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What happens to a neutron star or white dwarf near its maximum mass limit in a close b
orbit? Using an energy variational principle the tidal field reduces its central density, maki
stable against radial collapse. For a cold white dwarf, the tidal field increases the maximum
mass, but lowers the maximum central density by 30%. A white dwarf in a close binary ma
more susceptible to the general relativistic instability than that with electron capture or pycronu
reaction. We analyze radial stability of a neutron star using post-Newtonian approximation w
degenerate neutron gas equation of state. Tidal stablization implies that the neutron star in coa
neutron star–neutron star or neutron star–black hole binaries does not collapse prior to merger
disruption. [S0031-9007(96)00496-6]

PACS numbers: 97.80.Fk, 04.25.Nx, 04.40.Dg, 97.60.Jd
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It is well established that there exist upper limits to t
mass and central density of degenerate compact obj
white dwarf (WD) and neutron star (NS) [1,2]. For WD
the mass asymptotes to the Chandrasekhar limit as
central density increases, bounded by general relativ
radial instability, electron capture, or pycronuclear re
tion. For NS, the existence of an absolute mass li
is truly a general relativistic phenomena: pressure, wh
supports the star against gravity, also acts as a sourc
gravitation.

WD and NS frequently appear in binary systems. Ty
Ia supernova is thought to arise from an accreting WD
a close binary or the merger of a WD-WD binary [3]. O
particular interest is the coalescing NS-NS binaries
NS–black hole binaries, which are the most promis
sources of gravitational waves that could be detected
interferometers such as LIGO and VIRGO [4–6]. N
binary merger is also considered to be a natural en
that drives cosmological gamma-ray bursts. Althou
the inspiral at larger orbital radius may be treated
the post-Newtonian expansion technique [7], coupled w
semianalytic studies of the hydrodynamical effects [8–1
quantitative understanding of the orbital evolution at sm
separation and the final merging requires full numer
simulation, which still is in its infancy [14–18].

The present study is motivated by the recent gen
relativistic hydrodynamical simulations of Wilson and c
workers [19] which reveal evidence that “general re
tivistic effects may cause otherwise stable neutron sta
individually collapse prior to merging.” Obviously, th
requires the neutron star to have a mass close to its m
mum value to begin with (at large separation). Howev
it does raise a question as to how the tidal field modi
the mass limit and central density limit of a compact o
ject. In this Letter, we analyze the radial stability of
neutron star and white dwarf under the influence of
tidal field of a companion. We show that the tidal effe
generally stablizes the star. We adopt the energy va
0031-9007y96y76(26)y4878(4)$10.00
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tional principle as widely used in the analysis of stabil
of isolated WD and NS [1,2,20].

Let Esrd be the energy of an isolated object of bary
mass M as a function of the central densityr. The
function Esrd consists of an internal energy and se
gravitational energy, including their relativistic corre
tions. The equilibrium central densityr0 is obtained
from the condition≠Ey≠r ­ 0; radial stability requires
≠2Ey≠r2 . 0.

Now for the star in a binary, the dimensionless tid
distortion is of order,´ ; sM 0yMd sRyrd3, whereR ~

