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ac Response in the Nonequilibrium Anderson Impurity Model
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The ac response of a single Anderson impurity coupled to two reservoirs with different chemical
potentials is studied using an equation of motion approach. In the Kondo regime, we show that
resonant behavior in the ac response is found in the low-frequency limit and the frequency of the ac
field matches the chemical potential differences. The resonant behavior is a direct consequence of the
“double” Kondo peak structure in the one-electron spectral function.

PACS numbers: 72.15.Qm, 73.20.Dx, 73.50.Fq

Recently there has been a lot of interest in the studylensity of states has a maximum, depending on the tran-
of electronic transport through quantum dot devices osition matrix element. This may happen in the nonequi-
Anderson impurity at low temperature, especially inlibrium Anderson impurity problem when the frequency
the nonlinear regime where the difference in chemicakw, goes to zero and when it matches the voltage differ-
potentials Ay between the two reservoirs coupling to ences between the two reservoirs because of the Kondo
the device (or impurity) is large [1,2]. The problem peaks pinned at the two Fermi surfaces. To be more pre-
of Anderson impurity in a nonequilibrium environment cise, we shall compute in the following the linear response
has been studied by different groups using differenturrent of a nonequilibrium Anderson impurity to an ac
techniques, both in the single channel [3—5] and in thébias voltage in the Kondo regime. The Kondo effect will
two channel case [6]. In particular, based on lakjgpe  be treated in an equation of motion approach [4] which
theories, it has been suggested that a Kondo type effecan be generalized quite easily to include ac perturbation.
can survive in a nonequilibrium system at low temperaturérhe ac effect will be treated following the formulation
[4—6]. As a result of the Kondo effect, it was predicted employed by Wingreen, Jauho, and Meir [7] in studying
that (1) a resonant peak will be found in th#/dV  time-dependent transports in noninteracting resonant tun-
vs V curve, pinned atV = 0, where I is the current neling systems.
and V is the voltage difference between the reservoirs, Following Wingreen, Jauho, and Meir we consider the
and (2) the impurity one-electron Green’'s function will following time-dependent Hamiltonian,
exhibit a two-peak structure, with the peak position _ t 1
pinned at the two Fermi surfaces. The magnitude of H= 2 ecipocins + D lincipods + Hel
the peak decreases gradually as the voltage differ&nce "
increases, because of inelastic scattering associated with D eotdidy + Ungnay, )
finite chemical potential differences. Experimentally, the 7 . - t
resonant peak in thé/ /dV vs V curve has been observed wher_e n=L.,R are Fermi sea 'nd'ce$k"”(ckﬁ”) are
[2] in I-V measurements. However, the more subtle twocreation (a_mnlhllgtlon) opgrerators for electrons in reservoir
peak structure in the electron spectral function cannoP anq V.V'th spin o. d; (d) are eIectrpn creation
be probed by (dc)-V measurements, and thus has not annlhllat!on) operators on the Ander_son |mpur|ty. The
been confirmed. In this paper we show that the two-pea st term inH represents the Coulomb interaction between

structure in the electron spectral function can be probe?le?trons on Anderson impurity Wwheng, is the impurity .
by imposing on top of the dc bias an ac bias voItage.Sp'n”). electron occupation number operator. Electronic
The double-peak structure in the electron spectral functioftares In the Igft and right reservorrs are filled up to
gives rise to resonant behaviors in the current response ghemical potentialg., and g, respectively, wherg., #
the ac frequency matches the dc bias voltage, and can lif’eR in general (dc_ bias). The ac bla_s is reflected in the
observed directly in experiment. |me—d¢pendent smglg-partlcle energigs, (1) and ey(t).

