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Phase Loss in WKB Waves Due to Reflection by a Potential
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We study the WKB method away from the short-wave limit. Incorporating the correct phase loss
due to reflection at a classical turning point, in place of the usual cheit® can greatly improve
the accuracy of the WKB wave function in the classically allowed region. For a repulgive
potential this leads to far more accurate WKB wave functions that the usual Langer modification of the
potential. [S0031-9007(96)00463-2]

PACS numbers: 03.65.Sq

The WKB wave function for a particle of mass at an isolated classical turning point is equalz7@2 in
moving with total energ¥ in a potentialV (x) is [1,2] the semiclassical limit of short waves [1,2]. In the long-
1 i [* wave limit, e.g., for a free particle reflected by an infinite
P(x) = NIl eXD|:iE f px’) dx’}, (1)  steep wall, the reflection coefficient is1 and the phase
[P ()] o loss is7r rather thanz /2. In between the limits of long

where p(x) is the local momentum, p(x) = and short waves, the phase loss is, in general, a nonin-
V2m[E — V(x)]. It is, in general, a good approxi- tegral multiple of7/2. We demonstrate in the follow-
mate solution of the Schrodinger equation, ing that the WKB approximation can be highly accurate
B2 d*y away from the short-wave limit, provided that the phase
—— 5 V)¢ = Ey, (2) losses due to reflection at the classical turning points are
2m dx
' accounted for correctly. Popost al. [3] have recently
as long as the (local) de Broglie wavelenglfix) =  discussed in some detail how the ratio of maplitudes

27h/p(x) varies sufficiently slowly. This condition is appearing on both sides of the connection formula (3)
always violated at a classical turning poiry, because should be modified when the conditions of the short-wave
A(xg) = . The monotonically decreasing real wave |imit are not fulfilled, but the phase loss is takenag2.
function on the classically forbidden side of the turningThis Letter focuses on how to modify the phase loss,
point should be associated with the oscillating waveyhich plays a crucial role in improving the WKB approx-
functions on the classically allowed side via the famousmation in the classically allowed region.

connection formula [1,2] First consider the potential

1 1 [X )
exp —— | p(x")| dx’ :| ¢ Ry
|P(x)| F{ h Xo Vy(x) = ; = % ; (4)
2 1 *
_> [p(x) CO{E ]x p(x) dx’ _7} How close the wave functions are to the semiclassi-

3) cal limit depends not on energy, but only on the di-
mensionless parameter = 2mc/k%, which is [(I + 1)
The phasep /2 in (3) corresponds to a reflection coeffi- for the 3D centrifugal potential, but can, in general,
cient exf—i¢) in front of the wave reflected at the turn- be any non-negative real number. The solution of the
ing point, relative to the incoming wave traveling towardsSchrddinger equation which is regular at the origin

the turning point. Thephase loss¢ due to reflection is (x) « Vkx J,(kx),k = 2mE /K, where J, is the
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Bessel function of order = /y + 1/4. Asymptotically 0.0
e Jeele= ( 5) )
J A —— — _|_ —_ | = 2.0 F
P(x) o« (1 8(kx )2 cog kx v 55 2.0
Y ik — = -3
T sm{kx <y + 2) 5 } + O((kx)™°). 40 |

(5)

The classical turning point for the potential (4) i =
J7/k, and the integralf, p(x)dx’ can be calculated |
analytically. The asymptotic behavior of the WKB wave D Langermodification
function (3) is g
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- b FIG. 1. Accuracy of WKB wave functions in the classically
- X sin[kx - J7Y = — — | + 0((kx)73). allowed region for the potential (4) wity =2 (I = 1). The
2kx 2 2 absolute values of the difference between the WKB wave

(6) function and the exact wave function as a functionkgfare
shown in a doubly logarithmic plot. The dashed curve shows

. . the result for the standard WKB wave function based on a phase
In the standard WKB method the phagein (6) is taken loss 7r/2 due to reflection and the Langer-modified potential,

to be /2, and the asymptotic phases in the leading termMne solid curve shows the result for the wave function obtained
of the exact wave function (5) and in the WKB wave with the phase loss (8) and the true potential without Langer
function (6) are reconciled by subjecting the potentialmodification. The straight lines indicate proportionality kg

(4) for the WKB calculation to thé.anger modification ~and1/(kx)*, respectively.

[1’21415]1

1
y—vy =v+i3, (7) Asymptotically comparing the WKB wave function (3) in

which amounts to replacintl + 1) by (I + 1/2)> when the c_IassicaIIy aIIowed"rggionq — =%, With.the exact
y = I(I + 1). This gives the right argument of sine and solution [2] of the Schrodinger equation (2) in the energy
cosine in (6), but the coefficients proportional tgkg ~'anged < E' < V; leads to the following phase logsin

and 1/(kx)* are changed, so only the leading term of (6)the WKB wave function [6]:

agrees with the exact expression (5). 2
However, we also obtain the correct arguments of ¢ =26+ 2ka[2ln2 - In(l + ﬁ)
sine and cosine in the asymptotic expansion (6) of the P k
WKB wave function, if we leave the potential intact and -2 " arctan;} s (20)
interpret