sMyrd1y3 is the mean stellar radius,M 0 the companion
mass, andr the orbital separation. The total stellar e
ergy can be written asE srd ­ Esrd 1 Wtsrd. Note
that the tidal distortion modifies the “intrinsic” energ
Esrd, but we will group this correction intoWtsrd. Thus
the functionWtsrd consists of (i) the correctionDW to
the self-gravitational potential energy, (ii) the interacti
energyWi betweenM 0 and the tide-induced quadrupol
and (iii) the kinetic energyTs of internal fluid oscil-
lation and rotation. The first two contributions are
the same order,sGM2yRd´2 ~ 1yr6, but have opposite
signs, while the thirdTs , MR2´2V2 ~ 1yr9 is a fac-
tor s1 1 M 0yMd sRyrd3 smaller, and will be neglected
[We assume the star has negligible viscosity to be tid
synchronized, as is the case for compact objects [8
We also assume the star has zero intrinsic spin—fi
spin tends to stablize the star against radial collap
and can be treated separately (e.g., [2]). Note that t
is no ambiguity in our definition of the functionE srd
for stability analysis: One could add toE srd a term
T ­ Ts 1 Torb associated with the kinetic spin and o
bital energies (so thatE can be considered as the to
energy of the binary system). However, differentiati
of T with respect tor under fixed total angular mo
mentumJ and fluid circulationC gives s≠Ty≠rdJ,C ­
2Tsy3r, and the orbital motion does not affect the stel
structure.]
© 1996 The American Physical Society
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To calculateWt , we model the star as a polytrop
(with equation of stateP ­ Kr111yn; n is the polytropic
index). Approximating the tidally deformed star as
ellipsoid with axesai ­ Rs1 1 aid (a1 is along the tidal
bulge), the tidal distortion can be calculated in Newton
theory. To leading order iń, we have [21]

a1 ­
5
2

qn
M 0

M

µ
R
r

∂3

,

a2 ­ a3 ­ 2
5
4

qn
M 0

M

µ
R
r

∂3

,
(1)

where qn ­ kns1 2 ny5d, and kn is defined such tha
the moment of inertia of an isolated object isI ­
s2y5dknMR2 (kn specifies the mass concentration with
the star). Note thata1 1 a2 1 a3 ­ 0 to leading order
in ´. The two contributions toWt are

DW ­
3

5 2 n
GM2

R
4

45

3 sa2
1 1 a2

2 1 a2
3 2 a1a2 2 a2a3 2 a1a3d

­
3
4

knqn
GM 02R5

r6 (2)

and

Wi ­ 2
GM 0

2r3

µ
2
5

knMR2

∂
s2a1 2 a2 2 a3d

­ 2
3
2

knqn
GM 02R5

r6
. (3)

Thus, up to ordeŕ 2, the total tidal energy is

Wt ­ 2l
GM 02R5

r6
, 2l

GM 02

r6
sMyrd5y3, (4)

with l ­ s3y4dknqn. Note that the negative sign inWt is
crucial for the tidal stablization of the radial mode.

The equilibrium condition in the presence of a tid
requires≠E y≠r ­ 0. Thus the density changedr ­
r 2 r0 (where r0 is the equilibrium density of the
isolated object) due to the tidal field is given by

dr ­
5Wt

3r

µ
≠2E
≠r2

∂21 Ç
r0

, (5)

with the expression evaluated atr0. Since≠2Ey≠r2 . 0
for stable configuration, we see thatdr , 0, i.e., the
tidal field reduces the central density of a stable obje.
If the star is not too close to the stability limit, w
have an estimatedryr0 , 2´2, which is of second
order in the tidal deformatioń. Heuristically, a tidally
distorted object is less bound gravitationally (compa
to a spherical object of the same mass); thus its volu
expands in order to satisfy hydrostatic equilibrium.

Now consider how the tidal field changes the ma
imum massMm of the object. Letrm0 and Mm0 be
the zero-tide values of the maximum density and m
d
e

-

-

imum mass, at which≠Ey≠r ­ ≠2Ey≠r2 ­ 0 is satis-
fied. Taking the difference between≠E y≠rjrm ,Mm

­ 0
and≠Ey≠rjrm0,Mm0 ­ 0, we obtain

dMm ­ Mm 2 Mm0 ­
5Wt

3r

µ
≠2E

≠r≠M

∂21 Ç
rm0,Mm0

. (6)

Since we can show≠2Ey≠r≠M , 0, we finddMm . 0,
i.e., the tidal field increases the maximum mass for s
bility. [Consider a sequence of stellar models param
trized by the central density. Differentiating≠Ey≠r ­ 0
we obtain ≠2Ey≠r2 1 s≠2Ey≠r≠MddMydr ­ 0. The
stable branch of the sequence satisfies≠2Ey≠r2 . 0
and dMydr . 0, while the unstable branch satisfie
≠2Ey≠r2 , 0 and dMydr , 0. In both cases we hav
≠2Ey≠r≠M , 0.] An order of magnitude estimate give
dMmyMm0 , l´2.

