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Correlation Functions in a Corner-Shaped Ising Model
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We obtain exact results at all temperatures for the two-point function of surface spins near
the corner of a two-dimensional rectangular Ising ferromagnet; at the critical point, the functional
form predicted by conformal theory is recovered. We are also able to calculate exactly a
large class of correlation functions involving spins off the surface, and to interpret the results
geometrically. [S0031-9007(96)00425-5]

PACS numbers: 75.10.Hk

Since the pioneering work of McCoy and Wu [1] on the this agreement is not exact with one spin in the corner;
behavior of spins on the edge of a planar Ising ferromagbecause, even though the power law of the decay as the
net, it has been fully appreciated that surfaces have critiether spin goes towards infinity is exact, the amplitude is
cal behavior strongly distinguished from that of the bulknot, and, moreover, it depends on the lattice anisotropy.
[2]. One of their key contributions was to obtain the spon- We consider a rectangular Ising ferromagnetic lattice
taneous magnetizatiom, of an edge spin, and the pair with spinso; ; = *1 located at sites:, j) with 1 =i =
correlation function at all temperatures. An essential reN andl = j = M. A configuration denotefr} of such
quirement in these calculations is the translational inspins on the lattice has energy

variance of the lattice along the edge direction: This is N-1 M

achieved by wrapping the lattice on a cylinder. In the Eyu(o}) = — 1 Z OO+
field-theoretical formulation in terms of free fermions, cor- i=1 j=1

relation functions are evaluated by Wick’s theorem [3] in N M-1

terms of contractions, which the boundary conditions make ) Z Tij0ij+l. 1)
translationally invariant, and which become the elements i=1 j=1

of a Toplitz determinant [4]. Since then, one of the un- For the canonical ensemble at inverse temperature
solved problems was the correlation of spins near a corneg, the column-to-column transfer matrix contains two
of the lattice; not only are the determinants non-Toplitz factors: 7;, accounting for Boltzmann factors between
but one could not even calculate the contractions. In thigolumns, andl, a diagonal matrix accounting for those
Letter, we use a new method which allows us to treat spingithin a column. On a Hilbert space which is the direct
on the edges at an arbitrary distance from the corner, gsroduct of M spin-1/2 Hilbert spaces, we construct the
well as energy densities anywhere in the bulk, at all temoperatorsV, and V, having 7; and T, as their matrix

peratures, thus extending McCoy and Wu's results. representatives up to a factor
Meanwhile, the problem acquired added piquancy from M

the conformal-theoretical predictions of Cardy [5] which Vv, = exp(—[(f Z aj),

should apply to a continuum Ising field theory at the j=1

()

critical point. Conformal ideas predict critical exponents M-l
and the functional form of correlation functions up to a V, = ex i1 ]
factor, and they relate such functional forms in different

lattice geometries. In this case, a conformal transformatiowhereKl — BJ1, Ky = BJ,, the dual coupling constant
relates the crltlcal. pair cor_relatlon'm'a sector with Openingg+ ig defined by exp-2K}) = tanhk;, and the represen-
angled to the lattice-continuous limit of the exact results ;-0 used has diagonal forl = j = M

of McCoy fr’m(.j Wu _for Spins on the edge of an infinite  pq e presjent problem the symmetrizatidf =
cylinder, this time without an arbitrary factor. The corneer/zV V2 s convenient. It can be diagonalized us-
magnetization exponent, now known exactlylﬂovt /2 - in1 thze Hordan—Wi ner trénsformation to fgermioﬁ =
[6], is obtained by applying scaling ideas to the pair; 9 oy g- y JSZ
function; only its asymptotic behavior is probed. Checkingz Pj-1(0j — ioj) with Py = 1, and P; = | [i=, (—o%)
the complete predicted functional form is therefore a fafor 1 = j = M, and the spinors defined by, =
more exacting test, which we amplify by giving precisef;r + fjandl’y; = —i(f;r — f;j). The Euclidean equa-
formulas for the Ising lattice theory, thus allowing a tion of motion is linear, and we define a mat®such that
check of the accuracy of the conformal theory as arV/I'’Vv/~! = I'"R. The eigenvectors d® have a special

approximation to thdattice theory. We shall show that significance: leRy, = ¢?®y; andRy; = ¢~ "%y, with
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y(k) = 0 (this structure is mandatory); then if we define We denotez; = ¢, z, = ¢*2, etc., and usek or the
M correspondingz with indifference as argument in any

Xy = Z YmkLm (3)  function of the wave vector. L&t~ *)(z,, z,) be the ther-

= modynamic limit of (7) in the case(k;) = —i, a(ky) = 1.
with || y¢|I> = 1/2, the X, are fermions and We now obtain an integral equation for the matrix

