ? k2
2 gm2m3

!
1

1
k1 ? k3

√
k

m2

1

k1 ? k2
2

k
m2

3

k2 ? k3

!

3 skm3

1 gam1 2 ka
1 gm1m3d

)
1 A3sk1, k2, k3d

1
k1 ? k3

√
ka

1 k
m1

3

k1 ? k3
2 gam1

! √
k

m2

3 k
m3

2

k2 ? k3
2 gm2m3

!
.

(3)
The o-Ps! 3g decay rate is an integral over the tw
dimensional phase space [11]

G ­
m

768p3

Z 1

0
dx1

Z 1

12x1

dx3

X
l1,l2,l3

1
3

X
m

jMl1,l2,l3;mj2,

(4)
- where xi ­ EiyW is the normalized energy of theith
photon [with W ­ m 1 Osma2d equal to half of theo-
Ps mass] in theo-Ps rest frame, andMl1,l2,l3;m is the
matrix element foro-Ps with spin componentm to decay
to three photons with helicitiesl1, l2, l3. Glover and
Morgan showed how to calculateMl1,l2,l3;m in terms of
© 1996 The American Physical Society 4903
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the amplitudesA1, A2, A3 in a two-photon center-of-mas
frame by using explicit forms for the photon ando-Ps spin
vectors. Since the spin averaged and helicity sum
square of the matrix element is an invariant, it can be u
in theo-Ps rest frame as well.

The decay amplitudes can be written as

Ai ­ A
s0d
i 1 A

s1d
i 1 A

s2d
i 1 · · · (5)

for i ­ 1, 2, 3, where the superscript indicates the pow
of a above that of the lowest-order amplitudesA

s0d
i ­

ALO
i . [Terms of orderA

s2d
i and higher also contain facto

of lns1yad.] The expressions for the squaresjMl1,l2,l3;mj2

contain parts of the form

Ap
i Aj ­ A

s0dp
i A

s0d
j 1 fAs0dp

i A
s1d
j 1 A

s1dp
i A

s0d
j g 1 A

s1dp
i A

s1d
j

1 fAs0dp
i A

s2d
j 1 A

s2dp
i A

s0d
j g 1 · · · (6)

for various combinations ofi andj. The A
s0dp
i A

s0d
j terms

give the lowest-order differential decay distribution. T
A

s0dp
i A

s1d
j 1 A

s1dp
i A

s0d
j terms give the order-a correction,

and theA
s1dp
i A

s1d
j and A

s0dp
i A

s2d
j 1 A

s2dp
i A

s0d
j terms give the

order-a2 corrections.
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FIG. 1. The lowest-ordero-Ps! 3g decay graph.

The lowest-ordero-Ps! 3g amplitudes in this formal-
ism are particularly simple. The lowest-order decay m
trix element in theo-Ps rest frame, from the diagram o
Fig. 1, is [7,8]

MLO ­ 2
ipa3

m2

X
S3

1
x1x3

1
4

3 trhge3fgs2p 1 k3d 1 mgge2fgsp 2 k1d 1 mg
3 ge1sgN 1 1dgesgN 2 1dj , (7)

wherep ­ mN with N ­ s1, $0d the timelike unit vector.
The amplitudesA1, A2, A3 are found by calculating the
trace forMLO and identifying the appropriate parts. On
writes the tensor matrix element as
Mm1m2m3ask1, k2, k3d ­ 2A1sk1, k2, k3dkm1

3 k
m2

1 k
m3

1 ka
1 fsk1 ? k3d2sk1 ? k2dg21 1 A2sk1, k2, k3dkm1
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1 fsk1 ? k3d2sk2 ? k3dg21 1 · · · (8)
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and findsA1 by taking the coefficient ofk
m1

3 k
m2

1 k
m3

1 ka
1 ,

etc. The result is

ALO
1 sx1, x2, x3d ­ 0 , (9a)

ALO
2 sx1, x2, x3d ­ 16ipa3 x̄1x̄2x̄3

x1x2x3
, (9b)

ALO
3 sx1, x2, x3d ­ 0 , (9c)

in terms of the variablesx1, x2, x3 with x̄k ­ 1 2 xk.
These variables satisfy the energy conservation lawx1 1

x2 1 x3 ­ 2, and give the scalar productski ? kj ­ 2x̄k

with hi, j, kj any permutation ofh1, 2, 3j. The integral of
Eq. (4) for GLO can be done analytically, giving the O
and Powell result for the lowest-order rate [12]

GLO ­
2

9p
sp2 2 9dma6. (10)

The graphs contributing to the order-a corrected de-
cay amplitudes in the renormalized Coulomb gauge
shown in Fig. 2. It is most convenient to actually c
culate these graphs with Feynman gauge virtual phot
As a first step in the transformation from Coulomb gau
to Feynman gauge virtual photons, I add back in
Coulomb gauge wave function renormalization coun
term B

s1d
C ­ 2say4pd s4pm2ym2deGsed [13], where the

wave function renormalization constant isZ2C ­ 1 1
B
s1d
C 1 Osa2d. This only affects the self-energy, inne

vertex, and outer vertex graphs, making them unren
malized graphs. There is a netB

s1d
C MLO left over. Next, I

replace Coulomb gauge photons by Feynman gauge
tons through the use of

DC
mns,d ­ DF

mns,d 1 bms,d,n 1 ,mbns,d , (11a)

bms,d ­
1

2,2 $,2
f2,m 1 2s, ? NdNmg . (11b)
e
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e
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FIG. 2. Graphs contributing to theo-Ps decay amplitudes
through order-a. They are the (a) self-energy, (b) out
vertex, (c) inner vertex, (d) double vertex, (e) ladder, and
annihilation contributions. The ladder graph (e) contains
lowest order amplitudes as well as order-a corrections. The
wave function factors are implicit in these graphs.
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The lowest-order Ward identity

g, ­ fgsq 1 ,d 2 mg 2 sgq 2 md (12)

is used to combine the longitudinal terms into a sin
“gauge correction term,” which is [7]

MGC ­
a

p
s22 lna 2 1dMLO . (13)

The virtual photons in the graphs of Fig. 2 are now
Feynman gauge.