¢ = (v + o= ﬁ)w - T+ (W TR \/7>7T " I'(—2ika)
2 2 4 8 = 2arg: (11)

®) (ka — ika)T(l + ka — ika)’

as the phase loss due to reflection at the classical turnin
point. The asymptotic expansion of the WKB wave
function is then identical to the exact wave function (5) up

to and including terms of orddr/(kx)?, and the deviation

is of the orderl/(kx)3. The WKB wave function based k= kVn\/E/VO’ K = kyyy1 — E/Vo: (12)

on the true potential and the phase loss (8) approaches ) ) )

the exact wave function more rapidly by 2 orders jikd kv, = v2mVo/h is the asymptotic wave number in the
and is a far better approximation at finite distances. Thigllowed region at the top of the barrier, ahtky, defines

is illustrated in Fig. 1. The phase (8) is independent scale for lengths. The phase (10) is illustrated in Fig. 2

of energy; it approaches /2 in the semiclassical limit for various values of theelative diffusenesst = kv, a.
y — o, and it approachesr in the anticlassical (long- !N the limit of smalla we obtain the phase loss due to

e constantk and « in (10) are the asymptotic wave
mbers in the classically allowed and forbidden regions,
respectively,

wave) limity — 0. reflection by a sharp stegh = 2arctarix/k). For a very
Now consider a smooth potential step diffuse step, assuminga > 1, xa > 1 yields a phase
loss ¢ — /2. Note, however, that for any value af
v . " i -
V.(x) = 0 Vo> 0. ) kais always small sufficiently close to the long-wave limit

1 + exp(—x/a)’ E = 0, and ¢ always approaches in this limit.
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to the quantization of the radial Woods-Saxon potential,
which is, e.g., used in the description of atomic clusters

[71,
VO (x) = L (U Y Vo
WS 2m  x2 1 +exd(x — R)/a]’

x>0. (14)

o/m

The inner and outer turning points, andx,, respectively,
are close to but not exactly equal to the turning points for
the centrifugal potential or the Woods-Saxon step alone.
In the present application of the quantization condition
(13) we take the phase logs at the inner turning point
to be the energy-independent value (8), and the phase loss
EN, ¢, is taken as the energy-dependent value (10)—note that
FIG. 2. Phase losg due to reflection by the potential step (9) kand« are given by (1_2) WithE reP'aced byVo + E_ -
as given by (10) for various values of the relative diffuseness’o — |El.  Since the right-hand side of the quantization
a = ky,a. condition (13) now depends on energy, the positions of
the eigenvalues are determined as the intersections of both
sides of the equation. Energy eigenvalues obtained in this
For a particle oscillating between two turning poir{s  way are given in Table | and compared with conventional
and x,, the WKB quantization condition is obtained by WKB results and exact energies. In this example the
requring the total phase during one period of oscillation tgoresent results show a maximum error of 0.0002, which

be an integral multiple oR7: (1/k) § p(x)dx — ¢, — is 2 orders of magnitude better than the standard WKB
¢, = 27an, whereg, is the phase loss due to reflection atresults.
the turning pointy; and ¢, is the phase loss ab. This Next we consider the radial harmonic oscillator,
leads to the well known formulation of the quantization By m
condition, VO (x) = — = + — 02, (15)
2m x?2 2
X2 _|_
f p(x)dx = (n + ﬁ)ﬂﬁ, uw= u (13) y=11+1),
X1 4 7T/2

for which the standard WKB method in conjunction
with the Langer-modified centrifugal potential is known

to be nonintegral multiples o# /2 corresponds to allow- to repmdx?ce the energy e|genvalue_s exactly [5]. _The
ing nonintegral Maslov indices in the quantization Con_lntegral .[x] p(x) dx between the c_IassmaI trning points
dition (13) x1 andx; can be calculated analytically,

The phase losses due to reflection by a centrifugal f’” \/Zm[E _ Vé,”(x)]dx =< E 1 y) o

potential (8) and by the smooth potential step (10) may be 2he 2

used to apply the concept of nonintegral Maslov indices (16)

The Maslov indexu stands for the total phase loss during
one period in units ofr/2. Allowing the phase losses

TABLE I. Energies of the bound states in the radial Woods-Saxon potential
(14) with potential parametersy,, =1, a = 0.5, R =30, and [ = 1. The
exactquantum mechanical results are compared withpttesentresults obtained

via (13) with the phase los¢, given by (8) andg, given by (10), thesimple
WKB results in which both phase losses are takenzd®, and the standard
WKB results obtained with theanger-modifiecbotential and phase logs/2 at

both turning points.

n EsxaCt/V() Esresent/vo E;imple/v0 Erlranger/vo

0 —0.978 15416 —0.97834291 —0.983 83228 —0.982 849 62
1 —0.935566 13 —0.935 668 66 —0.94235308 —0.94037733
2 —0.87203511 —0.872105 68 —0.878939 02 —0.87602379
3 —0.787953 62 —0.788007 23 —0.79425753 —0.790436 83
4 —0.683 86491 —0.683908 52 —0.689 006 09 —0.68431253
5 —0.56051533 —0.56055291 —0.563991 38 —0.558463 81
6 —0.41901295 —0.41904703 —0.42031999 —0.414016 62
7 —0.26131274 —0.26134508 —0.259 89745 —0.25293155
8 —0.092487 16 —0.09251698 —0.08776052 —0.08054343
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In the standard WKB method the centrifugal potential is 1.0
subjected to the Langer modification (7), wherefy be-
comes! + 1/2, and the right-hand side of Eq. (16) is ¢/m o5 |
equated to(n + w/4)7h with a Maslov indexu = 2.

