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The ac response of a single Anderson impurity coupled to two reservoirs with different chemical
potentials is studied using an equation of motion approach. In the Kondo regime, we show that
resonant behavior in the ac response is found in the low-frequency limit and the frequency of the ac
field matches the chemical potential differences. The resonant behavior is a direct consequence of the
“double” Kondo peak structure in the one-electron spectral function.

PACS numbers: 72.15.Qm, 73.20.Dx, 73.50.Fq
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Recently there has been a lot of interest in the stu
of electronic transport through quantum dot devices
Anderson impurity at low temperature, especially i
the nonlinear regime where the difference in chemic
potentials Dm between the two reservoirs coupling to
the device (or impurity) is large [1,2]. The problem
of Anderson impurity in a nonequilibrium environmen
has been studied by different groups using differe
techniques, both in the single channel [3–5] and in t
two channel case [6]. In particular, based on large-N type
theories, it has been suggested that a Kondo type eff
can survive in a nonequilibrium system at low temperatu
[4–6]. As a result of the Kondo effect, it was predicte
that (1) a resonant peak will be found in thedIydV
vs V curve, pinned atV ­ 0, where I is the current
and V is the voltage difference between the reservoir
and (2) the impurity one-electron Green’s function wi
exhibit a two-peak structure, with the peak positio
pinned at the two Fermi surfaces. The magnitude
the peak decreases gradually as the voltage differenceV
increases, because of inelastic scattering associated
finite chemical potential differences. Experimentally, th
resonant peak in thedIydV vs V curve has been observed
[2] in I-V measurements. However, the more subtle tw
peak structure in the electron spectral function cann
be probed by (dc)I-V measurements, and thus has n
been confirmed. In this paper we show that the two-pe
structure in the electron spectral function can be prob
by imposing on top of the dc bias an ac bias voltag
The double-peak structure in the electron spectral functi
gives rise to resonant behaviors in the current response
the ac frequency matches the dc bias voltage, and can
observed directly in experiment.

Phenomenologically, the resonant behavior can be u
derstood very crudely using a lowest order Fermi gold
argument: the ac current response to an applied ac v
age with frequencyv0 is proportional to the transition
rate exciting an electron with energye below the Fermi
surface to a state with energye 1 h̄v0 above the Fermi
surface. Using the Fermi golden rule, the transition ra
is proportional to the single-electron joint density of state
rsedrse 1 h̄v0d and may exhibit a peak when the join
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density of states has a maximum, depending on the t
sition matrix element. This may happen in the noneq
librium Anderson impurity problem when the frequenc
v0 goes to zero and when it matches the voltage diff
ences between the two reservoirs because of the Ko
peaks pinned at the two Fermi surfaces. To be more p
cise, we shall compute in the following the linear respon
current of a nonequilibrium Anderson impurity to an a
bias voltage in the Kondo regime. The Kondo effect w
be treated in an equation of motion approach [4] whi
can be generalized quite easily to include ac perturbat
The ac effect will be treated following the formulatio
employed by Wingreen, Jauho, and Meir [7] in studyin
time-dependent transports in noninteracting resonant
neling systems.

Following Wingreen, Jauho, and Meir we consider t
following time-dependent Hamiltonian,

H ­
X

k,h,s

ekhstdcy
khsckhs 1

X
k,h,s

fthc
y
khsds 1 H.c.g

1
X
s

e0stddy
sds 1 Und"nd# , (1)

where h ­ L, R are Fermi sea indices,c
y
khssckhsd are

creation (annihilation) operators for electrons in reserv
h and with spin s. dy

s sdsd are electron creation
(annihilation) operators on the Anderson impurity. T
last term inH represents the Coulomb interaction betwe
electrons on Anderson impurity wherends is the impurity
(spin-s) electron occupation number operator. Electron
states in the left and right reservoirs are filled up
chemical potentialsmL andmR, respectively, wheremL fi

mR in general (dc bias). The ac bias is reflected in t
time-dependent single-particle energiesekhstd and e0std.
In particular, we consider

ekhstd ­ ek 1 Vh cossv0td ,

e0std ­ e0 1 V0 cossv0td .
The time-dependent current flowing out of reservoirh to
the Anderson impurity can be written as [7]

Jhstd ­ 2
2e
h̄

Z t

2`

dt0
Z de

2p
Im

n
eiest2t0dGhst0, td

3 fG,
d st, t0d 1 nhsedGr

dst, t0dg
o

, (2)
© 1996 The American Physical Society 487



VOLUME 76, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JANUARY 1996

e
de
in

th
rit

n

t is

o
re
ag
ias
ls
re
tio
’s
g
to

ion
ee
.

y

el-
er-

th

d

-
s.

