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Glass Formation in a Periodic Long-Range Josephson Array
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We present an analytic study of a dynamical instability in a periodic long-range Josephson array
frustrated by a weak transverse field. This glass transition is characterized by a diverging relaxation
time and a jump in the Edwards-Anderson order parameternibigccompanied by a coinciding static
transition. [S0031-9007(96)00454-1]

PACS numbers: 74.50.+r

Glass formation in theabsenceof intrinsic disorder where J,, is the coupling matrix
is a long-standing problem. Although vitrification is <0 j)

ubiquitous, a minimalist microscopic model of this phe- J= 7t o0 (2)

nomenon remains the subject of active discussion [1,2].

Because glass formation is a dynamical transition that igyith Jix = (Jo//N) expmiajk/N) and 1 < (j,k) <

not necessarily accompanied by a static one, it lies outy, where j(k) is the index of the horizontal (vertical)

side the framework of the Landau theory. Furthermorewjres;s,, = ¢%», where theg,, are the superconducting

this glass transition leads to a low-temperature phase witghases of the N wires. Here we have introduced the flux

broken ergodicitywithoutthe selection of ainiquestate.  per unit strip,« = NHI?/¢,, where! is the internode

A successful phenomenological theory should describe thepacing and, is the flux quantum; the normalization has

“partitioning” of phase space below the transition tem-peen chosen so tha@t; does not scale withv.

perature(T) into an exponential number of metastable Because every horizontal (vertical) wire is linked to

states; specifically, it should explain how the system beevery vertical (horizontal) wire, the number of nearest

comes “stuck” atf; in one of these states that is sepa-neighbors(z) in this model isN; we can therefore study

rated from the others by barriers which scale with theit with a mean-field approach. Fdr/N < a < 1 the

system size. number of low-temperature metastable solutions is exten-
Unfortunately, a basic theory of glass formation hassive [3]. Furthermore, this degeneracy develops simul-

not yet been found. Several microscopic nonrandomaneously with the instability of the paramagnetic phase;

models have been proposed; most were studied via g this temperature, interactions do not favor a particular

mapping to disordered systems [2]. Recently, possiblgtate, and, because~ N, the barriers separating these
glassiness in the absence of disorder has been studied

in a periodic long-range Josephson array using a direct,
analytic approach [3]; furthermore, this system may be
realized experimentally. An analysis of its static behavior
indicates a first-order transition into a low-temperature
phase characterized by an extensive number of states
separated by infinite barriers. In this Letter we continue
the study of this system and show that it displays a true
dynamical instability thaprecedeghe static transition, as
expected in a glass [1].

The proposed array is a stack of two mutually per-
pendicular sets oN parallel wires with Josephson junc-
tions at each node (Fig. 1) that is placed in an external
transverse field. The classical thermodynamic variables
of this system are the superconducting phases associated :
with each wire. Here we shall assume that the Josephson : 0.1 0.2 0.3 0.4 0.5
couplings are sufficiently small so that the induced fields o
are negligible in comparison witlh/. We can therefore
describe the array by the Hamiltonian

FIG. 1. The phase diagram of the array (inset), wherendi-

cates the temperature associated with the dynamical instability
2N discussed in this Lettef’s is the speculated equilibrium tran-

H = - Zs;]m”sn , (1) sition temperature, and,, is the “superheating” temperature
mn where the low-temperature metastable states cease to exist.
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low-temperature metastable solutions are effectively infi- GGy = 27,0(t — 1185, (4)

nite. The static response displayssoft mode instability h . . o 1 | The d
but indicates a jump in the Edwards-Anderson order paw eré 7, IS a microscopic ume scale. € dynam-

rameter in the vicinity off = Jo//@ ics (3) reproduces the dynamics of the overdamped
Before presenting our quantitative treatment of the dy:]osephson Junctions with individual resistaricef 7, =

