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Tidal Stablization of Neutron Stars and White Dwarfs
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What happens to a neutron star or white dwarf near its maximum mass limit in a close binary
orbit? Using an energy variational principle the tidal field reduces its central density, making it
stable against radial collapse. For a cold white dwarf, the tidal field increases the maximum stable
mass, but lowers the maximum central density by 30%. A white dwarf in a close binary may be
more susceptible to the general relativistic instability than that with electron capture or pycronuclear
reaction. We analyze radial stability of a neutron star using post-Newtonian approximation with a
degenerate neutron gas equation of state. Tidal stablization implies that the neutron star in coalescing
neutron star—neutron star or neutron star—black hole binaries does not collapse prior to merger or tidal
disruption. [S0031-9007(96)00496-6]

PACS numbers: 97.80.Fk, 04.25.Nx, 04.40.Dg, 97.60.Jd

It is well established that there exist upper limits to thetional principle as widely used in the analysis of stability
mass and central density of degenerate compact objectsf isolated WD and NS [1,2,20].
white dwarf (WD) and neutron star (NS) [1,2]. For WD, Let E(p) be the energy of an isolated object of baryon
the mass asymptotes to the Chandrasekhar limit as thmassM as a function of the central densify. The
central density increases, bounded by general relativistifunction E(p) consists of an internal energy and self-
radial instability, electron capture, or pycronuclear reacgravitational energy, including their relativistic correc-
tion. For NS, the existence of an absolute mass limitions. The equilibrium central density, is obtained
is truly a general relativistic phenomena: pressure, whiclirom the conditiondE/dp = 0; radial stability requires
supports the star against gravity, also acts as a source 6tE/dp> > 0.
gravitation. Now for the star in a binary, the dimensionless tidal

WD and NS frequently appear in binary systems. Typedistortion is of order~s = (M'/M) (R/r)?, whereR o«
la supernova is thought to arise from an accreting WD inM/p)'/? is the mean stellar radiug/’ the companion
a close binary or the merger of a WD-WD binary [3]. Of mass, and- the orbital separation. The total stellar en-
particular interest is the coalescing NS-NS binaries anérgy can be written a¥(p) = E(p) + W,(p). Note
NS—black hole binaries, which are the most promisinghat the tidal distortion modifies the “intrinsic” energy
sources of gravitational waves that could be detected b¥(p), but we will group this correction int®#,(p). Thus
interferometers such as LIGO and VIRGO [4-6]. NSthe functionW,(p) consists of (i) the correctiod W to
binary merger is also considered to be a natural enginthe self-gravitational potential energy, (ii) the interaction
that drives cosmological gamma-ray bursts. AlthoughenergyW; betweenM’ and the tide-induced quadrupole,
the inspiral at larger orbital radius may be treated byand (iii) the kinetic energyl’y of internal fluid oscil-
the post-Newtonian expansion technique [7], coupled witHation and rotation. The first two contributions are of
semianalytic studies of the hydrodynamical effects [8—13]the same order(GM?/R)e? « 1/r®, but have opposite
quantitative understanding of the orbital evolution at smalkigns, while the thirdl, ~ MR??Q? « 1/r° is a fac-
separation and the final merging requires full numericator (1 + M’/M)(R/r)? smaller, and will be neglected.
simulation, which still is in its infancy [14—-18]. [We assume the star has negligible viscosity to be tidally

The present study is motivated by the recent generaynchronized, as is the case for compact objects [8,9].
relativistic hydrodynamical simulations of Wilson and co- We also assume the star has zero intrinsic spin—finite
workers [19] which reveal evidence that “general rela-spin tends to stablize the star against radial collapse,
tivistic effects may cause otherwise stable neutron stars tand can be treated separately (e.g., [2]). Note that there
individually collapse prior to merging.” Obviously, this is no ambiguity in our definition of the functiofE (p)
requires the neutron star to have a mass close to its maxier stability analysis: One could add t&'(p) a term
mum value to begin with (at large separation). Howeverl = T, + T, associated with the kinetic spin and or-
it does raise a question as to how the tidal field modifiedital energies (so thaE can be considered as the total
the mass limit and central density limit of a compact ob-energy of the binary system). However, differentiation
ject. In this Letter, we analyze the radial stability of aof T with respect top under fixed total angular mo-
neutron star and white dwarf under the influence of thementumJ and fluid circulationC gives (3T /dp);c =
tidal field of a companion. We show that the tidal effect27;/3p, and the orbital motion does not affect the stellar
generally stablizes the star. We adopt the energy varisstructure.]
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To calculateW,, we model the star as a polytrope imum mass, at whicKE/dp = 9*E/dp> = 0 is satis-
(with equation of stat® = Kp'*1/"; n is the polytropic  fied. Taking the difference betweerE /apl,, m, = 0

