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We obtain exact results at all temperatures for the two-point function of surface spins near
the corner of a two-dimensional rectangular Ising ferromagnet; at the critical point, the functional
form predicted by conformal theory is recovered. We are also able to calculate exactly a
large class of correlation functions involving spins off the surface, and to interpret the results
geometrically. [S0031-9007(96)00425-5]

PACS numbers: 75.10.Hk
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Since the pioneering work of McCoy and Wu [1] on th
behavior of spins on the edge of a planar Ising ferrom
net, it has been fully appreciated that surfaces have c
cal behavior strongly distinguished from that of the bu
[2]. One of their key contributions was to obtain the spo
taneous magnetizationme of an edge spin, and the pa
correlation function at all temperatures. An essential
quirement in these calculations is the translational
variance of the lattice along the edge direction: This
achieved by wrapping the lattice on a cylinder. In t
field-theoretical formulation in terms of free fermions, co
relation functions are evaluated by Wick’s theorem [3]
terms of contractions, which the boundary conditions m
translationally invariant, and which become the eleme
of a Töplitz determinant [4]. Since then, one of the u
solved problems was the correlation of spins near a co
of the lattice; not only are the determinants non-Töpli
but one could not even calculate the contractions. In
Letter, we use a new method which allows us to treat sp
on the edges at an arbitrary distance from the corner
well as energy densities anywhere in the bulk, at all te
peratures, thus extending McCoy and Wu’s results.

Meanwhile, the problem acquired added piquancy fr
the conformal-theoretical predictions of Cardy [5] whic
should apply to a continuum Ising field theory at t
critical point. Conformal ideas predict critical exponen
and the functional form of correlation functions up to
factor, and they relate such functional forms in differe
lattice geometries. In this case, a conformal transforma
relates the critical pair correlation in a sector with open
angleu to the lattice-continuous limit of the exact resu
of McCoy and Wu for spins on the edge of an infini
cylinder, this time without an arbitrary factor. The corn
magnetization exponent, now known exactly foru ­ py2
[6], is obtained by applying scaling ideas to the p
function; only its asymptotic behavior is probed. Checki
the complete predicted functional form is therefore a
more exacting test, which we amplify by giving preci
formulas for the Ising lattice theory, thus allowing
check of the accuracy of the conformal theory as
approximation to thelattice theory. We shall show tha
0031-9007y96y76(25)y4813(4)$10.00
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this agreement is not exact with one spin in the corn
because, even though the power law of the decay as
other spin goes towards infinity is exact, the amplitude
not, and, moreover, it depends on the lattice anisotropy

We consider a rectangular Ising ferromagnetic latti
with spinssi,j ­ 61 located at sitessi, jd with 1 # i #

N and1 # j # M. A configuration denotedhsj of such
spins on the lattice has energy

EN ,Mshsjd ­ 2 J1

N21X
i­1

MX
j­1

si,jsi11,j

2 J2

NX
i­1

M21X
j­1

si,jsi,j11 . (1)

For the canonical ensemble at inverse temperat
b, the column-to-column transfer matrix contains tw
factors: T1, accounting for Boltzmann factors betwee
columns, andT2, a diagonal matrix accounting for thos
within a column. On a Hilbert space which is the dire
product of M spin-1y2 Hilbert spaces, we construct th
operatorsV1 and V2 having T1 and T2 as their matrix
representatives up to a factor

V1 ­ exp

√
2Kp

1

MX
j­1

sz
j

!
,

V2 ­ exp

√
K2

M21X
j­1

sx
j sx

j11

!
, (2)

whereK1 ­ bJ1, K2 ­ bJ2, the dual coupling constan
Kp

1 is defined by exps22Kp
1 d ­ tanhK1, and the represen-

tation used hassx
j diagonal for1 # j # M.

For the present problem the symmetrizationV 0 ­
V

1y2
1 V2V

1y2
1 is convenient. It can be diagonalized u

ing the Jordan-Wigner transformation to fermionsfj ­
1
2 Pj21ssx

j 2 is
y
j d with P0 ­ 1, and Pj ­

Qj
k­1 s2s

z
kd

for 1 # j # M, and the spinors defined byG2j21 ­

f
y
j 1 fj andG2j ­ 2is f

y
j 2 fjd. The Euclidean equa-

tion of motion is linear, and we define a matrixRsuch that
V 0GT V 021 ­ GT R. The eigenvectors ofRhave a special
significance: letRyk ­ egskdyk andRyp

k ­ e2gskdyp
k with
© 1996 The American Physical Society 4813
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gskd $ 0 (this structure is mandatory); then if we define