2 2 _ .
namical behavior of this array, we discuss the qualitativg /(2¢)°RT andV, — o=. In order to average the solution

picture of the glass transition that emerges from our re9f (3) over the thermal nois¢,, we use a generating func-

sults (cf. Fig. 1). AST approache§’, whereT." ~ To, tional. For example, the average supercurrent in the array

there appear a number of metastable states in additidri 9'Ven by
to the paramagnetic free-energy minimum; most likely _ A A

they are energetically unfavorable and thus do not “trap” {Lij) = | Lij exp( ALS. SIDSDS). )
the system upon cooling from high temperatures. A o —_— S
T — T¢, the paramagnetic minimum is “subdivided” in,[Oﬁ-|ere the current;; = (2¢/h)ImS; J;;S;, and the action is
an extensive number of degenerate metastable states sepa- . . 1 o(H +V) .
rated by effectively infinite barriers, and the system is dy- = | dr| S{ 7S + — aS* + 7S
namically localized into one of them. Qualitatively, in the

interval T,, > T > T there appear many local minima + H.c. |, (6)
in the vicinity of the paramagnetic state separate(irite

barriers; these barriers increase continuously and becomiéhare we have not included the terms that arise from the
infinite at7 = 7. Each of these minima is characterized j5copian since they do not affect the long-time response
by a finite “site magnetizationin; = (s;)r, where “site” [4—6].

refers to a wire. Wher' > T the_rmal fluctuations av- * \we perform our calculations by resumming the terms
erage over many states so that) = 0. AtT =T the i the 7/ /T expansion of (5) which are leading order in
system is Iocal!zed in one metastable state, and there {/N, this is a dynamical analog of the high-temperature
an associated jump d the Edwards-Anderson order paseries expansion previously used to study the static
rameter(q = 5 >;{m;)*). The low-temperature phase is pehavior of this array [3]. The crucial ingredients of this
chara_lcterlzed by/a finitg and by the/presence of a mem- technique are the respong6 ., (z, ') = (sm(1)sa(r'))]

ory, limy—. A(z,7') # 0, whereA(z,¢') is the anomalous gnd the correlationD ., (1, ') = (s ()s*(¢'))] functions.
response. We expect that@t= T the metastable states For T > Tg, these dependnly on the time differences

are degenerate, and thus there can be no thermodynamjgd thus can be related by the fluctuation-dissipation
selection. However, at lower temperatures, interactiongheorem

will probably break this degeneracy and select a subset ,
of this manifold; we then expect an — ) equilibrium Gilt — 1) = — aD;;(r — ') ot — 1) 7)
first-order transition(Ts) which should be accompanied Y at '
by a jump in the local magnetization. In order to ob-
serve this transition &fs the array must be equilibrated
on a time scaldry) longer than thaiz4) necessary to
overcome the barriers separating its metastable states;
scales exponentially with the number of wires in the ar-
ray. Thus the equilibrium transition &t is observable
only if ryy — o beforethe thermodynamic limi{N — )
is taken; in the opposite order of limits, only the dynami-
cal transition occurs.

We now begin a more quantitative analysis of the

The leading diagrams (in/N) for G;;(t — ¢') are dis-
played in Fig. 2(a). The presence of the “constraining
potential” V in the action (6) results in finite higher-order
irreducible single-site spin correlations, which play the
role of interaction vertices in this diagrammatic technique.
However, the corrections to the response function shown
in Fig. 2(b) are small in /N in comparison with those in
Fig. 2(a).

We emphasize that, as in the static case, the single-
dynamic instability in this periodic array. Because oursite response is renormalized; here we consider the local

3 . ot _ / . . . .
focus is on the long-time behavior of this system, WeGreens function[G(r — )] that is irreducible with

expect the details of the single-spin dynamics to pdespect to the/;; lines. Possible self-energy corrections

~ _ / . . . .
irrelevant; we therefore choose to study the simplest formt,O G(r — 1') are shown in Fig. 2(c) and will be discussed

namely, that of soft spins with Langevin relaxational below. Summing the geometric series shown in Fig. 2(a),
dynamics. More specifically, we introduce a “potential,” W& Obtain