Note that two implicit assumptions have been ma
in our analysis: (i) The star “relaxes” to its equilibrium
shape even when the density is out of equilibriu
This separation of the radial motion and the “sha
adjustment” makes our analysis of radial instability mo
transparent. It is valid because near the stability lim
the radial oscillation has almost zero frequency.
The displacement of a fluid element inside the star i
linear function of the fluid position. This is exact on
for the n ­ 3 polytrope and in the incompressible limi
but otherwise corresponds to an approximate trial w
function in the variational principle.

We now consider the stability of white dwarfs. Ne
the maximum mass, the stellar density profile resemb
that of a n ­ 3 polytrope. The intrinsic energy can b
written as [1,2]

E ­ Eint 1 W 1 DEint 1 DEGR , (7)

where Eint , Mr1y3 is the internal energy o
the ultrarelativistic electrons, DEint , Mr21y3

is the correction due to finite electron mas
W , 2M2yR , 2M5y3r1y3 is the potential energy o
self-gravity, andDEGR , 2sM2yRdMyR , 2M7y3r2y3

is the general relativistic (post-Newtonian) correctio
For isolated cold WD, this gives for the maximum cent
density and maximum massrm0 ­ 2.737 3 1010 g cm23,
Mm0 ­ 1.4156MØ, with the corresponding minimum ra
dius Rm0 ­ 1110 km. (We assume that the number
electron per nucleon isYe ­ 0.5.)

We parametrize the strength of the tidal field by t
dimensionless ratiob ; sM 0yMm0d sRm0yrd3. To avoid
tidal disruption we requireb & 0.1. With l . 0.01 (for
n ­ 3 polytrope) we then have

Wt . 20.01b2 GM2
m0

Rm0

µ
M

Mm0

∂5y3µ r

rm0

∂25y3

. (8)

Expressing mass in the units ofMØ, density in
1010 g cm23, energy in 1051 ergs, the total energy
4879
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can be written as

E ­ 3.7129Mr1y3 2 2.8895M5y3r1y3

1 0.0457Mr21y3 2 0.0105M7y3r2y3

2 0.14b2sMyrd5y3. (9)
Solving ≠E y≠r ­ ≠2E y≠r2 ­ 0 yields the maxi-

mum density and maximum mass as a function ofb. The
result is shown in Fig. 1. The increase in the maxim
mass is rather small (&0.1%). However, the maximum
density decrease can be rather substantial, reaching
much as,30%. For small b, we havedMmyMm0 .
0.05b2, and drmyrm0 . 217b2. Figure 1 also shows
the central density of three constant-mass sequences
mass slightly belowMm0. We see that as the binary se
aration decreases (b increases), the central densities a
decrease, and always remain smaller than the maxim
densityrmsbd allowed for radial stability.

The fact that the maximum densityrmsbd for stabil-
ity decreases with decreasingr may have some interes
ing astrophysical consequences. The maximum cen
density of normal carbon-oxygen white dwarfs is set
the threshold of electron capture on16O, atrcap ­ 1.9 3

1010 g cm23 (the pycronuclear reaction between12C may
set in at smaller density, of order1010 g cm23; but this
increases as the12C abundance decreases [22]). Fro
Fig. 1 we see thatrmsbd can drop belowrcap; therefore,
the general relativistic (GR) effect becomes more imp
tant than neutronization. This implies that an accret
white dwarf in close binary can be more susceptible
collapsing to NS by general relativistic radial instabilit
Of course, the real situation may be complicated by
finite temperature due to the high accretion rate.