+ 1 elements by using the vacuum conditio(ﬁslf; =0

= exp(— > k) (Xka - 5)) (4)  which characterize a column of free spins. If we write
k 0= (Olf,TX,lld)} and expand thg’; linearly in terms of

It turns out that X, and its adjoint using the inversion of (3) again, we

coshy(k) = cosi2K| cosRRK, — sinl2K; sinf2K, cosk get a linear equation relating the desir(@diX,:rIX,jzld» to
(0|®), and thus an equation for th€ of (7). For any

-

14

(5) — ik H H H 5 iMk, — i6%(ky)-
and that there is a quantization conditiosi”* = @ kel * on the unit circle satisfying™t: = /7't
—ia(k)e®® where a(k) = *i, and the functions* is 1< Ly il —iste) =
defined in [7] along withs’, ¢, ¢ and the expression 4p1 :Z_WZ K(z,22) = =isind'(z0) (23 e ™ —227).
of y.x. Note that all these functions have a similar (8)

analytic structure, with branch points at!, B*! with
A = cothkj cothk, and B = cothkj tanhk,. The ap- We caution the reader that it may not be possible to get
pearance ofe can be understood by appealing to theany solution, let alone a unique one in the thermodynamic
reflection invariance of’ [7]. limit. For the similar problem wherg; is replaced by the
The vacuum for theX; is denoted|®). This state imaginary wave vector our first solution [6,7] involved
is the maximum eigenvector df’, is nondegenerate for the inverse of the singular integral operaibof Yang [8]
any temperature (providell is finite), and, since/’ is  which is known not to exist fof’ < T, because there
invariant under parity and reflectiof) is an eigenstate is a null spectrum. But it turned out that thetatistical-
of P andZ; the corresponding eigenvalues are conserveehechanicaldual of Y was needed, for which the inverse
by continuity so we can determine them by takihg~ «,  does exist [9]. Such a method would probably work
in which caseV’ goes toV;, thus|®) goes to the stat)  for this case, but we will use the much more amenable
representing a column of free spins which is even andviener-Hopf method which follows.

satisfies>|0) = |0) therefore at any temperaturd®) = Taking anyz;, such thatlz;| > 1, multiplying (8) by

|P) andX[®) = |P). z1 ', and summing o gives, in the thermodynamic limit,
There areM values of k giving nontrivially dif-

ferent y,. If M is big enough, above the critical 1 di A N2

temperature they are all real, but below the critical tem- 2im Jy=1 t — 7 2

perature there is one mode with a pure imaginary wave 1 e 19 (ka)

vectork = ilnB + O(B~*M) giving asymptotic degener- = — 4isind (k2)< ) ©)

acy in the spectrumy(k) = O(B~M). We denoteX, the

corresponding fermion operator; its reflection behavior isThe second ingredient in the Wiener-Hopf method of

a. = 1. [4,10] as used in [7] is the relationship between opposite
We consider the correlation function between two pointsyalues ofk which we read from the expression X :

on the same edge (perpendicular to transfer direction)

2122 — 1 21— 22

g(j<1,]:2) = (0,,01,). Taking N — o, we obtain for K(ky, ky) = e iR K (—k, k)
J1 J2 e
(i) = o2 Ol f,f5,1P) ) = ¢ T RIK k), —ky) . (10)
5 = e
8\J1,J2 O|®)

) ) ) .. The difference with the method used in [7] is that we now
The expansion OTfJ' in terms of the creation and annihi- 56 poles on the unit circle on the right hand side of (9).
lation operators(; andX, using the inversion of (3) and However, (9) is equivalent to saying that

its adjoint, reduces the problem to the determination of the

matrix eIementiOIX,:rlX,fZICI)). A selection rule is associ- g\ "z, ) = KC (21, 22)

ated with the reflection symmetry: These matrix elements Soi" (k)

are nonzero only iﬁ(,f] andX,:r2 have different behaviors. — 8isiné (k2)< ! ’ )
For k; andk, real we define 2~ 1 1 T 22

e—ivolk) 4 pmienlk) p=igolk) 4 p—igi(ka) (11)
Ky (ki, ko) = N N
+ "jr ke is analytic forz; inside or on the unit circle, and we can
(01X, Xi, | D) -y now use (10) and the Wiener-Hopf method, giving below
(0|®) ) (7 the critical temperature
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4AB — 1)(1 + z)) (1 + 20) (1 — z2)? 21 — B
(z1 — 2)(ziz2 — 1) Bz — DJ(za = B)(zz — Az — A

