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We present an analytic study of a dynamical instability in a periodic long-range Josephson
frustrated by a weak transverse field. This glass transition is characterized by a diverging rela
time and a jump in the Edwards-Anderson order parameter; it isnot accompanied by a coinciding stat
transition. [S0031-9007(96)00454-1]
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Glass formation in theabsenceof intrinsic disorder
is a long-standing problem. Although vitrification
ubiquitous, a minimalist microscopic model of this ph
nomenon remains the subject of active discussion [1
Because glass formation is a dynamical transition tha
not necessarily accompanied by a static one, it lies
side the framework of the Landau theory. Furthermo
this glass transition leads to a low-temperature phase
broken ergodicitywithout the selection of auniquestate.
A successful phenomenological theory should describe
“partitioning” of phase space below the transition te
peraturesTGd into an exponential number of metastab
states; specifically, it should explain how the system
comes “stuck” atTG in one of these states that is sep
rated from the others by barriers which scale with
system size.

Unfortunately, a basic theory of glass formation h
not yet been found. Several microscopic nonrand
models have been proposed; most were studied v
mapping to disordered systems [2]. Recently, poss
glassiness in the absence of disorder has been stu
in a periodic long-range Josephson array using a dir
analytic approach [3]; furthermore, this system may
realized experimentally. An analysis of its static behav
indicates a first-order transition into a low-temperat
phase characterized by an extensive number of s
separated by infinite barriers. In this Letter we contin
the study of this system and show that it displays a t
dynamical instability thatprecedesthe static transition, a
expected in a glass [1].

The proposed array is a stack of two mutually p
pendicular sets ofN parallel wires with Josephson jun
tions at each node (Fig. 1) that is placed in an exte
transverse field. The classical thermodynamic variab
of this system are the superconducting phases assoc
with each wire. Here we shall assume that the Joseph
couplings are sufficiently small so that the induced fie
are negligible in comparison withH. We can therefore
describe the array by the Hamiltonian

H ­ 2

2NX
m,n

sp
mJmnsn , (1)
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whereJmn is the coupling matrix

Ĵ ­

µ
0 Ĵ

Ĵy 0

∂
, (2)

with Jjk ­ sJ0y
p

N d exps2piajkyNd and 1 # sj, kd #

N , where jskd is the index of the horizontal (vertical
wires; sm ­ eifm , where thefm are the superconducting
phases of the2N wires. Here we have introduced the flu
per unit strip,a ­ NHl2yf0, where l is the internode
spacing andf0 is the flux quantum; the normalization ha
been chosen so thatTG does not scale withN .

Because every horizontal (vertical) wire is linked
every vertical (horizontal) wire, the number of neare
neighborsszd in this model isN ; we can therefore study
it with a mean-field approach. For1yN ø a , 1 the
number of low-temperature metastable solutions is ext
sive [3]. Furthermore, this degeneracy develops sim
taneously with the instability of the paramagnetic pha
at this temperature, interactions do not favor a particu
state, and, becausez , N, the barriers separating thes
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FIG. 1. The phase diagram of the array (inset), whereTG indi-
cates the temperature associated with the dynamical insta
discussed in this Letter,TS is the speculated equilibrium tran
sition temperature, andTm is the “superheating” temperatur
where the low-temperature metastable states cease to exis
© 1996 The American Physical Society 4805
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me
low-temperature metastable solutions are effectively i
nite. The static response displaysno soft mode instability
but indicates a jump in the Edwards-Anderson order
rameter in the vicinity ofT0 ­ J0y

p
a.

Before presenting our quantitative treatment of the
namical behavior of this array, we discuss the qualita
picture of the glass transition that emerges from our
sults (cf. Fig. 1). AsT approachesT1

m , whereT1
m , T0,

there appear a number of metastable states in add
to the paramagnetic free-energy minimum; most lik
they are energetically unfavorable and thus do not “tr
the system upon cooling from high temperatures.
T ! T 1

G , the paramagnetic minimum is “subdivided” in
an extensive number of degenerate metastable states
rated by effectively infinite barriers, and the system is
namically localized into one of them. Qualitatively, in t
interval Tm . T . TG there appear many local minim
in the vicinity of the paramagnetic state separated byfinite
barriers; these barriers increase continuously and bec
infinite atT ­ TG. Each of these minima is characteriz
by a finite “site magnetization”mi ­ ksilT , where “site”
refers to a wire. WhenT . TG thermal fluctuations av
erage over many states so thatkmil ; 0. At T ­ TG the
system is localized in one metastable state, and the
an associated jump in the Edwards-Anderson order
rametersq ­