m

index). Approximating the tidally deformed star as ananddE/dpl,,,m,, = 0, we obtain
ellipsoid with axess; = R(1 + «;) (a; is along the tidal
bulge), the tidal distortion can be calculated in Newtonian _ _ 5W,( 0’E -1
theory. To leading order i, we have [21] OMp = My = Mo = 3p \apoM oMo (6)
5 M(RY S 5 _
ar=—qg,—(— ], ince we can show“E/dpdM < 0, we finddM,, > 0,
2 M\r 5 1 i.e., the tidal field increases the maximum mass for sta-
) = an = 5 M(ﬁ) 1) bility. [Consider a sequence of stellar models parame-
2 ’ 4y ’ trized by the central density. Differentiatirigz/dp = 0

we obtain 9’E/dp? + (0*E/dpoM)dM/dp = 0. The
stable branch of the sequence satisfig€/dp? > 0
and dM/dp > 0, while the unstable branch satisfies
d’E/op?> < 0 anddM/dp < 0. In both cases we have
d’E/apoM < 0.] An order of magnitude estimate gives

where g, = x,(1 — n/5), and k,, is defined such that
the moment of inertia of an isolated object is=
(2/5)k,MR? (x, specifies the mass concentration within
the star). Note that; + a» + a3 = 0 to leading order

in e. The two contributions tdV, are SMyy /My ~ A&
m m .
2 Note that two implicit assumptions have been made
3 GM~ 4 . o ; -
AW = s_ ., R 45 in our analysis: (i) The star “relaxes” to its equilibrium

) ) ) shape even when the density is out of equilibrium.
X (af + a3 + a5 — @12 — apa3 — ajas) This separation of the radial motion and the “shape
adjustment” makes our analysis of radial instability more

3 GM"*R> . : nd
= —Knqn— g (2) transparent. It is valid because near the stability limit,
4 r the radial oscillation has almost zero frequency. (i)
and The displacement of a fluid element inside the star is a
, linear function of the fluid position. This is exact only
w — _GM <£ « MR2> Qa) — ar — as) for the n = 3 polytrope and in the incompressible limit,
l 2r3\5 7" ’ but otherwise corresponds to an approximate trial wave
3 GM"R> function in the variational principle.
I LT (3) We now consider the stability of white dwarfs. Near
the maximum mass, the stellar density profile resembles
Thus, up to ordee?, the total tidal energy is that of an = 3 polytrope. The intrinsic energy can be
P D5 n written as [1,2]
W= 2 2 e @)
r r E=FEyu+ W+ AE, + AEgr, (7)
with A = (3/4)k,q,. Note that the negative sign I, is
crucial for the tidal stablization of the radial mode. where Ej, ~ Mp'? is the internal energy of
The equilibrium condition in the presence of a tidethe  ultrarelativistic  electrons, AE, ~ Mp~'/3
requiresdF /dp = 0. Thus the density changép = is the correction due to finite electron mass,
p — po (where po is the equilibrium density of the W ~ —M?/R ~ —M>/3p'/3 is the potential energy of
isolated object) due to the tidal field is given by self-gravity, andAEcg ~ —(M2/R)M/R ~ —M"/3p?/3

is the general relativistic (post-Newtonian) correction.
5) For isolated cold WD, this gives for the maximum central
oo density and maximum mags,o = 2.737 X 10'° gcm 3,
M0 = 1.4156M5, with the corresponding minimum ra-
with the expression evaluated@. Sinced’E/dp® >0  dius R,,o = 1110 km. (We assume that the number of
for stable configuration, we see thép < 0, i.e., the  electron per nucleon i, = 0.5.)
tidal field reduces the central density of a stable object \ve parametrize the strength of the tidal field by the
If the star is not too close to the stability limit, we dimensionless ratig = (M'/M,,0) (Ro/r). To avoid

have an estimateSp/po ~ —e*, which is of second tidal disruption we requirgd < 0.1. With A = 0.01 (for

order in the tidal deformatioe. Heuristically, a tidally , = 3 polytrope) we then have

distorted object is less bound gravitationally (compared

to a spherical object of the same mass); thus its volume LGM2o( M N3 p 78

expands in order to satisfy hydrostatic equilibrium. W, = -0.018 R—m()< ) <me> G
Now consider how the tidal field changes the max-