If we now consider the supercritical case, the integral equation (9) and the symmetry condition (10) do not permit us to
obtain auniquesolution, and, even if we take into account the antisymmetry of the matrix element in the exchange of
k, andk, (as in [11]), we are still left with an arbitrary constant. To obtain unicity, we require the correlation function
to vanish for infinite separations (i.e., disallow any spontaneous magnetizatignfor.), giving finally

41 - AB) (1 — z3)(1 — z)
(z1 — 22)(z1iz2 = Dy/(z1 —A)(Bzy — D(z2a — A)(Bza — 1)

We now use spectral decomposition of both fermibnboundary conditions, we extend the domain of the def-
operators appearing in (6) to get the correlation functiorinition of G to benefit from its oddness im [obvious
g(j1,j2). For subcritical temperatures, it contains threefrom the definition (6)] andu [which we see by using
terms: the first two involveX! and have a structure (10) in (14) ands’ = &* which is specific to the critical
similar to the spontaneous edge magnetization near thaoint, givingg(l — ji1,1 — j2) = g( /1, j2) and therefore
corner [6,7], and the third, which is also the only one forG(—y, —y») = G(y1,y2)]. This gives

KSL_+)(Z1,22) = (12)

KS:+)(ZI,Z2) = (13)

supercritical temperatures, is 2e2K v
p (2 wa ek giizks KV (k| k) G(yiy2) = —— L (19)
- — - dky dk; . . .
872 Jo 0 (1+ e i0k)) (] + =i0k)) “H1 02 The conformal result for the corner pair correlation is

(14)  obtained by transformation of the lattice-continuous limit

) ) ] ] of the McCoy and Wu result [1] for spins on the edge of
In this two-dimensional Fourier transform the only factorsy cylinder,

coupling the two integration variables dtg — z,) ! and 2K} 1

. _ _ _ e
(z1z2 — 1)~! coming from (12) or (13). This suggests the LLmo a No(l,a 'z)o(l,a ' 2)) = T
introduction of a “lattice second derivative” ! ' (20)
") =gl + 20+ 1) —g(j1 + 1,ja +2) One aspect of conformal theory states that [5,12]
L) + g (oalome =| L[ L2 (o)
—gU + Ljo) + glnja £ 1), (15)  ATWUOIW2deomer =) 570001 | | AT DO R) edge
(21)

which indeed turns out to be the product of a function 5 _ _

of j; and a function ofj,. We now consider the critical With z = w” and x = 1/2, which results in complete
point, i.e.,B — 1. The first two terms irg(ji, j») vanish ~ agreement (including the prefactors) with the exact lattice-
if we approach the critical temperature from below, and incontinuous theory (19).

any cas&” (1, j2) is given by )

P 202Ki 1 - (log)
8 (Jl,Jz)Zm[]Al ' ldz [ (Az — 1)(1—1):| 1
1
X |:[Al 227V dzaJ(Az — 1) (1 —z):|. (16)

This is not yet identical to the conformal prediction: 0.19
Indeed, to compare our results to those of conformal field
theory, we need to take the lattice-continuous limit of
g(j1,j2). Let y; = aj, and y, = aj,, wherea is the

lattice spacing. Then, taking— 0 andj, j, — oo with 0.01-
fixed y; andy, in (15) and (16) gives
*G %G Kl 3 3
82_82:_27Ty1 y2 o, (17)
i ) S Jjdog)
where the lattice-continuous limit is defined by FIG. 1. Comparison ofg.(1,j) constructed from the con-
formal result (thick lines) with the exact critical correla-
G(yi,y2) =1lim a 'g(a "y, a ly,). (18) tion function g(1,) (points) obtained by numerical integra-
a—0 tion of (14) with (12) or (13) forB = 1 and several values

