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First-Order Phase Transition in a Model for Earthquakes
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A simple mechanical model for earthquake dynamics with a generic velocity-dependent friction is
investigated. It is shown that in the limit of slow driving the system undergodiscntinuoug(first-
order) transition from stick-slip behavior to creep motion as the friction parameter is varied. This result
is robust in that it does not rely on any particular choice of the friction law. The implications of these
findings for the Burridge-Knopoff spring-block model for earthquakes is also discussed. In particular,
it is argued that such models do not display critical behavior. [S0031-9007(96)00466-8]

PACS numbers: 91.30.Px, 05.70.Fh, 62.20.Hg, 91.45.Dh

The recent suggestion [1] that earthquakes may bwhere X(r) is the position of the block and the dots in-
regarded as prototypical “self-organized critical” systemdlicate time derivatives. Owing to the velocity-weakening
has spurred great interest in earthquake dynamics withiaffect of the friction, the block will undergo a rapid mo-
the physics community. According to the tenets of self-tion (“earthquake”), during which most of the accumu-
organized criticality, slowly driven, spatially extended lated stress is released. Then follows a quiescent period
systems can display power-law behavior analogous tantil the spring is again fully stretched in the forward
the static correlations occurring at critical points. In thedirection and the cycle repeats. If the block slides by
context of earthquakes, the Gutenberg-Richter law [2]an amountA during one of such events, then the next
describing the distribution of energy released as a powezarthquake will happen at a tinfe= A/V. This is, of
law of the energy, has been interpreted as an evidence cburse, the recurrence time between characteristic events
self-organized criticality. predicted by the classicalastic rebound theory3]. It

A crucial ingredient in earthquake dynamics is thewill be noted below, however, that a more “accurate” pre-
friction acting at the boundary between two tectonicdiction for T includes a logarithmic correction vi. The
plates. It is indeed the velocity-weakening effect of themodel above is admittedly a crude representation of earth-
friction that is responsible for the sudden slip once thequakes. It has, however, the great advantage of being
accumulated stresses (due to plate tectonics) overconamalytically tractable, so that one hopes that a thorough
the static friction along the geological fault. Thus anyunderstanding of such a simple model might in turn shed
realistic earthquake model must, of necessity, incorporatirther light onto the basic principles governing real earth-
this effect. We will see in this paper, however, thatquakes. This paper aims precisely at that.

a negative sensitivity of the friction with the sliding | shall for convenience write the friction force as
velocity, although necessary, is not sufficient for unstable o .

sliding. More precisely, it will be shown below that the FX) = Fo®(X/Vy), (2)
rate of decrease of the friction with the velocity mustwhereV, is a characteristic velocity for the friction and
exceed a critical value in order for stick-slip motion ®(x) is assumed to be a continuous function foe 0

to take place. Otherwise the motion is quasicontinuousatisfying the conditions

(C(eep), in WhIC'h case the fault would remain forever ®0)=1 and D'(0) = —1. 3)
seismologically inactive. Moreover, the transition from

stick-slip motion to creep is found to be of first order Here the prime denotes differentiation with respect to the
(i.e., discontinuous), and it will thus be argued that theargument. The second condition in (3) simply expresses
dynamics of a geological fault is unlikely to display the velocity-weakening effect of the friction, since it
critical behavior.

Here | concentrate on the simplest model for earth- \'
quakes (see Fig. 1). In this model a block of mass
is connected by a spring of constanto a rigid pulling k
rod that moves at a small constant velodity The block
rests upon a stationary surface, which provides a velocity-
dependent frictional forcé that impedes the motion of
the block. When the force due to the spring exceeds the m
threshold frictionF,, the block is set into motion; the cor-
responding equation of motion is | |

mX = k(Vt — X) — F(X), @ FIG. 1. Spring-block model for earthquakes.
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implies thatF(_X) will be a decreasing function of the there are two cases to consider: (i) > 1/2 and (ii)
block velocity X, at least in a neighborhood of the origin. vy = 1/2.