Xk ­
2MX

m­1

ym,kGm (3)

with k ykk2 ­ 1y2, theXk are fermions and

V 0 ­ exp

√
2

X
k

gskd

√
X

y
k Xk 2

1
2

!!
. (4)

It turns out that
coshgskd ­ cosh2Kp

1 cosh2K2 2 sinh2Kp
1 sinh2K2 cosk

(5)
and that there is a quantization conditioneiMk ­
2iaskdeidpskd whereaskd ­ 6i, and the functiondp is
defined in [7] along withd0, w0, w1 and the expression
of ym,k. Note that all these functions have a simil
analytic structure, with branch points atA61, B61 with
A ­ cothKp

1 cothK2 and B ­ cothKp
1 tanhK2. The ap-

pearance ofa can be understood by appealing to th
reflection invariance ofV 0 [7].

The vacuum for theXk is denotedjFl. This state
is the maximum eigenvector ofV 0, is nondegenerate fo
any temperature (providedM is finite), and, sinceV 0 is
invariant under parity and reflection,jFl is an eigenstate
of P andS; the corresponding eigenvalues are conserv
by continuity so we can determine them by takingT ! `,
in which caseV 0 goes toV1, thusjFl goes to the statej0l
representing a column of free spins which is even a
satisfiesSj0l ­ j0l therefore at any temperaturePjFl ­
jFl andSjFl ­ jFl.

There are M values of k giving nontrivially dif-
ferent yk. If M is big enough, above the critica
temperature they are all real, but below the critical te
perature there is one mode with a pure imaginary wa
vectork ­ ilnB 1 OsB22Md giving asymptotic degener
acy in the spectrum,gskd ­ OsB2Md. We denoteXc the
corresponding fermion operator; its reflection behavior
ac ­ i.

We consider the correlation function between two poin
on the same edge (perpendicular to transfer directi
gs j1, j2d ­ ks1,j1 s1,j2 l. Taking N ! `, we obtain for
j1 , j2

gs j1, j2d ­ e2Kp
1

k0j fj2 fj1 jFl
k0jFl

. (6)

The expansion offj in terms of the creation and annih
lation operatorsX

y
k andXk , using the inversion of (3) and

its adjoint, reduces the problem to the determination of
matrix elementsk0jX

y
k1

X
y
k2

jFl. A selection rule is associ
ated with the reflection symmetry: These matrix eleme
are nonzero only ifX

y
k1

andX
y
k2

have different behaviors
For k1 andk2 real we define

KMsk1, k2d ­
e2iw0sk1d 1 e2iw1sk1d

Nk1

e2iw0sk2d 1 e2iw1sk2d

Nk2

3
k0jX

y
k1

X
y
k2

jFl
k0jFl

. (7)
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We denotez1 ­ eik1 , z2 ­ eik2 , etc., and usek or the
correspondingz with indifference as argument in an
function of the wave vector. LetK s21dsz1, z2d be the ther-
modynamic limit of (7) in the caseask1d ­ 2i, ask2d ­ i.

We now obtain an integral equation for the matr
elements by using the vacuum conditionsk0j f

y
j ­ 0

which characterize a column of free spins. If we wri
0 ­ k0j f

y
j X

y
k2

jFl and expand thef
y
j linearly in terms of

Xk and its adjoint using the inversion of (3) again, w
get a linear equation relating the desiredk0jX

y
k1

X
y
k2

jFl to
k0jFl, and thus an equation for theK of (7). For any
z2 ­ eik2 on the unit circle satisfyingeiMk2 ­ eidpsk2d:

1
4M

k­pX
k­2p

zjKsz, z2d ­ 2i sind0sz2d szj21
2 e2idpsz2d 2 z

2j
2 d .

(8)

We caution the reader that it may not be possible to
any solution, let alone a unique one in the thermodynam
limit. For the similar problem wherek2 is replaced by the
imaginary wave vector our first solution [6,7] involve
the inverse of the singular integral operatorY of Yang [8]
which is known not to exist forT , Tc because there
is a null spectrum. But it turned out that thestatistical-
mechanicaldual of Y was needed, for which the invers
does exist [9]. Such a method would probably wo
for this case, but we will use the much more amena
Wiener-Hopf method which follows.