imum massM,, of the object. Letp,o and M, be Expressing mass in the units oMy, density in

the zero-tide values of the maximum density and max40'° gcm 3, energy in 107! ergs, the total energy
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can be written as tion, we adopt an equation of state to be that of an ideal
degenerate neutron gas and analyze the radial stability in
the post-Newtonian approximation. Assuming the stellar
density profile to be that of the = 3/2 polytrope, the
intrinsic energy/can still be written as in Eq. (7), except
thatE;,, ~ Mp?/3 is the internal energy of nonrelativistic
_ — 0.148%(M /p)*". _ (9)_ neutrons,AE;,, ~ —Mp*/3 is the correction due to spe-

Solving 9 /op = 9*E /ap*> = 0 yields the maxi- cial relativistic effect. The maximum baryon mass of an
mum density and maximum mass as a functioofThe  jsolated NS based on this modelis,, = 1.1108M, the
result is shown in F|g 1. The increase in the maximu%aximum central densit}pmo = 7415 X 1015 gcm73’
mass is rather small<{0.1%). However,the maximum snd the corresponding minimum radiis, = 10.48 km.
density decrease can be rather substantial, reaching agye again parametrize the tidal strength by the rigtie=
much as~30%. For small 8, we havedM,,/Muwo = (M'/M,.0) (Rmo/r)*. The tidal energy can then be writ-
0.058%, and 8p,/pmo = —17B>. Figure 1 also shows ten in the form of Eq. (8) except that we use= 0.1
the Central denSI'[y Of thl’ee constant-mass Sequences W|§bpropr|ate forn = 3/2 polytrope (The uncertalnty can
mass slightly belowd,,o. We see that as the binary sep- pe readily absorbed into the definition gf) The GR
aration decrease$3(increase§), the central densities ?"SOCorrection to the tidal potential energy is of ordet/r
decrease, and always remain smaller than the maximu@maller, and is neglected. Expressing mass in the units of
del’lSitypm(ﬂ) a”OWed for radial Stablllty MO! dens|ty in1015 gcm73’ and energy inl053 ergS, the

The faCt that the maXimum denSI'[(ym(ﬂ) fOI’ Stabil' total energy func“on can be Wr|tten as
ity decreases with decreasimgmay have some interest-

ing astrophysical consequences. The maximum central F = 0.85168Mp>> — 1.5968M°3p'/3
density of normal carbon-oxygen white dwarfs is set by

F =3.7129Mp'? — 2.8895M°3p!/3

+ 0.0457Mp~'? — 0.0105M7/3 p*/>

the threshold of electron capture &0, atpc,, = 1.9 X — 0.02887TM p*/3 — 0.16774M7/3 p?/3
109 gecm™3 (the pycronuclear reaction betwe&C may
set in at smaller density, of ord@0'® gcm™3; but this — 7.3568%(M /p)*>. (10)

increases as thé’C abundance decreases [22]). From _ . . :
Figure 2 shows the maximum densipy, and maxi-

Fig. 1 we see thap,,(8) can drop belowp.,,; therefore, ) :

the general relativistic (GR) effect becompes more impor—mu.rn mass¥,, as a function of3. We see that, as in _the
tant than neutronization. This implies that an accreting’vhlte d_vvarf casep, decreases andl,, increases with
white dwarf in close binary can be more susceptible t ncreasing8. For smallg (=< 0.15), we have

collapsing to NS by general relativistic radial instability. oM,, _ 15W;

Of course, the real situation may be complicated by the M,o  4QE;, + W)
finite temperature due to the high accretion rate.

We now consider neutron stars. The equation of state Spm _  SWi(28E;, + 15W) _ 2782, (12)

= 0.3382, (11)

of nuclear matter is uncertain. For the purpose of illustra- Pmo 2WQE;, + W)
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FIG. 1. The maximum central density (heavy solid line) andFIG. 2. The maximum central density (heavy solid line) and
maximum mass (dashed line) of a white dwarf as a functiormaximum mass (dashed line) of a neutron star as a function
of the tidal ratio 8 = (M’/M,,0) (R,0/r)?. The solid lines of the tidal ratio 8 = (M'/M,,) (R/r)>. The solid lines
show the central densities of three sequences with masshow the central densities of three sequences with mass
slightly smaller than maximum mass of a isolated W0,y = slightly smaller than maximum mass of an isolated M$, =
1.4156M. 1.1108M5.
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