1
N

P
ikmil2d. The low-temperature phase

characterized by a finiteq and by the presence of a mem
ory, limt0!` Dst, t0d fi 0, whereDst, t0d is the anomalous
response. We expect that atT ­ TG the metastable state
are degenerate, and thus there can be no thermodyn
selection. However, at lower temperatures, interact
will probably break this degeneracy and select a su
of this manifold; we then expect anst ! `d equilibrium
first-order transitionsTSd which should be accompanie
by a jump in the local magnetization. In order to o
serve this transition atTS the array must be equilibrate
on a time scalestW d longer than thatstAd necessary to
overcome the barriers separating its metastable statetA

scales exponentially with the number of wires in the
ray. Thus the equilibrium transition atTS is observable
only if tW ! ` beforethe thermodynamic limitsN ! `d
is taken; in the opposite order of limits, only the dynam
cal transition occurs.

We now begin a more quantitative analysis of
dynamic instability in this periodic array. Because o
focus is on the long-time behavior of this system,
expect the details of the single-spin dynamics to
irrelevant; we therefore choose to study the simplest fo
namely, that of soft spins with Langevin relaxation
dynamics. More specifically, we introduce a “potentia
V sSid ­ V0sjSj2 2 1d2, at each wire which constrain
the magnitude of each spin,jSij ø 1, and assume th
equations of motion

tb
ÙSi ­ 2

1
T

≠sH 1 V d
≠Sp

i
1 zi , (3)
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kzistdzjst0 dl ­ 2tbdst 2 t0ddij , (4)

where tb is a microscopic time scale. The dynam
ics (3) reproduces the dynamics of the overdamp
Josephson junctions with individual resistanceR if tb ­
h̄2ys2ed2RT andV0 ! `. In order to average the solutio
of (3) over the thermal noise,z , we use a generating func
tional. For example, the average supercurrent in the a
is given by

kIijl ­
Z

Iij expsAfS, ŜgD SD Ŝd . (5)

Here the currentIij ­ s2eyh̄d ImSp
i JijSj , and the action is

A ­
Z

dt

"
Ŝ

√
tb

ÙS 1
1
T

≠sH 1 V d
≠Sp

!
1 tbŜ2

1 H.c.

#
, (6)

where we have not included the terms that arise from
Jacobian since they do not affect the long-time respo
[4–6].

We perform our calculations by resumming the ter
in the H yT expansion of (5) which are leading order
1yN , this is a dynamical analog of the high-temperatu
series expansion previously used to study the st
behavior of this array [3]. The crucial ingredients of th
technique are the responsefGmnst, t0d ­ ksmstdŝnst0dlg
and the correlationfDmnst, t0d ­ ksmstdsp

nst0 dlg functions.
For T . TG, these dependonly on the time differences
and thus can be related by the fluctuation-dissipat
theorem

Gijst 2 t0 d ­ 2
≠Dijst 2 t0d

≠t
ust 2 t0 d . (7)

The leading diagrams (in1yN) for Gijst 2 t0d are dis-
played in Fig. 2(a). The presence of the “constrain
potential”V in the action (6) results in finite higher-orde
irreducible single-site spin correlations, which play t
role of interaction vertices in this diagrammatic techniq
However, the corrections to the response function sho
in Fig. 2(b) are small in1yN in comparison with those in
Fig. 2(a).

We emphasize that, as in the static case, the sin
site response is renormalized; here we consider the l
Green’s function fG̃st 2 t0dg that is irreducible with
respect to theJij lines. Possible self-energy correction
to G̃st 2 t0 d are shown in Fig. 2(c) and will be discusse
below. Summing the geometric series shown in Fig. 2
we obtain

Ĝv ­
1

G̃21
v 2 b2sJyJdG̃v

(8)

for the response function connecting wires of the sa
type (horizontal or vertical). The matrixsJyJdij depends
only on the “distance”i 2 j and acquires a simple form