This immediately gives the correct quantum mechanica ‘ , ‘
energy eigenvalues, 0.0 1.0 0.0 1.0 0.0 1.0 2.0

n=6

E E E
3
E=Q2n+1+ 3ho. (17)  FIG. 3. Phase loss due to reflection by the potentials) =

) ) |x]"/2. The exact results (thick solid lines) are compared
In the procedure we are proposing, the centrifugal potenwith the approximate phase losses (dashed lines) derived via
tial remains intact—there is no Langer modification—soequation (20) using the WKB wave functions in the classically

, . , . integral i~" [ p(x)dx is shown as a thin solid line in each
viz. {/I(I + 1). The right-hand side of (16) is equated pangl, and |{§] iﬁt(er)section withh /7r defines the ground state
to (I’l + ,LL/4-)7T”2, but we now take the phase IOSS dueenergy for the respective potentiaL
to reflection at the centrifugal barrier to be (8) rather
than 7/2; at the outer turning point we use the phase
loss due to reflection by a quadratic potential, which o ) .
can be derived via parabolic cylinder functions and isShown in Fig. 3 together with the “exact” phase, which
equal tor/2 at the energies where we expect the eigenWas derived by comparing WKB and exact wave func-
values to be [6]. Thus the total Maslov index js=  tions atx = 0. The ground state energy is given via (13)
1+ 2[ +1/2 — JI ¥+ D] + 1, and the energies are [#1 = ¢ = ¢ ] by the intersection of the action integral
again given by (17). I b p(x)dx with ¢ /7. The energies obtained using

It is, of course, desirable to have a model-independerﬁ‘e approximate _phases are listed in Table_ Il together with
prescription for calculating the phase loss without referfn€ exact energies and the results obtained in standard
ence to exact wave functions. For this, we must use ifVKB quantization with¢ = /2. The present approx-
some way the information on how the wave function de-maté procedure gives ground state energies uniformly
cays in the classically forbidden region, because this detefithin about 6% of the exact values, whereas the standard
mines its logarithmic derivative at the turning point, where\WKB result is 18% off forn = 4 and becomes rapidly
it is matched to the wave function in the classically al-Worse asn increases. Note, however, that better results
lowed region. One way of constructing an approximate’@ve been obtained in the traditional WKB for= 4 by
wave function regular at the classical turning point is toincluding complex-coordinate turning points [8].
insert the WKB wave function in the right-hand side of The examples above show that the WKB ansatz may

the Lippmann-Schwinger equation, be an accurate approximation of the quantum mechanical
om [* wave function away from the semiclassical limit of short
P(xo) = = ] (x — x0)[V(x) — V(xo)]or(x) dx, waves, if the potential is sufficiently smooth so that the
h= Jx condition of applicability is violated only near the classi-

(18)  cq turning points. The key to obtaining accurate wave
The functions in the classically allowed region is correctly ac-
counting for the phase loss due to reflection at the classical
" turning points. For a repulsivé/x> potential as occurs
' (xg) = _2_”21 f [V(x) — V(xo)](x)dx. (19) in the radial Schrédinger equation, the correct phase loss
= Jx, is an energy-independent constant, and it can be incorpo-
rated into the WKB ansatz as easily as the standard choice
/2. Compared with the standard WKB wave functions
based on a phase losg2 and a Langer modification of the

where the classically forbidden region is> x.
derivative of (18) is

If the potential were to vanish identically on the classi-
cally allowed side of the turning point, then the matching
condition would be

¢ = —2arctar| — W(XO)).

(20)
TABLE Il. Ground state energies in the potentidfg(x) =

k (xo)
. . . . |x|"/2 (h = m = 1). The exact results are compared with the
Inserting the decaying WKB wave function as given onregyits obtained in first order WKB quantization using the

the left-hand side of (3) into Egs. (18) and (19) andpresent method based on the (approximate) phase losses in
matching the logarithmic derivative according to (20)Fig. 3 and using the standard procedure based on a phase loss

defines one way of obtaining an approximate value for the7/2 at each reflection.
phase lossp on the basis of the WKB wave functions 4 5 6
alone. This gives the correct value for k — 0 and

Exact 0.530181 0.551149 0.572401
should be useful for long waves. Present 0.560 664 0.586 680 0.610391
We applied this procedure numerically to a few po- Standard 0433573 0.414535 0.400415

tentials,V,(x) = |x|"/2 (K = m = 1). The phase loss is
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