Phenomenologically, the resonant behavior can be ur{p particular, we consider
derstood very crudely using a lowest order Fermi golden € (1) = € + Vy codwor),
argument: the ac current response to an applied ac volt- €o(t) = €y + Vycodwot).
age with frequencyw, is proportional to the transition The time-dependent current flowing out of reservito
rate exciting an electron with energybelow the Fermi  the Anderson impurity can be written as [7]
surface to a state with energy+ fiwy above the Fermi 2e (! de o

;] dl/f %Im{e’f(’ I)]"ﬂ(t/’ 1)

k,n,0 k..o

surface. Using the Fermi golden rule, the transition rate Jy(t) = —
is proportional to the single-electron joint density of states - o
p(e)p(e + hwo) and may exhibit a peak when the joint X [Gg(t,1) + ny(e)Gylt,t )]}, (2)
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where F”(t’,t) — 27Tp(0)|t77|2€i-[:’ ar"v, COS(WOZH), with _l(F/Z)(S(l‘ — l‘/) wherel’ = FL + FR, and

p(0) the density of states in the two reservoirs. We B D e

have assumed that the density of states is independent 3!(z,¢') = ZF,,[ S nql€)gy (e, 1, )y (3d)
of energy and is the same for the two reservoirs in n -p 2mh

writing down the above expression. Thus to compute thgs the interaction self-energy evaluated in the lilit— o
time-dependent current, we have to compute the impurity4 8]. The factor(1/2) in Eq. (3a) originates from the
electron retarded Green's functiai; (7, ') and Keldysh factor 1 — (n,_,,), which goes to1/2 in the Kondo
Green’s functionG; (1,#'), in the presence of interaction fimit [4,8]. A similar result is obtained for the advanced
U and the ac voltage fluctuatiol, (Vo) cofwor). We  Green’s functionG4(w, »’) with 3" replaced byg“ in the
shall first consider the retarded Green’s functi@f(z, ).  self-energy functior®(z, /).

In the presence of both interaction and ac voltage, itis The Green’s functionG; (,#)) cannot be obtained
difficult to computeG,(t, ') accurately. In the following, straightforwardly from the equation of motion ap-
we shall considerG,(z,#') in the equation of motion proach without introducing additional assumptions.
approach. The approach isot quantitatively reliable |n the following we shall obtainG=< in an alter-
in describing detail features of (nonequilibrium) Kondo native approach. Using the formal Keldysh Green’s
resonances. However, it gives correct qualitative featureginction technique, it can be shown that [@] (z, ') =
in the case with dc bias voltage [4] and has the advantag¢ 4, [ dr, G4(t, 1)S< (11, 1)G4(t2, '), whereG* and3 <
that it can be easily extended to the case with ac biagre related to the Green’s functiaB® and “scattering
We use this approach because of its simplicity and alsgy” Keldysh self-energy3< through the same gauge
because we are interested only in qualitative featurefansformation as forG". The Keldysh self-energies

of the ac current response in this paper. The equatios<(; /) and 3>(¢,1') are related to the retarded and
of motion method consists of differentiating the Green’sadvanced self-energies through

function G, (t, ') with respect to time, thereby generating __ | - .y W
higher-order Green’s functions which eventually have to~ (1) = 27(1,1') = 2"(1,1') — Z%(1,1')
be truncated to close the equation fo¥;(z,¢'). The

approximation we take to truncate the equation of motion = 2i Z r,
is identical to the one used by Meir, Wingreen, and Lee Y
[8] for the Anderson impurity model without ac field. de
Introducing the gauge transformation X 277}2[1 + ny(e)]
G:i(t’t/) _ e—(i/ﬁ) f:, dt”vl)cos(wotﬂ)(_;g(t,t/) % e—(i/ﬁ) f:l[ﬁ—\/n cos(wot”)]dt”, (4)

and the Fo/u,rier trans_for_m('}(w,_w’_) = [dt [dl X the last equality comes from our approximate expression
G(t,t")e'"e’", we obtain in the limitU — «, and in  for self-energie$” and3“. The factor 2 comes from the

the Kondo limiteo(t) << i, g, factor (1 — {ng4,)) "' in the Kondo limit which appears
_ | because Eg. (3a) is not written in the standard form of
(o — €)Gj(w,0') = 27hé(0 — ©') (3) the Dyson equation because of the same factor. When