V(S;) = Vo(IS|*> — 1)?, at each wire which constrains R 1

the magnitude qf each spins;| = 1, and assume the Go = G-1 — g2(JtNG, (8)
equations of motion @

for the response function connecting wires of the same
1 aH +V) + g (3) type (horizontal or vertical). The matrigtJ),; depends

b T aS; only on the “distance’’ — j and acquires a simple form
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— — ditional frequency-dependent part of the local response
Gw = Gb(w) + Ew (11)
as a self-energy2, such that>;, = 0 since we have

(a) + i ' +

1

chosen our normalization so th@f ' = BA(T).
W . \ The on-site self-energy terms [see Fig.2(c)] are the
VYT e simplest for a << 1, and thus we will consider this
® vy + @ ! regime. We focus on the long-time response of this
@ E @ system which is dominated by the first term in (9) when
e — Go ! = G,; its weight is proportional toa [cf. (10)].
e — Thus, in the limit ofa < 1, the slowly decaying parts
—— | —— | of D(t) and G(r) scale witha, and the dominant self-
= T - ) energy contribution contains the minimal number of these
© @ @ + @' @ functions £ in Fig. 2(c)] and is given by
——  —— S, = %W[ DG (e — Ddr, (12)

FIG. 2. Diagrammatic expansion for the response functiorwhereb and G are long-time single-site correlation and

G(1); the dashed, solid, and thick (with dot) lines are the f . vel is the f
coupling matrix J, the single-site irreducibléG(z)], and the response functions, respectively [7]. Hdreis the four-

full response (correlation) functions, respectively. (a) LeadingSpin vertex; we neglect its transient time dependence
order in 1/N. (b) Subleading order ini/N. (c) Leading and approximate it by its static valdé = —1 which is

terms in the expansion fa (z); the first diagram dominates at determined by the high-temperature single-site nonlinear

small . susceptibilityys = —1/73. The set of Egs. (7), (9), (11),
and (12) are sufficient to determine the response and the
correlation functions of the array.

. . ) L. .
in Fourier space/!/), = (Ji/a)0(am — |p]); in this Since we would like to detect a dynamical instability,
representation the Green function becomes we only consider the long-time behavior of the response
O(am — |pl) 0(lpl — am) function, i.e.,
Gulp) = =2 T () B
Gw (,BJO) Gw/a Gw G(t) B j Pl <dw> (13)
The static limit (w = 0) of TG_' coincides with the “) a2, +iom)\27)

locator,A(T), discussed previously [3]; in the absence of

Onsager feedback term&;' = 1. Therefore we see in Using (12), (7), and (13) we obtain a closed form equation

(9) that there would be a static instability@§ ' = G, = fw[)(t)e"“”dt _ <£> 21y + [y D3(t)el@'dr
BJo/Ja. For @ = (T — To)/To > /a, all feedback J, ala— iw[2r, + [; D3(t)eivdr]
effects are negligible. Here the time dependencé pf (14)

is set by a microscopic time scale, and G, '(w) =

BA(T) — iwTy; inserting thisG; (@) into (9) we see which results in the asymptotic behavior

that the long-time behavior ofi, (p) is dominated by R 20 . R 20,
the first term which results in a long relaxation time G@t) = Jare © “ D(r) = EV N (15)
7 = (2/a)T,, Wherea = B(A — J3/aA) = 20. In this K
regime the single-site response function is as can be verified by direct substitution; herg is
the physical relaxation time which diverges @s— a.,
G(1) = —¢/7, 1> 1, (10) Wwherea. = v2(a/3)%*. Equation (14) is very similar to
27 that derived for density correlations in a mode-coupling

