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Diffusion of Periodically Forced Brownian Particles Moving in Space-Periodic Potentials

Hu Gang!? A. Daffertshofer, and H. Hakeh
lInstitute for Theoretical Physics and Synergetics, University of Stuttgart, Pfaffenwaldriidg B770550 Stuttgart, Germany
’Department of Physics, Beijing Normal University, Beijing 100875, China
(Received 26 January 19p6

The diffusion properties of overdamped particles moving in spatially symmetrical periodic potentials
subject to both symmetrical time-periodic driving and stochastic forcing are investigated [the typical
model formally readss = —V/(x) + U(t) + T'(¢), V(L = x) = V(x), UT + 1) = U(1),{I'(x)) = 0,
(I'(0)'(7)) = 2D&8(t — 7)]. It is found that the diffusion rate can be greatly enhanced if the various
forcings are chosen in an optimal matching. In particular, we may get a diffusion rate larger than the
rate of free diffusion. [S0031-9007(96)00420-6]

PACS numbers: 05.60.+w, 66.30.Dn

Recently, there has been great interest in studying inrate reads
fluences of symmetrical forces on transport properties. In
particular, the works on the forced ratchets showed [1— (Ax(1)) = (Ax(0)*) = 2Dt 3)
4] that if a particle moves in an asymmetrical periodic . N o ) ,
potential and is forced by a symmetrical thermal nois@Vith (Ax7) := (x*) — (x)". In practice, one often wants
and an also symmetrical force (which may be stochasti€’ €Ven needs to C(_)ntrol the diffusion rate with given flxe_d
or deterministic) with long enough correlation time, a net"0is€ level (e.g., fixed temperature) by applying certain
current in a certain direction (according to the asymmetry€terministic forces. - Obviously, the diffusion rate will
of the potential) may occur in absence of an appropriat@e reduced by introducing various attracting f_orcgs. The
bias or thermal gradients. In this case, the time-correlateBroPlem of whether one can enhance the diffusion rate
force (the force breaks the equilibrium condition) plays€Xceeding the diffusion rate of free Brownian motion by
an important role in essentially changing the propertie?_pply'ng flmte deterministic drlvmg_s has attraqted only a
of thermal systems. For the forced ratchets the asymmeiitlé attention so far. However, this problem is of great
try of the potential is, of course, the key point for the theoretical S|gn|f|(_:ancg an_d practlcal importance. The
net macroscopic current. How do “nonequilibrium” sym- most_na_tural manipulation in this regard is to incorporate
metrical correlated forces influence thermal systems whefi€"t@in time-dependent or space-dependent forces.
potentials are symmetric? Are there some new features INdeed, a time-dependent forcirig = U(1) + T'()]
appearing in these symmetrical potential cases which ar@one will not suffice to produce the diffusion relation
of fundamental significance for the relaxation processes®): AS aIreadly mentioned with a space-periodic potential
In this Letter, we focus on Brownian particles moving in MY [¥ = —V'(x) + I'(1)] the diffusion process will be
symmetrical periodic potentials, subject to time-periodicObStrUCted by potential barriers, and the diffusion rate can

forcings and thermal noise. Specifically, we investigate®® SImply reduced with respect to (3). A further test is
the system to combine both the time-periodic force and the space-

. , periodic gradient. We note that diffusion can be greatly
x=-Vix)+ U@+ T, accelerated if we incorporate the two forces by a proper
VL + x)=V(x), UT +1)=U@®), (1)  choice of the control parameters.
In order to show this we start from Eq. (1). For the

(L) =0, (T () =2Ds(t — 7), sake of simplicity and without any loss of generality we
where V/(x) denotes the derivative df (x) with respect consider a sinusoidal potential and a square wave periodic
to x. We are mainly interested in the influence of force
combined actions of the space-periodic poteritial) and
the time-periodic fieldU(z) on the diffusion behavior of Vi(x):
the system. p

A fundamental and well understood problem in physics U) : Afor  ¢T < tTS qT + 7,
is the diffusion of free Brownian motion —Afor ¢qT + 3 <t=(q+ 1)T.

x=T(@). (2)  Even for the simple form (4) we cannot obtain an exact
Its exact solution in terms of probability distribu- expression for the diffusion rate. This would require the
tions with an initial state that is given bp(x,0) =  explicit time-dependent solution of (1) which can only be
8(x — x9) can immediately be written ap(x,r) =  approximated for smalb. On this account the Langevin
(1//2Dt)exp{—(x — x0)*>/2Dt}. Hence, the diffusion equation (LE) (1) is transformed into a Fokker-Planck

— codx),

(4)
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equation (FPE)
2

2 pl,1) = 2= [sin) — UWp(e,1) + D2 ple, ), 5)

and forD < 1, T > 1 we can now reduce this FPE to a master equatlon (ME)

~[R+(r) + R+(DIP; + R (PPi—i + Re()Piv1, qT <1 =qT + 3,

P,‘ = 6
—[Rf(l") + Rf(l)]P, + Rf(r)P,-fl + Rf(l)PiJr], qT + % <t = (q + l)T, ( )
where i = ...,—-2,—-1,0,1,2,. P; is the total probability contained in theéth potential well, given by
P;(t) = Zi%éf’l p(x,1)dx. Be5|des the transition raté&s. (r, /) read
1 2+ A
R+ = Ri [) = — exp— . 7
L) = Re() = 5 exp = 2T )