do' - ~ Eqg. (3a) is rewritten in the standard Dyson equation
+] 5 2 (@,0"Gi(0", @), form, the (1 — (n4,)) " factor appears in the properly
v . .
(3a) defined retarded self-energy. The same is true also for
- _ _ the advanced self-energy. To determiie and~, we
%" (w, ') is the Fourier transform of the self-energy assume further that the self-energies have the form

function 37 (¢, '), whereX’ (s, 1) = S, (1, ) + S5, 1),
() =i f df(z ann(6)>2m)(6, t,t'),
n

St ) =>T fDﬁgr(em/) (3b)
b\ n m D27Tﬁ K 7

is the noninteracting self-energy coming from the tunnel->~(z,¢') = — if %(Z I, - ”n(f)]> 3O, 1,1,
ing of electrons from the impurity state to outside reser- n (5)
voirs [7], D is the bandwidth, andl,, = 27 p(0)|z,*,
where 3©(e, 1, 1) is a function which has to be deter-
mined. This assumed form has the advantages that (i) it

(3¢) is exact in the equilibrium limitu; = wz and without

ac bias, (ii) it is exact in the noninteractingy (= 0) limit

is the time-dependent retarded Green’s functions in th@nder general nonequilibrium situations [7], and (iii) the
reservoirn in the uncoupled # ) — 0) limit, AV, = continuity equation/,(r) = —Jg () is automatically sat-
V, — Vo. In particular, in the limitD — =, 3(r,#') — isfied in the steady state (no ac bias) limit. With Egs. (4)

(e, t) = —if( — t)e " J e+ av, cotwor]ar"
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and (5), we obtain an approximate expressionXo«z, ') 0.8 BAREABEERRRERRE RERE
and the Keldysh Green’s functiai<(z, ¢’) can be deter-
mined accordingly. After some algebra, we obtain

1 T 1 T

ML=MR

d — i

Ty (1) = _% rn[ %{Znn(wﬂm[/ln(w,t)] + 3% (w) i 0.6 X —

3 (1) ]

X 1Ay (0,01}, 6) = I :

where [7] =) L ) ]

t . e . l

Ay(w,1) = f dtleiw(t—tf)e(t/ﬁ) fﬂ dt"V, codwot )G:i(t,t/) i i ]

e 3 i .

(6b) 5 p =

and e - ]

2 -

3 (w) = =( D Tyny(how) T, [1 + n,(io)]|.

r %“ n ; ! ! 0 20 40 60 80 100

(6¢) @o/ Ty

Equations (3) and (6) constitute a set of equationd!G. 1. ac responses for an Anderson impurity at equilibrium

where the current response of the systematbitrary gl‘gLT: p) for three different values of temperaturds =
. . STk (i), T = 4Tk (i), and T = 8Tk (iii). Solid lines show

external time-dependent voltage fluctuations can behe ac ‘conductances, whereas dashed lines show the phase
computed whenV,, (V) cogwyt) is replaced by general shifts.
Vy,(Vo) (). Nevertheless, in the following we shall
restrict ourselves to harmonic perturbations and to th
linear response regime when the time-dependent extern%lI
fields are weak. For simplicity we shall consider the
symmetric casd’; = I'r and shall consider dc bias volt-
age withu; = ug and ac bias voltage witly, = V,,
Vo = 0.5V, and Vg = 0, corresponding to a symmetric
structure. In this case it is easy to see that the line
response current has a form

w = — ur = 2Tk (i), 20T (ii), and 507 (iii) for
e same set of parametefis I',,, andey. The ac con-
ductances (solid lines) and phase shifts (dashed lines) for
the left and right currentg, (r) and Jg(¢) are shown, re-
spectively, in Figs. 2 and 3. The behavior of the left and
right current responses are quite different, as can be seen
rom the figures. For the left current, “shoulder” struc-
tures are seen in the conductan@g(w) at frequencies