It should also be noted at this stage that the assumption Case 1:v; > 1/2.—In this casea < 1 so that the
implied by (2), namely, that the friction is a function solution to (6) reads
of the velocity only, does not always hold in practice. o
Other possible friction models, such as slip-weakening U@r) = V{e‘”[
models and rate and state dependent friction laws, have

been proposed for faults [4]. | anticipate, however, that 4+ 2a}, 7)
the (qualitative) results of the following analysis will not

depend on the global features of the friction law (2) andyhere @ = +/T — a2. The maximum velocity Upax
should in principle be extendible to more realistic friction attained by the block is

2

Ssinwt — 2« cosw}

laws. .
Before proceeding with the analysis, it is convenient to Unax = v(1 + e7/®), (8)
introduce dimensionless variables as one can easily verify from (7). One then sees that it is
k R k 7V/? always possible to choose a value:ofufficiently small
U= F_OX’ t= [;} 2 ( S0 thatUmax < v¢. In other words, in the limitv — 0
. . . . the linear approximation is always validaf, > 1/2. In
so that the equation of motion (1) takes the dlmensmnles&]is case, the block will never “feel” the nonlinear part of
form the friction and hence its motion is completely described
e : by (7). From this equation one readily obtains that the
U=wvi-U=oWU/v) ®) " block will come to a stop at the time= 1, given by the

wherev = V/Vy, vy = V;/Vy, Vo = Fo//mk, and dots ~ solution to the equation

now represent derivatives with respect to the scaled time a

7. (Hereupon | will drop the hat notation with the un- — Sinwt — coswt + e =0. 9)
derstanding that all times are measured in dimensionless _ e o _
units.) The velocity scalé/, corresponds to the max- 'NusS, the durationy of a “slip event” in this case is

imum velocity attained by a block that experiences nol€termined solely by the friction parameter and does

(kinematic) friction as it moves. The dimensionless pa-0t depend on the pulling speed Using (9) into (8) one

rametersy; andw are, respectively, the friction character- then finds that the block displacemedt= U(1o) after
istic velocity and the pulling speed measured in this scaleSUch a slip event is given by

Clearly, for this model to be relevant for real earthquakes R P
v must be taken very small. Indeed, during an earthquake A=rern — 0 + 19 — a). (10)
the relative velocity between the two sides of the fault isgince 1, does not depend om, it then follows that as

of order ny's, while the typical relative plate velocity is of ,, _, ( the displacemena vanishesvhenevery, > 1/2.
order cnyyr, so that in practice’ can be as small a0’ Nextl investigate the situation when = 1/2.
Accordingly, the main goal of this paper is to study the cgge 2:v; = 1/2.—Herea = 1 and the solution to

model above in the limit ofvanishingpulling speed. | (6) is given by

will show below that in the limitv — 0 the system un-

dergoes aliscontinuougphase transition as, crosses the Ut) = V{em[ 20 — sinhw? — 2a COSha)t}
critical valuerv; = 1/2. Physically, these two “phases”

correspond to a stick-slip motion for < 1/2 and a qua-
sicontinuous motion (creep) for, > 1/2.

| start the analysis by considering first the linearized T o o .
version of the equation of motion. In view of (2) and (3), where w = Vo — 1. Since the velocityU(r) is now

the linearization of (5) yields a'monotonously increasin_g_ function of time, the .bl_ock
will eventually reach velocities comparable to the friction
U - 22U + U = vt, (6) velocity vy, at which point the linear approximation is no
longer valid. In other words, when; = 1/2 the block
where for convenience | have introduced the parameteill always probe the nonlinear part of the friction law,
a = 1/2v;. | have also redefined the origin of displace-no matter how small the pulling speed In order to
ments so as to eliminate the unit constant that wouldnvestigate the behavior of the system further it is thus
otherwise appear on the right-hand side of (6). Clearlynecessary to consider specific models for the friction law.
the linear approximation above will be valid only if the  Several friction models have been recently considered
block velocity is small compared to the friction char- in the literature [5—7]. In what follows, however, rather
acteristic velocity, i.e.U < v;. The advantage, how- than to be concerned with the choice of a realistic friction
ever, is that Eq. (6) together with the initial conditionslaw, | will consider for simplicity a piecewise linear
U0) = U(0) = U(0) = 0 can be easily solved. Here model for which analytical results can be easily obtained.
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More precisely, | consider the following friction model considerable motion will occur only for times close to

[7]: the instants;. It is therefore convenient to introduce
1 —x foro=x=1, the renormalized time = ¢ — ¢;. The block position in

d(x) = {O forx = 1. (12)  terms ofr can now be obtained by using (13) into (11)
As discussed above, here it is hecessary to study only thaend taking the limitz — 0. After some simplifications

caser; = 1/2. (Recall that ifv; > 1/2 thenA —0as °"¢ finds

v — 0, regardless of the nonlinear features of the friction
law.) In this case, the solution for the block motion can

be divided into three parts as follows. which is valid for = 0. One thus sees that in terms

Initially, when U < vy the motion of the block is : : RN
confined to the linear part of the friction and hence themc the renormalized time the solution is independent of

solution is given by (11). This solution is valid until the Z;E]%t is, the relation (14) is aexactresult in the fimit
time r;, whereU(t;) = vy, after which the block enters