' N ' of A° Ay = 1.5, Agy = 3 + 2+/2 [the isotropic casek; =
We deflne_the auxiliary variables = y, + y, and_ K, = %In(l + 4/2)], and Agj;) = = (the extreme anisotropic
v =y, — yp in order to solve (17); rather than using or Hamiltonian limitK, < K;).
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We now consider some numerical results obtained by Higher-order edge-spin correlation functions or correla-
integration of the exact expression (14) fdrj,, j») at the tions containing energy densities anywhere in bulk can be
critical point, and compare them with the results extractedtudied at all temperatures by using an extension of Wick’s
in the normal way from the lattice-continuous theory (19),theorem [11]: To determine anzarticle matrix element,
denoted bygi.(/1,j2) = aG(aji,aj,). The conformal we use the vacuum property to get an equation similar to
prediction (19) becomes exact jf and j, are both far (8), except that the right-hand side now contailns— 1
away from the corner and from each other, but even in théerms involvingz,, z3, ..., 22, in place ofz,, each term
isotropic case the asymptotic behavior of the correlatiorbeing multiplied by a(2n — 2)-particle matrix element.
function between the corner spin and a surface spin goin§olving this recurrence gives then-particle matrix ele-
to infinity (see Fig. 1) ig(1, j) « 1.50; 32, whereas (19) ments as Pfaffians in which the contraction function is the
predicts  lim_..j3?gic(1,/) = 2(1 + +2)/7m = 1.54.  two-particle matrix element which we calculated above.
Most optimistically, we might have hoped that corrections An energy density operator is turned into a pair of
to the conformal theory here would not be found in thelocal fermion operators, and, for instance, a correlation
leading term; the power law is certainly correct, but thefunction between two energy densities would involve four
amplitude is in error by roughly 2.7%. This deviation fermionic operators. Itis interesting to look at the structure
probably occurs because the corner is a singular point aff a contraction between two operators located at points

the conformal transformation = w? used in (21). | (x1,y1) and(xz, y2):
2 27 27 —x1y(k) ,—x2y(ka) ,iyviki ,iyaka
sty c(k)d(kp)e =18y )ik
j;) e Pl ®) (g (k)i 2k — ()i 2tk g +/; j;) (e — o) (@ T — 1) dky dky, (22)

where the functiong, b, andd depend on the details of of contributions from the saddle points ef 11 (k)tivik

the contraction function being considered but are alwaysnd e 7% ik and therefore represent by (e) joining

analytic in the annulusB™! < |¢*| < B, and do not both points to the corner.

involve either(x;,y1) or (xz,y,). If we take distances The authors thank T. Spencer and the Institute for

large compared to the correlation length so that we aréddvanced Study very much for hospitality and excel-

in the “quasiclassical” regime, (22) can be evaluated byent facilities. D.B.A. acknowledges financial support

a saddle point method. The first line is related only tofrom the EPSRC and the EU under grants /3R3044

the horizontal boundary (and not to the vertical one or teand ERBHBICT 941666. He also thanks E. Brézin

the corner) and separates in two terms: In the first onéor interesting discussions and for the hospitality of the

the saddle point comes from 2~ xly®+i(y2=y)k and  Ecole Normale Supérieure. F.T.L. thanks J.L. Cardy,

we represent it (see Fig. 2) by a straight line (a) joiningM. Howard, and M. J. E. Richardson for helpful discus-

the two points, by analogy with a geometric light ray sions. He is very grateful to Merton College, Oxford, for

or the trajectory of a classical particle; the other one ighe award of a Senior Scholarship, and also thanks the EP-

controlled bye ~:~xuly(®)+ily2 430k gnd corresponds to the SRC for the award of a Research Studentship.

line (b) bouncing (reflecting) on the horizontal boundary.

The residues (principal parts) & = *k, in the second

line of (22) give two single integrals which correspond to  *ynité propre du CNRS, associée a I'Ecole Normale

the paths (c) bouncing on the vertical boundary and (d)  Supérieure et & I'Université Paris-Sud.

bouncing on both boundaries. The rest of the second ling[1] B.M. McCoy and T.T. Wu, Phys. ReW62 436 (1967).

remains a double integral which we evaluate as a producf2] K. Binder, in Phase Transitions and Critical Phenomena,

edited by C. Domb and J.L. Lebowitz (Academic Press,

Y (@ New York, 1983), Vol. 8.

[3] T.D. Schultz, D.C. Mattis, and E.H. Lieb, Rev. Mod.
Phys.36, 856 (1964).

[4] T.T. Wu, Phys. Rev149 380 (1966).

[5] J.L. Cardy, Nucl. PhysB240 514 (1984).

[6] D.B. Abraham and F.T. Latrémoliére, Phys. Rev5g
RO (1994).

[7] D.B. Abraham and F.T. Latrémoliére, J. Stat. Phgs,
539 (1995).

[8] C.N. Yang, Phys. Rew5, 808 (1952).

[9] D.B. Abraham, Stud. Appl. Matlb1, 179 (1972).

[10] L.P. Kadanoff, Nuovo Cimentd4, 276 (1966).

[11] D.B. Abraham, Commun. Math. Phys9, 17 (1978).

x [12] P. Christe and M. Henkellntroduction to Conformal
FIG. 2. Quasiclassical interpretation of the contraction (21). Invariance and Its Applications to Critical Phenomena
The meaning of lines (a)—(e) is explained in the text. (Springer-Verlag, Berlin, 1993).

4816