JLr) () ~ —(+)Grr)(wo) cOSwot — S1(r)(@0)]Vac , wo ~ Au, whereas “dips” are found in the right conduc-
where the linear response behavior is determined by thENCEGr(wo) aswy increases from zero. The conductance
ac conductances,, (wo) and phase shifté,, (wg)

At equilibrium (u;, = ug), it is easy to see by sym- 0.6
metry that/;°(r) = —Jg°(t). However, such a symmetry
is destroyed once the chemical potentials and wy are
not equal. In Fig. 1 we show the equilibrium ac conduc-
tanceG(wg) = Gr(wg) = G(wy) (solid line) and phase
shift 8§, (wg) = Sr(wg) = 6(wy) (dashed line) as a func-
tion of frequencyw, for three different values of tempera-
tures, T = 0.5Tx (i), T = 4Tk (i), and T = 8T (iii),
computed in our equation of motion approach. The ac
conductance5(wg) is measured in units of theero tem-
peraturedc conductanc& (0, 0), whereas the phase shift
8(wyp) is measured in units af. We have chosen parame-
ters D =100, I'y = T’y = 1.0, and ¢y = —4.5 in the
above calculation. The Kondo temperatdheis equal to
0.0017 using these parameters. The appearance of Kondo .
resonance [9] at low frequency which vanishes as tempera- 0.0 =1 NI S W

||||||||||I|'|II|II(II

Gi(w,)/G(0,0)[6.(w,) /7]

ture increases is clear from the figure. Next we consider 0 20 40 60 80 100
the ac responses for the out of equilibrium Anderson im- w0,/ Tk

purity. In Figs. 2 and 3 we show the ac responses of agiG. 2. ac responses for the “left” curredt (z) at fixed

out of equilibrium Anderson impurity at fixed temperature temperaturel’ = Ty and for three different values of voltage
T = Tk for three diffferent values of voltage differences: differencesAu = 2T (i), 20Tk (i), and 50Tk (iii).
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0.6 | T T T | T T T | L | L nances in the Anderson Impurlty model will give rise to
- 8 interesting observable effects in current responses of the
system to ac bias voltage. Because of its simplicity, the
equation of motion approach we developed in this paper
can be extended quite easily to compute responses of the
Anderson impurity to an arbitrary form of external time-
dependent voltage fluctuations at arbitrary temperature.
The main disadvantage of the method is that aqali-
tative behaviors of the response of Anderson impurity to
time-dependent voltage fluctuations can be extracted from
the theory.
Summarizing, using a generalized equation of motion
approach, we have computed in this paper linear responses
of an out of equilibrium Anderson impurity to external
AR ac bias voltage fluctuations. We show that in the low
0 0 20 60 80 100 temperature I|m|f[ the ac current responses prowde__anpther
w0,/ Ty important expe_r.lm'ental tool where both the equilibrium
° and out of equilibrium Kondo resonances can be probed.
FIG. 3. ac responses for the “right” curredk(s) at fixed In particular, in the out of equilibrium case, resonant
temperaturel" = Tx and for three different values of voltage pehavior as the ac frequency matches dc voltage bias is
differencesAu = 2T (i), 20T (i), and 50T (ii). shown to exist as a result of “double-peak” structure in the
one-electron density of states at the Kondo regime. The
starts to rise again at frequencies ~ Au. The phase predicted resonant behaviors for the left and right currents
shift of the right current also shows a clear dip at frequenJ.(z) and Jg(r) are found to be rather different, a result
cieswo ~ Au. However, such a structure is missing in which has to be tested experimentally.
the left current response. The “magnitude” of the resonant The author thanks Shechao Feng for many stimulating
signals were not found to be very strong in our calculationdiscussions during his visit to HKUST which lead to
however, resonant behaviors @s ~ Au are clearly ob- this work. This work is supported by UGC Hong Kong,
served from both the left and right current responses. Wihrough RGC Grant No. UST6364P.
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