The ladder graph Fig. 2(e) requires special care in
evaluation since it contains the lowest order contributi
This contribution can be identified and subtracted out
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discussed in detail in Refs. [7,8]. The result is that

ML ­

(
1 1

a

p
s2 lna 2 1d

)
MLO 1 MLS . (14)

The subtracted ladder graph is

MLS ­ 2ia4m2
X
S3

Z d4,

ip2

3 f,2s,2 2 2,pd s,2 1 2,pdZs,dg21

3

(
ftrs,d 2 trs0dg 2

trs0d
Zs0d

fZs,d 2 Zs0dg

)
, (15)

with
trs,d ­
1
4 trhgmfgs, 2 pd 1 mgge3fgs, 2 p 1 k3d 1 mgge2fgs, 1 p 2 k1d 1 mgge1fgs, 1 pd 1 mg

3 gmsgN 1 1dgesgN 2 1dj, (16)
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Zs,d ­ fs, 2 p 1 k3d2 2 m2g fs, 1 p 2 k1d2 2 m2g.
(17)

The subtraction in Eq. (15) takes away the,-independent
part of trs,dyZs,d, which has an infrared singularity. Th
binding singularity, appropriately regulated by the bindi
energy and nonvanishing relative three-momentum of
bound state, produced the lowest-order contribution toML

shown in Eq. (14).
I used the Passarino-Veltman formalism [14] to s

tematize the evaluation of the one-loop momentum sp
integrals. In this approach, tensor integrals likeZ d4,

ip2

,m,n · · ·

f2,2 1 m2
1g f2s, 1 p1d2 1 m2

2g · · ·
(18)

are reduced algebraically to expressions containing o
scalar integrals of the formZ d4,

ip2

1

f2,2 1 m2
1g f2s, 1 p1d2 1 m2

2g · · ·
. (19)

The scalar integrals are the only ones that must actu
be integrated. A slight modification of this procedu
is required for the ladder graph since the correspond
scalar integral contains a binding singularity. There,
procedure was based on the vector integralZ d4,

ip2
m6,mhf2,2g f2,2 2 2,pg f2,2 1 2,pg

3 f2s, 1 p 2 k1d2 1 m2g f2s, 2 p 1 k3d2 1 m2gj21

­ G11pm 1 G12k
m
1 1 G13k

m
3 . (20)

Performing this vector integral for theG1i functions was
the heart of the calculation. I found that
e

-
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G11sx1, x3d ­
1

8x̄1
fI0sx1, x3d 1 I1sx1, x3dg

2
1

8x̄3
fI0sx3, x1d 1 I1sx3, x1dg , (21a)

G12sx1, x3d ­
1

16x1x̄1
fs1 2 2x1dI0sx1, x3d 2 I1sx1, x3dg

1
1

16x1x̄3
fI0sx3, x1d 1 I1sx3, x1dg , (21b)

G13sx1, x3d ­ 2
1

16x̄1x3
fI0sx1, x3d 1 I1sx1, x3dg

2
1

16x3x3
fs1 2 2x3dI0sx3, x1d 2 I1sx3, x1dg ,

(21c)

where

I0sx1, x3d ­
1

p
x1x̄1x3x̄3

fLi 2sr1, ud 2 Li 2sr2, udg , (22a)

I1sx1, x3d ­
1

sx1 2 x3d
ln

µ
x1

x3

∂
2

2
p

x3x̄3
arctan

√s
x̄3

x3

!
,

(22b)

with r6 ­
p

x̄1 6
p

x1x̄3yx3 and u ­ arctan
p

x1yx̄1.
The dilogarithm function Li2sr , ud is discussed in Lewin
[15]. Difficulty in the numerical evaluation of this vecto
integral was the main cause of uncertainty in previo
calculations of the one-loop corrections to the decay
[5–8]. With the ladder graph vector functions and the
maining scalar functions in hand, the rest of the one-lo
integrals were found algebraically using a routine writ
in theMATHEMATICA programming language.
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The amplitudes for the six order-a decay graphs were
evaluated one by one, then summed along with the co
butions from the renormalization termB

s1d
C MLO and the

gauge correction term (13). The resulting expressi
are sums of rational functions of thexi times logarithms,
dilogs, and inverse tangent functions. Of course, the
traviolet divergence cancels in the sum. The express
for the amplitudes are moderately long, and will be giv
in another place.

Practical results follow immediately. The two
dimensional integral for the order-a correction to the
o-Ps! 3g decay rate gives [16]

G1 ­ 210.286 606s10d
a

p
GLO . (23)

This represents a 60-fold improvement in precision o
the previous best result, which had a coefficient
210.2866s6d [8]. The two-dimensional integral for th
part of the order-a2 correction to the decay rate comin
from theA

s1dp
i A

s1d
j terms gives [17]

G2ssquared ­ 28.860s2d

√
a

p

!2

GLO . (24)

The previous result for this contribution was28.8s2d [9].
The amplitude based approach is algebraically m

efficient than the method of calculating the square of
matrix element directly, and should see useful service
the evaluation of the remaining order-a2 contributions to
theo-Ps decay rate.
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