VOLUME 76, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 17 JUNE 1996

io
he

ing

t

o

e

ge
e

il-
th
s-
io
g
ad

the

his
en

-
se

d

nce

ear
,
the

y,
se

ion

ng
re,
for
g
of
FIG. 2. Diagrammatic expansion for the response funct
Ĝstd; the dashed, solid, and thick (with dot) lines are t
coupling matrixJ , the single-site irreduciblefGstdg, and the
full response (correlation) functions, respectively. (a) Lead
order in 1yN. (b) Subleading order in1yN. (c) Leading
terms in the expansion for̃Gstd; the first diagram dominates a
small a.

in Fourier spacesJyJdp ­ sJ2
0 yadusap 2 jrjd; in this

representation the Green function becomes

Gvspd ­
usap 2 jpjd

G̃21
v 2 sbJ0d2G̃vya

1
usjpj 2 apd

G̃21
v

. (9)

The static limit sv ­ 0d of TG̃21
v coincides with the

locator,AsT d, discussed previously [3]; in the absence
Onsager feedback terms,G̃21

0 ­ 1. Therefore we see in
(9) that there would be a static instability atG̃21

0 ­ Gc ­
bJ0y

p
a. For Q ­ sT 2 T0dyT0 ¿

p
a, all feedback

effects are negligible. Here the time dependence ofG̃21
v

is set by a microscopic time scaletb and G̃21
b svd ­

bAsT d 2 ivtb; inserting thisG̃21
b svd into (9) we see

that the long-time behavior ofGvspd is dominated by
the first term which results in a long relaxation tim
t ­ s2yadtb , wherea ­ bsA 2 J2

0 yaAd ø 2Q. In this
regime the single-site response function is

Gstd ­
a

2tb
e2tyt , t ¿ tb . (10)

At lower temperatures,Q &
p

a, the feedback effects
become important; they modifỹG21

0 so that it approaches
Gc only asymptotically atT ! 0, and instead a first-
order transition occurs [3]. The retardation of the Onsa
terms is also crucial and significantly affects the long-tim
behavior. Qualitatively, the resulting dynamical instab
ity, described below, is due to the time dependence of
cavity field which itself is determined by single-site su
ceptibilities; the time scale associated with the relaxat
of Gstd increases continuously due to feedback throu
the Onsager terms. Formally, the latter introduce an
n

f

r

e

n
h
-

ditional frequency-dependent part of the local response

G̃v ­ G̃bsvd 1 Sv (11)

as a self-energySv such thatS0 ­ 0 since we have
chosen our normalization so thatG̃21

0 ­ bAsT d.
The on-site self-energy terms [see Fig. 2(c)] are

simplest for a ,, 1, and thus we will consider this
regime. We focus on the long-time response of t
system which is dominated by the first term in (9) wh
G̃21

0 ø Gc; its weight is proportional toa [cf. (10)].
Thus, in the limit ofa ø 1, the slowly decaying parts
of Dstd and Gstd scale witha, and the dominant self
energy contribution contains the minimal number of the
functions [Ss3d in Fig. 2(c)] and is given by

Sv ­
3
2

G2
Z

D̂2stdĜstd seivt 2 1ddt , (12)

whereD̂ and Ĝ are long-time single-site correlation an
response functions, respectively [7]. HereG is the four-
spin vertex; we neglect its transient time depende
and approximate it by its static valueG ­ 21 which is
determined by the high-temperature single-site nonlin
susceptibilityx3 ­ 21yT 3. The set of Eqs. (7), (9), (11)
and (12) are sufficient to determine the response and
correlation functions of the array.

Since we would like to detect a dynamical instabilit
we only consider the long-time behavior of the respon
function, i.e.,

Ĝstd ­ a
Z e2ivt

a 2 2sSv 1 ivtbd

µ
dv

2p

∂
. (13)

Using (12), (7), and (13) we obtain a closed form equatZ `

0
D̂stdeivtdt ­

µ
a

a

∂
2tb 1

R`

0 D̂3stdeivtdt

a 2 ivf2tb 1
R`

0 D̂3stdeivtdtg
(14)

which results in the asymptotic behavior

Ĝstd ­
2a

3atR
e2tytR , D̂std ­

2a

3a
e2tytR (15)

as can be verified by direct substitution; heretR is
the physical relaxation time which diverges asa ! ac,
whereac ­

p
2say3d3y4. Equation (14) is very similar to

that derived for density correlations in a mode-coupli
approach to the liquid-glass transition [8]; furthermo
(14) is identical to the dynamical equation obtained
the p ­ 4 (disordered) spherical model [9]. Followin
these previously discussions, we find the scaling form
the relaxation time

tR ­
2mtb

ac

µ
ac

a 2 ac

∂n

, (16)

where n ­ 1.765; here the valuem ­ 4.5 was deter-
mined numerically. We see from (16) thattR diverges
continuously atQG ­ 2s33y4y21y2da1y4 (cf. Fig. 1). At
4807
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Q ­ QG the long-time part ofDstd shown in (15) be-
comes constant,q ­

p
2say3d1y4, indicating a jump in

the Edwards-Anderson order. The resulting phase
gram is displayed in Fig. 1; we note thatTG ­ s1 1