’s

d

ion

of
en
n

for

-
i) it

e

4)
where Ghst0, td ­ 2prs0djth j2e
i
Rt

t0
dt00Vh cossv0t00d

, with
rs0d the density of states in the two reservoirs. W
have assumed that the density of states is indepen
of energy and is the same for the two reservoirs
writing down the above expression. Thus to compute
time-dependent current, we have to compute the impu
electron retarded Green’s functionGr

dst, t0d and Keldysh
Green’s functionG,

d st, t0d, in the presence of interactio
U and the ac voltage fluctuationVhsV0d cossv0td. We
shall first consider the retarded Green’s functionGr

dst, t0d.
In the presence of both interaction and ac voltage, i

difficult to computeGr
dst, t0d accurately. In the following,

we shall considerGr
dst, t0d in the equation of motion

approach. The approach isnot quantitatively reliable
in describing detail features of (nonequilibrium) Kond
resonances. However, it gives correct qualitative featu
in the case with dc bias voltage [4] and has the advant
that it can be easily extended to the case with ac b
We use this approach because of its simplicity and a
because we are interested only in qualitative featu
of the ac current response in this paper. The equa
of motion method consists of differentiating the Green
function Gr

dst, t0d with respect to time, thereby generatin
higher-order Green’s functions which eventually have
be truncated to close the equation forGr

dst, t0d. The
approximation we take to truncate the equation of mot
is identical to the one used by Meir, Wingreen, and L
[8] for the Anderson impurity model without ac field
Introducing the gauge transformation

Gr
dst, t0d ­ e

2siy h̄d
Rt

t0
dt00V0 cossv0t00d

Ḡr
dst, t0d

and the Fourier transformḠsv, v0d ­
R

dt
R

dt0 3

Ḡst, t0deivteiv0t0

, we obtain in the limitU ! `, and in
the Kondo limite0std ,, mL, mR,

sh̄v 2 e0dḠr
dsv, v0d ­ 2p h̄dsv 2 v0d s 1

2 d

1
Z dv00

2p
S̄r sv, v00dḠr

dsv00, v0d ,

(3a)

S̄r sv, v0d is the Fourier transform of the self-energ
function S̄r st, t0d, whereS̄r st, t0d ­ S̄

r
bst, t0d 1 S̄

r
i st, t0d,

S̄r
bst, t0d ­

X
h

Gh

Z D

2D

de

2p h̄
ḡr

hse, t, t0d (3b)

is the noninteracting self-energy coming from the tunn
ing of electrons from the impurity state to outside res
voirs [7], D is the bandwidth, andGh ­ 2prs0djth j2,

ḡr
hse, t, t0d ­ 2iust 2 t0de2siy h̄d

Rt

t0
fe1DVh cossv0t00dg dt00

(3c)

is the time-dependent retarded Green’s functions in
reservoirh in the uncoupled (tLsRd ! 0) limit, DVh ­
Vh 2 V0. In particular, in the limitD ! `, S̄

r
bst, t0d !
488
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2isGy2ddst 2 t0d whereG ­ GL 1 GR, and

S̄r
i st, t0d ­

X
h

Gh

Z D

2D

de

2p h̄
nhsedḡr

hse, t, t0d (3d)

is the interaction self-energy evaluated in the limitU ! `

[4,8]. The factors1y2d in Eq. (3a) originates from the
factor 1 2 knd2sl, which goes to1y2 in the Kondo
limit [4,8]. A similar result is obtained for the advance
Green’s functionḠa

d sv, v0d with ḡr replaced bȳga in the
self-energy function̄Sast, t0d.