At lower temperaturesp =< ./a, the feedback effects approach to the liquid-glass transition [8]; furthermore,
become important; they m()di@o_1 so that it approaches (14) is identical to the dynamical equation obtained for
G. only asymptotically atl’ — 0, and instead a first- the p = 4 (disordered) spherical model [9]. Following
order transition occurs [3]. The retardation of the Onsagethese previously discussions, we find the scaling form of
terms is also crucial and significantly affects the long-timethe relaxation time
behavior. Qualitatively, the resulting dynamical instabil- 2uts a v
ity, described below, is due to the time dependence of the TR = —(—C> , (16)
cavity field which itself is determined by single-site sus- @c \@ ™~ de
ceptibilities; the time scale associated with the relaxatiowhere v = 1.765; here the valueu = 4.5 was deter-
of G(¢) increases continuously due to feedback throughmined numerically. We see from (16) that diverges
the Onsager terms. Formally, the latter introduce an adeontinuously at®; = —(3%/4/2'/2)a'/* (cf. Fig. 1). At
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® = 0O; the long-time part ofD(z) shown in (15) be-
comes constanty = +/2(«/3)"/4, indicating a jump in
the Edwards-Anderson order.
gram is displayed in Fig. 1; we note thd; = (1 +
O¢)T, occurs at a lower temperature tha&p, where the
last low-temperature metastable states disappear [3],
discussed above.

The response functioG(z) is a susceptibility with
respect to the field conjugate = exp(i¢), and thus
cannot be measured directly. However, using) found

the array. Thav — 0 limit of the ac susceptibility jumps
to a finite value al" = T, indicating the development of

The resulting phase diaa finite superconducting stiffness at the transition. There-

fore measurement of this ac response in a fabricated array
would probe its predicted glassiness.

asln summary, we have presented a periodic model
which displays “freezing” into one of an extensive num-
ber of metastable states without thermodynamic selection.
Mode-coupling theory is exact for this long-range array,
and its dynamical behavior approaching the onset of bro-

above, we can determine the ac response to a time-varyirlgen ergodicity is identical to that of thg = 4 (disor-

physical magnetic fieldH(z) which is experimentally

dered) spherical model [9]. This glass transitiorTgtis

accessible. We focus on the total magnetic moment o€haracterized by a diverging relaxation time and an ac-

the array generated by the Josephson currents:

M= %(%)ﬂ S (S TunS).

mn

(17)

where J,., = imn_J,, if m andn are indices referring

companying jump in the Edwards-Anderson order param-
eter; the array’s phase diagram is displayed in Fig. 1. It
would be interesting to study the physical properties of
this periodic model in its nonergodic regimMieé < T;); in
particular, we expect “memory” effects in the form of an

to horizontal and vertical wires, respectively. We wouldanomalous response function and “fingerprints” of the in-
like to determine the response in this magnetization to &lividual metastable states in its physical behavior. Since

time-varying field; we use the fact th4 = 0 for static
H to write

OM(t)
OH(t')

2
<2—e> FReTrjG(1,t) DG, 1), (18)
hc

any uncertainty in the position of the wires introduces ran-
domness in this array, it also offers the opportunity to
study the crossover between glasses with spontaneously
generated and quenched disorder.

We thank D. M. Kagan for alerting us to a mistake in

In order to evaluate (18) we will need the responsehe original text. M.V.F. acknowledges partial support
function connecting wires of different type (horizontal or from the International Science Foundation, the Russian

vertical),
~ A 1
G=J———— .
G2 — B2ty
and of the same type [cf. (8)]. .
representation of tJ and that ofG and D to determine
the ac responseyM (r)/9H(t'), in terms of the single-
site response function& = NI):
_ o
A’a

2¢ \2(L*\> J§ 1
mo = (o) (55) v 7wl

X [t Glfﬂle[/[H(t) - H(ll)]dtl. (20)

(19)

We can insert the response and correlation functions

found above to determine the ac susceptibility =
oM, /oH, which leads to

R s

he) 9 \12 a o+ 2i/mp’

e (21)

wherery is the longest time scale of the response:

27'1,

a(@) 0 >0,
TR = ol 0\ (22)
N 2Zb<ogop> , 0 -0 x10g],
a(®) = 0 + V0?2 + 2a. (23)
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