Insertingf(s,t) = >..__,. s"P,(t) into Eq. (6) we obtain its exact time-dependent solutiongfbr< ¢ = ¢T + % as

f(s,0) = f(s,0)[FT(s)F (5)]? expl[R+(r)s + R+(1)/s — R+(r) = R+(D](t — qT)}, (8a)
and in complete analogy, fg/T + % <tr=(g + 1T,
Fls.0) = f(s.0F ()" F ()7 expl[R—(r)s + R-()/s — R-(r) = R-(D](t — qT — %)}, (8b)

with

F7(s) = explT/2)[Re(r)s + R=(l)/s = Rx(r) The given analysis is exact for the ME (6), while
- R:-(D]}. it only approximates the FPE (5) under the conditions

D < 2 = A andT > 1. In order to study the diffusion

rate in more general cases, especially looking towards

The fluctuation follows from Egs. (8a) and (8b) as

2 2
(An?), — (An?)—o = [sf'(s, 0]y — f(s.0)i- R(A) > D, we have to invoke numerical simulations.
— {[sf'(s, 0)] f(s, 0) _) In order to integrate (1) numerically we produce white
noise I'(r) with the Box-Miller formula [5]. Note that
= R(A)z, the integration is realized by a single step Euler method
with R(A) := R+ (r) + R4 (]) with time stepAr so that we have to multiphf’(¢) by
Ar/? [6]. Thus, in Figs. 1 and 2, we simulate Eq. (1)
=R-(r) + R-(), ©)  with V(x) andU(t) given by (4). We plo{Ax?) vs ¢ for

where the notation prime here represents the derivativeariousD and variousA, respectively. Each data point is
with respect toas. Note that Eq. (9) has exactly the sameobtained by averaging over integrations. The linear
form as (3) with the diffusion rate changed frah® to  dependence ofAx?) on ¢ is obvious, and shows typical
2R(A). With R(A)/R(A = 0) = cosiwA/D) > 1, we diffusion processes. In addition, we measure the quantity
can conclude that periodic modulation is preferable for am := R(A)/D to describe the influences af and D on

enhancement of the diffusion rate for the cas®o& 1.  the diffusion rate in a more quantitative manner.
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FIG. 1. Simulations of Egs. (1) and (4) witli = 10 (the FIG. 2. D = 0.2. (Ax?) is plotted vst for variousA’s. In
sameT will be used for this figure, as well as for Figs. 2— both Fig. 1 and this figure standard linear diffusion behavior is
4), A = 1.0. (Ax?)is plotted vst for variousD'’s. observed.
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FIG. 3. 7 := R(A)/D is plotted vsD for variousA’s. FIG. 5. &x := xmax — Xmin is plotted vsA for D = 0. The

high slope segments coincide with the peaks in Fig. 4.

In Figs. 3,4 we plotnp againstD, A for variousA, D.
Discussing these results in more detail, at first, we findime period. These peaks scatter at the potential barriers
n — 1 for the caseD > 1, or A > 1. This result be- and are smashed into small pieces during the scattering.
longs to the fact that the system does not realize the exig-inally, the probability diffuses very quickly into wide re-
tence of the space-periodic potential for laiger A, i.e.,  gions. For rather small andD, however, it is difficult to
that the diffusion rate should reach Eq. (3). Moreoverpush the probability up to potential hills, whereas for too
for D < 1 the quantityn increases ad increases in the largeA and D the Brownian particle simply passes over
vicinity of small A—note the good accordance with the the hills. In both latter cases the scattering with potential
theoretical result (9). It is remarkable that some curvedbarriers is very weak, and the probabilities are kept more
are peaking at certain parameter values. This manifestentralized. Then the diffusion rates should remain small.
the existence of optimab’s (Fig. 3), andA’s (Fig. 4) for ~ Without the spatial structure, such a scattering does not
the enhancement of the diffusion rate. Certainly, theseccur at all. Therefore, all three forces, spatially peri-
phenomena recall the effect of stochastic resonance (SRYic gradients, time-periodic modulations, and stochastic
[7—16], whereby now this “SR” refers to the accelera-stirrings are necessary, and only their optimal collective
tion of diffusion. That means a new diffusion mechanismactions generate the above features. Likewise, it is inter-
with combined actions of noise, and certain properly choesting to see that the — A curves are multipeaked for
sen finite deterministic forces can be much more effectivesmall D. The first and highest peak corresponds to the
than that of free Brownian motion, since—as the mossituation that the probability may be driven from a poten-
important result—y may exceed unity in a large region tial basin to the nearest potential hill in a half period. The
around some optimal parameter regions. There is an irsecond, third, etc. peaks correspond to the situation that
tuitive understanding of this higher efficiency: The opti- the probability peak may be driven to the second, third,
mal matching of the periodic force and noise may driveetc. neighbor potential hills, respectively, in a half period
the probability peaks up to the potential hills during each(like higher harmonics).
In Fig. 5 we plotéx := xmax — Xmin VS A for D =0
andT = 10, where xmax and xn are the maximum and

0.00 1 .I25 2:50 375 5.00

A . , , ,
FIG. 4. n vsA for variousD’s. In both Fig. 3 and this figure 00 7 755'0 - 00

one finds peaked response curves of the diffusion rate, and the
diffusion rate can be much larger than that of free diffusion atFIG. 6. 7 is plotted vsT for A = 1.5 and variousD’s. The
optimal matching ofA andD. response curves are multipeaked; compare Fig. 4.
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