The Green’s functionG,
d st, t0d cannot be obtained

straightforwardly from the equation of motion ap
proach without introducing additional assumption
In the following we shall obtainG, in an alter-
native approach. Using the formal Keldysh Green
function technique, it can be shown that [7]Ḡ,

d st, t0d ­R
dt1

R
dt2 Ḡr

dst, t1dS̄,st1, t2dḠa
d st2, t0d, whereḠa andS̄,

are related to the Green’s functionGa and “scattering
in” Keldysh self-energyS, through the same gauge
transformation as forḠr . The Keldysh self-energies
S,st, t0d and S.st, t0d are related to the retarded an
advanced self-energies through

S,st, t0d 2 S.st, t0d ­ Sr st, t0d 2 Sast, t0d

­ 2i
X
h

Gh

3
Z de

2p h̄
f1 1 nhsedg

3 e
2siy h̄d

Rt

t0
fe1Vh cossv0t 00dg dt00

, (4)

the last equality comes from our approximate express
for self-energiesSr andSa. The factor 2 comes from the
factor s1 2 kndsld21 in the Kondo limit which appears
because Eq. (3a) is not written in the standard form
the Dyson equation because of the same factor. Wh
Eq. (3a) is rewritten in the standard Dyson equatio
form, the s1 2 kndsld21 factor appears in the properly
defined retarded self-energy. The same is true also
the advanced self-energy. To determineS, andS., we
assume further that the self-energies have the form

S,st, t0d ­ i
Z de

G

0@X
h

Ghnhsed

1ASs0dse, t, t0d ,

S.st, t0d ­ 2 i
Z de

G

0@X
h

Ghf1 2 nhsedg

1ASs0dse, t, t0d ,

(5)

where Ss0dse, t, t0d is a function which has to be deter
mined. This assumed form has the advantages that (
is exact in the equilibrium limitmL ­ mR and without
ac bias, (ii) it is exact in the noninteracting (U ­ 0) limit
under general nonequilibrium situations [7], and (iii) th
continuity equationJLstd ­ 2JRstd is automatically sat-
isfied in the steady state (no ac bias) limit. With Eqs. (
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and (5), we obtain an approximate expression forS,st, t0d
and the Keldysh Green’s functionG,st, t0d can be deter-
mined accordingly. After some algebra, we obtain

Jhstd ­ 2
e
h̄

Gh

Z dv

2p

n
2nhsvdImfAhsv, tdg 1 S,svd

3 jAhsv, tdj2
o

, (6a)

where [7]

Ahsv, td ­
Z t

2`

dt0 eivst2t0de
siy h̄d

Rt

t0
dt00Vh cossv0t00d

Gr
dst, t0d

(6b)
and

S,svd ­
2
G

0@X
h

Ghnhsh̄vd

1A0@X
h0

Gh0f1 1 nh0sh̄vdg

1A .

(6c)
Equations (3) and (6) constitute a set of equatio

where the current response of the system toarbitrary
external time-dependent voltage fluctuations can
computed whenVhsV0d cossv0td is replaced by genera
VhsV0d std. Nevertheless, in the following we sha
restrict ourselves to harmonic perturbations and to
linear response regime when the time-dependent exte
fields are weak. For simplicity we shall consider th
symmetric caseGL ­ GR and shall consider dc bias volt
age withmL $ mR and ac bias voltage withVL ­ Vac,
V0 ­ 0.5VL, andVR ­ 0, corresponding to a symmetri
structure. In this case it is easy to see that the lin
response current has a form

Jac
LsRdstd , 2s1dGLsRdsv0d cosfv0t 2 dLsRdsv0dgVac ,

where the linear response behavior is determined by
ac conductancesGhsv0d and phase shiftsdhsv0d