Taking anyz1 such thatjz1j . 1, multiplying (8) by
z

2j
1 , and summing onj gives, in the thermodynamic limit

1
2ip

Z
jtj­1

dt
t 2 z1

K s21dst, z2d

­ 2 4i sind0sk2d
µ

1
z1z2 2 1

2
e2idpsk2d

z1 2 z2

∂
. (9)

The second ingredient in the Wiener-Hopf method
[4,10] as used in [7] is the relationship between oppos
values ofk which we read from the expression ofX

y
k :

Ksk1, k2d ­ e2ik12idpsk1dKs2k1, k2d

­ e2ik22idpsk2dKsk1, 2k2d . (10)

The difference with the method used in [7] is that we no
have poles on the unit circle on the right hand side of (
However, (9) is equivalent to saying that

K
s21d
1 sz1, z2d ­ K s21dsz1, z2d

2 8i sind0sk2d

√
1

z1z2 2 1
2

e2idpsk2d

z1 2 z2

!
(11)

is analytic forz1 inside or on the unit circle, and we ca
now use (10) and the Wiener-Hopf method, giving belo
the critical temperature
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K
s21d
1 sz1, z2d ­

4sAB 2 1d s1 1 z1d s1 1 z2d
sz1 2 z2d sz1z2 2 1d

s1 2 z2d2

sBz2 2 1d
p

sz2 2 Bd sz2 2 Ad

s
z1 2 B
z1 2 A

. (12)

If we now consider the supercritical case, the integral equation (9) and the symmetry condition (10) do not perm
obtain auniquesolution, and, even if we take into account the antisymmetry of the matrix element in the exchan
k1 andk2 (as in [11]), we are still left with an arbitrary constant. To obtain unicity, we require the correlation fun
to vanish for infinite separations (i.e., disallow any spontaneous magnetization forT . Tc), giving finally

K
s21d
1 sz1, z2d ­

4s1 2 ABd s1 2 z2
2 d s1 2 z2

1 d
sz1 2 z2d sz1z2 2 1d

p
sz1 2 Ad sBz1 2 1d sz2 2 Ad sBz2 2 1d

. (13)
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We now use spectral decomposition of both ferm
operators appearing in (6) to get the correlation funct
gs j1, j2d. For subcritical temperatures, it contains thr
terms: the first two involveXy

c and have a structur
similar to the spontaneous edge magnetization near
corner [6,7], and the third, which is also the only one
supercritical temperatures, is

2
P

8p2

Z 2p

0

Z 2p

0

eij1k1 eij2k2K s21dsk1, k2d
s1 1 e2id0sk1dd s1 1 e2id0sk2dd

dk1 dk2 .

(14)

In this two-dimensional Fourier transform the only facto
coupling the two integration variables aresz1 2 z2d21 and
sz1z2 2 1d21 coming from (12) or (13). This suggests th
introduction of a “lattice second derivative”

g00s j1, j2d ­ gs j1 1 2, j2 1 1d 2 gs j1 1 1, j2 1 2d

2 gs j1 1 1, j2d 1 gs j1, j2 1 1d , (15)

which indeed turns out to be the product of a funct
of j1 and a function ofj2. We now consider the critica
point, i.e.,B ! 1. The first two terms ings j1, j2d vanish
if we approach the critical temperature from below, and
any caseg00s j1, j2d is given by

g00s j1, j2d ­
2e2Kp

1

p2s1 2 Ad

"Z 1

A21
zj121 dz

q
sAz 2 1d s1 2 zd

#

3

"Z 1

A21
zj221 dz

q
sAz 2 1d s1 2 zd

#
. (16)

This is not yet identical to the conformal predictio
Indeed, to compare our results to those of conformal fi
theory, we need to take the lattice-continuous limit
gs j1, j2d. Let y1 ­ aj1 and y2 ­ aj2, where a is the
lattice spacing. Then, takinga ! 0 andj1, j2 ! ` with
fixed y1 andy2 in (15) and (16) gives

≠2G

≠y2
1

2
≠2G

≠y2
2

­ 2
e2Kp

1

2p
y

23y2
1 y

23y2
2 , (17)

where the lattice-continuous limit is defined by

Gs y1, y2d ­ lim
a!0

a21gsa21y1, a21y2d . (18)

We define the auxiliary variablesu ­ y2 1 y1 and
n ­ y2 2 y1 in order to solve (17); rather than usin
n

e

boundary conditions, we extend the domain of the d
inition of G to benefit from its oddness inn [obvious
from the definition (6)] andu [which we see by using
(10) in (14) andd0 ­ dp which is specific to the critical
point, givinggs1 2 j1, 1 2 j2d ­ gs j1, j2d and therefore
Gs2y1, 2y2d ­ Gs y1, y2d]. This gives

Gs y1, y2d ­
2e2Kp

1

p

p
y1y2

y2
2 2 y2

1
. (19)

The conformal result for the corner pair correlation
obtained by transformation of the lattice-continuous lim
of the McCoy and Wu result [1] for spins on the edge
a cylinder,

lim
a!0

a21kss1, a21z1dss1, a21z2dl ­
e2Kp

1

p

1
jz1 2 z2j

.