X . T For = > 0 the motion consists of two parts. First, the
the ”Or.‘"’.‘ear regime of the frlctlc_)n_law, here_ re_presenteq)lock will “swing” frictionlessly until the time (denoted
by a frictionless region. In the limit — 0 this time,

) o . by 71) at which its velocity is again equal to,. Af-
diverges logarithmically withy, terwards, the block will experience once moréfa nonzero
= (a — w)ln[ w(a + w)} (13) (Iine_ar) friction_ until it f_inaIIy stops at some Iat_er tim@_. _
av Settingy = 0 in (5) (since we are interested in the limit
as one can easily verify from (11). Although the block » — 0) and using (12), one can easily solve for the mo-
spends a “very long” period of time in this linear regime, tion corresponding to these two regions. Combining this
one can easily convince oneself that during most of thisvith (14) one obtains the complete solution for the block
time the block is essentially at rest. In other worqs,position,

U(r) = vi(la — w)el@ @) (14)

vila — w)el@t®r forr =0,
_ | vlsinT = (a + w)cosT + 1] for0=r=r,
U(r) = vfe“(T*T‘)[Ga + w)coshw(r — 1) (15)
—(a + 3w + %)Sinhw(r - 71)] forry =7 =7,
where the times; andr, are given by ! (2) and (3) will exhibit adiscontinuoustransition at

7 = 2arctaffa + o), 1e) V= 1/2, with stick-slip motion occurring only for, =
1/2. In this case, the behavior of the system can be
1 ® qualitatively divided into three regions corresponding to
T, =T1 Tt 2w In(l + ;>~ (17)  the three time intervals given in (15). First there is a long

. _ interval (- = 0) of slow motion followed by a sudden
The block displacement = U(r,) after an earthquake slip (0 = 7 = 71), where most of the actual displacement

can now be calqulated by i.nserting (17) in_to (15) andtakes place, after which the block experiences again a
performing a straightforward if somewhat tedious algebra.

Here | simply quote the final result

©\(1/2)(1+a/w 1 25 T T T
A=[(1+“)(/)( /) forvy =5, g
0 for vy > 3
where | also collected the aforementioned result that 20 1
vanishes fow; > 1/2 (asv — 0). \
One then sees that a; = 1/2 the system undergoes 15 | , .
a “phase ftransition” in the sense that vanishes for A :
vy > 1/2 while it takes finite values for = 1/2. (A ]
plot of A vs v, is shown in Fig. 2.) Notice, however, that 10 F : 1
this transition is of a “first-order” nature, since the “order |
parameter’A changedgliscontinuoushat the critical value os | : |
vy = 1/2. (I remark parenthetically that a true transition ' :
occurs only in the limitv — 0; a finite value ofv will, of i
course, smooth out this transition.) 0.0 L L L
Although the model (12) is clearly too simplistic to 0 025 \0,'5 0.75 !
describe actual frictional sliding, the qualitative behavior f

observed in this model is, notwithstanding, quite generalpiG. 2. The block displacement vs the friction characteris-
For instance, any friction model satisfying the conditionstic velocity », for the model given in (12).
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short period t; = 7 =< 7;) of linear friction until it behavior to a line of first-order transitions ending at a
finally comes to a stop. The time = 0 (or r = ¢, in  critical point, thus suggesting that criticality (i.e., power-
nonrenormalized units) can thus be taken as the effectiviaw behavior) in the Burridge-Knopoff model could be
“beginning” of an earthquake. In this sense, the actuattained (if at all) by tuning the friction parameter to the
time T between characteristic events will be givenby=  critical value [13].
A/v + 1. In view of (13), this implies a logarithmic The results reported in this paper demonstrate, how-
correction (inv) to the recurrence time predicted by the ever, that the transition from stick-slip motion to creep is
elastic rebound theorygs advertised earlier. discontinuous. In connection with the discussion in the
As already mentioned, the existence of a discontinuoupreceding paragraph, this implies that the hysteresis men-
transition atr, = 1/2 does not rely on any particular tioned above will persist (albeit less pronounced) all the
choice of friction model. On the other hand, the specificway up to the transition point. In other words, (homoge-
details of this transition (e.g., the shape of the cutwve neous) spring-block models cannot be brought to a critical
vs vy) are obviously model dependent. For instance, irstate displaying scaling behavior [14]. | conclude thus by
Fig. 3 | show the quantit\ as a function ofy, for the  pointing out that if one assumes that the Burridge-Knopoff
Carlson-Langer model [5], in which the friction force is model gives a qualitatively good description of real earth-

described by the function quakes, it then appears that fault slippinqét a critical
1 phenomenon (self-organized or otherwise).
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