We now consider neutron stars. The equation of s
of nuclear matter is uncertain. For the purpose of illus
nd
tion

as

nd
tion

ass
FIG. 1. The maximum central density (heavy solid line) a
maximum mass (dashed line) of a white dwarf as a func
of the tidal ratio b ; sM0yMm0d sRm0yrd3. The solid lines
show the central densities of three sequences with m
slightly smaller than maximum mass of a isolated WDMm0 ­
1.4156MØ.
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tion, we adopt an equation of state to be that of an id
degenerate neutron gas and analyze the radial stabilit
the post-Newtonian approximation. Assuming the ste
density profile to be that of then ­ 3y2 polytrope, the
intrinsic energy can still be written as in Eq. (7), exce
thatEint , Mr2y3 is the internal energy of nonrelativisti
neutrons,DEint , 2Mr4y3 is the correction due to spe
cial relativistic effect. The maximum baryon mass of
isolated NS based on this model isMm0 ­ 1.1108MØ, the
maximum central densityrm0 ­ 7.415 3 1015 g cm23,
and the corresponding minimum radiusRm0 ­ 10.48 km.
We again parametrize the tidal strength by the ratiob ;
sM 0yMm0d sRm0yrd3. The tidal energy can then be writ
ten in the form of Eq. (8) except that we usel . 0.1
appropriate forn ­ 3y2 polytrope. (The uncertainty can
be readily absorbed into the definition ofb.) The GR
correction to the tidal potential energy is of orderM 0yr
smaller, and is neglected. Expressing mass in the unit
MØ, density in1015 g cm23, and energy in1053 ergs, the
total energy function can be written as

E ­ 0.851 68Mr2y3 2 1.5968M5y3r1y3

2 0.028 87Mr4y3 2 0.167 74M7y3r2y3

2 7.356b2sMyrd5y3. (10)

Figure 2 shows the maximum densityrm and maxi-
mum massMm as a function ofb. We see that, as in the
white dwarf case,rm decreases andMm increases with
increasingb. For smallb (& 0.15), we have

dMm

Mm0
. 2

15Wt

4s2Ein 1 Wd
­ 0.33b2, (11)

drm

rm0
. 2

5Wts28Ein 1 15W d
2Ws2Ein 1 W d

­ 22.7b2. (12)
s

FIG. 2. The maximum central density (heavy solid line) a
maximum mass (dashed line) of a neutron star as a func
of the tidal ratio b ; sM 0yMm0d sRm0yrd3. The solid lines
show the central densities of three sequences with m
slightly smaller than maximum mass of an isolated NSMm0 ­
1.1108MØ.
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FIG. 3. The mass-central density curves of sequences o
models with constant values ofb. (b ­ 0 corresponds to
isolated NS.)

Figure 2 also depicts the densities of constant-mass
quences withM slightly belowMm0. Again, we see tha
these densitiesrsbd always remain belowrmsbd; i.e.,
these stars are stable against radial perturbation unti
tidal limit b . 0.23 is reached.

Another way to look at the tidal effect on the rad
stability is to construct a sequence of stellar models w
varying central densities at a given fixedb. Figure 3
shows theM-r curves of several such sequences. O
models in thedMydr . 0 branch are stable, and th
maximum densityrm and maximum massMm are given
by the values at the turning pointdMydr ­ 0. One can
readily see that the effects of the tidal field is to ra
Mm and lowerrm. Forb * 0.23, no stable configuratio
exists, and this corresponds to the tidal disruption limi

The above analysis demonstrates that the tidal e
tends to stabilize a neutron star and white dwarf aga
radial collapse, at least within the framework of po
Newtonian theory. Our method is accurate for wh
dwarfs, but only approximate for neutron stars. Howev
we think it is unlikely that higher order GR corrections
the use of a more sophisticated nuclear equation of
[19] will change our qualitative results for neutron sta
although the precise numbers can certainly change.

In the cases of NS-NS binaries, one might still consi
the possibility of neutron star collapse prior to merg
when there is stable mass transfer from its lower m
companion. However, by the time mass transfer sta
the binary must already have encountered the orbital
namical instability as a result of strong tidal interacti
[10]. This tidal instability, enhanced by general relativ
tic effects [23], leads to rapid coalescence of the bin
within a few orbits [13,24].
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