(20)
One aspect of conformal theory states that [5,12]

kssw1dssw2dlcorner ­

Ç
dz1

dw1

Çx Ç
dz2

dw2

Çx
kssz1dssz2dledge

(21)

with z ­ w2 and x ­ 1y2, which results in complete
agreement (including the prefactors) with the exact lattic
continuous theory (19).
:
ld
f

FIG. 1. Comparison ofglcs1, jd constructed from the con
formal result (thick lines) with the exact critical correla
tion function gs1, jd (points) obtained by numerical integra
tion of (14) with (12) or (13) forB ­ 1 and several values
of A: Asid ­ 1.5, Asiid ­ 3 1 2

p
2 [the isotropic caseK1 ­

K2 ­
1
2 lns1 1

p
2d], and Asiiid ­ ` (the extreme anisotropic

or Hamiltonian limitK2 ø K1).
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We now consider some numerical results obtained
integration of the exact expression (14) forgs j1, j2d at the
critical point, and compare them with the results extrac
in the normal way from the lattice-continuous theory (1
denoted byglcs j1, j2d ­ aGsaj1, aj2d. The conformal
prediction (19) becomes exact ifj1 and j2 are both far
away from the corner and from each other, but even in
isotropic case the asymptotic behavior of the correlat
function between the corner spin and a surface spin go
to infinity (see Fig. 1) isgs1, jd ~ 1.50j23y2, whereas (19)
predicts limj!`j3y2glcs1, jd ­ 2s1 1

p
2dyp ø 1.54.

Most optimistically, we might have hoped that correctio
to the conformal theory here would not be found in t
leading term; the power law is certainly correct, but t
amplitude is in error by roughly 2.7%. This deviatio
probably occurs because the corner is a singular poin
the conformal transformationz ­ w2 used in (21).
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Higher-order edge-spin correlation functions or corre
tions containing energy densities anywhere in bulk can
studied at all temperatures by using an extension of Wic
theorem [11]: To determine a 2n-particle matrix element,
we use the vacuum property to get an equation simila
(8), except that the right-hand side now contains2n 2 1
terms involvingz2, z3, . . . , z2n in place of z2, each term
being multiplied by as2n 2 2d-particle matrix element.
Solving this recurrence gives the 2n-particle matrix ele-
ments as Pfaffians in which the contraction function is t
two-particle matrix element which we calculated above

An energy density operator is turned into a pair
local fermion operators, and, for instance, a correlat
function between two energy densities would involve fo
fermionic operators. It is interesting to look at the structu
of a contraction between two operators located at po
sx1, y1d andsx2, y2d:
Z 2p

0
e2jx22x1jgskdsaskdeis y22y1dk 2 bskdeis y21y1dkddk 1

Z 2p

0

Z 2p

0

csk1ddsk2de2x1gsk1de2x2gsk2deiy1k1 eiy2k2

seik1 2 eik2d seisk11k2d 2 1d
dk1 dk2 , (22)
g

for
l-
rt

in
he
y,

s-
or
EP-

le

a,
where the functionsa, b, and d depend on the details o
the contraction function being considered but are alw
analytic in the annulusB21 , jeik j , B, and do not
involve either sx1, y1d or sx2, y2d. If we take distances
large compared to the correlation length so that we
in the “quasiclassical” regime, (22) can be evaluated
a saddle point method. The first line is related only
the horizontal boundary (and not to the vertical one o
the corner) and separates in two terms: In the first
the saddle point comes frome2jx22x1jgskd1is y22y1dk , and
we represent it (see Fig. 2) by a straight line (a) join
the two points, by analogy with a geometric light r
or the trajectory of a classical particle; the other one
controlled bye2jx22x1jgskd1is y21y1dk and corresponds to th
line (b) bouncing (reflecting) on the horizontal bounda
The residues (principal parts) atk1 ­ 6k2 in the second
line of (22) give two single integrals which correspond
the paths (c) bouncing on the vertical boundary and
bouncing on both boundaries. The rest of the second
remains a double integral which we evaluate as a pro
s,

.

a
FIG. 2. Quasiclassical interpretation of the contraction (2
The meaning of lines (a)–(e) is explained in the text.
ys
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of contributions from the saddle points ofe2x1gsk1d1iy1k1

and e2x2gsk2d1iy2k2 , and therefore represent by (e) joinin
both points to the corner.
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