At equilibrium (mL ­ mR), it is easy to see by sym
metry thatJac

L std ­ 2Jac
R std. However, such a symmetry

is destroyed once the chemical potentialsmL andmR are
not equal. In Fig. 1 we show the equilibrium ac condu
tanceGLsv0d ­ GRsv0d ­ Gsv0d (solid line) and phase
shift dLsv0d ­ dRsv0d ­ dsv0d (dashed line) as a func
tion of frequencyv0 for three different values of tempera
tures,T ­ 0.5TK (i), T ­ 4TK (ii), and T ­ 8TK (iii),
computed in our equation of motion approach. The
conductanceGsv0d is measured in units of thezero tem-
peraturedc conductanceGs0, 0d, whereas the phase shi
dsv0d is measured in units ofp. We have chosen parame
ters D ­ 100, GL ­ GR ­ 1.0, and e0 ­ 24.5 in the
above calculation. The Kondo temperatureTK is equal to
0.0017 using these parameters. The appearance of Ko
resonance [9] at low frequency which vanishes as temp
ture increases is clear from the figure. Next we consi
the ac responses for the out of equilibrium Anderson i
purity. In Figs. 2 and 3 we show the ac responses of
out of equilibrium Anderson impurity at fixed temperatu
T ­ TK for three diffferent values of voltage difference
s
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FIG. 1. ac responses for an Anderson impurity at equilibrium
(mL ­ mR) for three different values of temperaturesT ­
0.5TK (i), T ­ 4TK (ii), and T ­ 8TK (iii). Solid lines show
the ac conductances, whereas dashed lines show the ph
shifts.

Dm ­ mL 2 mR ­ 2TK (i), 20TK (ii), and 50TK (iii) for
the same set of parametersD, Gh , and e0. The ac con-
ductances (solid lines) and phase shifts (dashed lines)
the left and right currentsJLstd and JRstd are shown, re-
spectively, in Figs. 2 and 3. The behavior of the left an
right current responses are quite different, as can be se
from the figures. For the left current, “shoulder” struc
tures are seen in the conductanceGLsv0d at frequencies
v0 , Dm, whereas “dips” are found in the right conduc
tanceGRsv0d asv0 increases from zero. The conductanc

FIG. 2. ac responses for the “left” currentJLstd at fixed
temperatureT ­ TK and for three different values of voltage
differencesDm ­ 2TK (i), 20TK (ii), and 50TK (iii).
489
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FIG. 3. ac responses for the “right” currentJRstd at fixed
temperatureT ­ TK and for three different values of voltag
differencesDm ­ 2TK (i), 20TK (ii), and 50TK (iii).

starts to rise again at frequenciesv0 , Dm. The phase
shift of the right current also shows a clear dip at freque
ciesv0 , Dm. However, such a structure is missing
the left current response. The “magnitude” of the reson
signals were not found to be very strong in our calculatio
however, resonant behaviors asv0 , Dm are clearly ob-
served from both the left and right current responses.
note that the qualitative behaviors of the current respon
are insensitive to the particular parameters we choos
producing these results. As temperature rises these s
tures are gradually washed away. In fact, atT ­ 8TK , we
already found that the current responses for all three dif
ent values ofDm’s are very similar to the current respons
of theDm ­ 0 case atT ­ 8TK , as shown in Fig. 1. This
is hardly surprising since the Kondo temperature and t
the voltage differencesDm we consider in our calculation
are much less than any other microscopic energy scale
our system.

It has to be emphasized that because of the crude
of the equation of motion approach, our results for t
ac response can only be trusted qualitatively. In parti
lar, the precise “magnitude” of the resonances cannot
obtained accurately from our crude approach. A mo
quantitative analysis of the ac responses in the out of e
librium Anderson impurity model can be achieved on
by using more rigorous methods. For example, Hett
and Schoeller [10] have studied time-dependent per
bations on the Anderson impurity using1yN expansion
where similar resonant effects were discussed. Howe
the frequency-dependent current responses were not
ing considered in their paper. In any case, our resu
suggest clearly that the out of equilibrium Kondo res
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nances in the Anderson impurity model will give rise
interesting observable effects in current responses of
system to ac bias voltage. Because of its simplicity,
equation of motion approach we developed in this pa
can be extended quite easily to compute responses o
Anderson impurity to an arbitrary form of external tim
dependent voltage fluctuations at arbitrary temperat
The main disadvantage of the method is that onlyquali-
tative behaviors of the response of Anderson impurity
time-dependent voltage fluctuations can be extracted f
the theory.

Summarizing, using a generalized equation of mot
approach, we have computed in this paper linear respo
of an out of equilibrium Anderson impurity to extern
ac bias voltage fluctuations. We show that in the l
temperature limit the ac current responses provide ano
important experimental tool where both the equilibriu
and out of equilibrium Kondo resonances can be prob
In particular, in the out of equilibrium case, resona
behavior as the ac frequency matches dc voltage bia
shown to exist as a result of “double-peak” structure in
one-electron density of states at the Kondo regime.
predicted resonant behaviors for the left and right curre
JLstd and JRstd are found to be rather different, a resu
which has to be tested experimentally.
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