QGdT0 occurs at a lower temperature thanTm, where the
last low-temperature metastable states disappear [3
discussed above.

The response functionGstd is a susceptibility with
respect to the field conjugate toS ­ expsifd, and thus
cannot be measured directly. However, usingGstd found
above, we can determine the ac response to a time-var
physical magnetic fieldHstd which is experimentally
accessible. We focus on the total magnetic momen
the array generated by the Josephson currents:

M ­
1
2

µ
2e
h̄c

∂
l2

X
mn

kSmJ̃mnSnl , (17)

where J̃mn ­ imnJmn if m and n are indices referring
to horizontal and vertical wires, respectively. We wou
like to determine the response in this magnetization t
time-varying field; we use the fact thatM ­ 0 for static
H to write

≠M std
≠Hst0d

­

µ
2e
h̄c

∂2

l4 Re TrJ̃ Ĝst, t0dJ̃ D̂st, t0d . (18)

In order to evaluate (18) we will need the respon
function connecting wires of different type (horizontal
vertical),

Ĝ ­ Ĵ
1

G̃22 2 b2ĴyĴ
, (19)

and of the same type [cf. (8)]. We use the Four
representation of̂JyĴ and that ofĜ and D̂ to determine
the ac response,≠M stdy≠Hst0 d, in terms of the single-
site response functionssL ­ Nld:

M std ­

µ
2e
h̄c

∂2µL2

12

∂2

N
J2

0

T
1

a2

√
1 2

J2
0

A2a

!

3
Z t

2`
Gt2t0Dt2t0 fHstd 2 Hst0 dgdt0 . (20)

We can insert the response and correlation functi
found above to determine the ac susceptibilityxv ­
≠Mvy≠Hv which leads to

xv ­ 2

µ
2e
h̄c

∂2 2N
9

µ
L2

12

∂2 J0
p

a

a
v

v 1 2iytR
, (21)

wheretR is the longest time scale of the response:

tR ø

8><>:
2tb

asQd , Q . 0 ,
2mtb

ac

µ
QG

Q2QG

∂n

, Q 2 Q ø jQG j ,
(22)

asQd ­ Q 1
p

Q2 1 2a . (23)

In Eq. (22) we see that the divergent relaxation time is
rectly observable in the physical ac magnetic respons
4808
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the array. Thev ! 0 limit of the ac susceptibility jumps
to a finite value atT ­ TG, indicating the development o
a finite superconducting stiffness at the transition. The
fore measurement of this ac response in a fabricated a
would probe its predicted glassiness.

In summary, we have presented a periodic mo
which displays “freezing” into one of an extensive nu
ber of metastable states without thermodynamic selec
Mode-coupling theory is exact for this long-range arr
and its dynamical behavior approaching the onset of b
ken ergodicity is identical to that of thep ­ 4 (disor-
dered) spherical model [9]. This glass transition atTG is
characterized by a diverging relaxation time and an
companying jump in the Edwards-Anderson order para
eter; the array’s phase diagram is displayed in Fig. 1
would be interesting to study the physical properties
this periodic model in its nonergodic regimesT , TGd; in
particular, we expect “memory” effects in the form of a
anomalous response function and “fingerprints” of the
dividual metastable states in its physical behavior. Si
any uncertainty in the position of the wires introduces r
domness in this array, it also offers the opportunity
study the crossover between glasses with spontaneo
generated and quenched disorder.
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(12) differ from those ofDstd and Gstd, respectively, by
factors of b2J yJ which do not affect the latter’s long
time behavior.

[8] W. Gotze, Z. Phys. B56, 139 (1984); E. Leutheusse
Phys. Rev. A29, 2765 (1984).

[9] A. Crisanti, H. Horner, and H.-J. Sommers, Z. Phys. B92,
257 (1993).


