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The time evolution and scattering interactions of superfluid vortex rings are studied using the Gross-
Pitaevskii model, in order to consider the maintenance and generation of vorticity in superfluid flows,
and to compare ring dynamics in Navier-Stokes and superfluids. For a single ring, we verify previous
analytic results on stability and the value of the translation velocity. When two vortex rings scatter,
we generically observe merger and subsequent breakup in cases of close approach. Depending on the
initial conditions, the final state can contain zero, two, or more final rings. [S0031-9007(96)00396-1]

PACS numbers: 67.40.Vs, 47.32.Cc, 47.37.+q
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The dynamics of the turbulent state in both superfl
ids and normal Navier-Stokes (NS) fluids appears to
pend crucially on the interactions between structures
localized vorticity–vortex filaments and rings. In th
superfluid case [1], vorticity is associated entirely w
such quantized filamentary structures, and calculations
oneered by Schwarz [2] have related the statistical pr
erties of a persistent turbulent state to the dynamics
a “soup” of vortex filaments moving under the actio
of their own mutually induced velocity and that of th
background normal fluid. In the Navier-Stokes case,
periments have identified significant vortex filamenta
structure in turbulent flows, and numerous calculatio
have studied the corresponding flow evolution [3]. In
ther situation, the study of the flow in an entire regi
must be complemented withlocal calculations which con-
sider the dynamics of two nearby segments of conc
trated vorticity. In the NS case, several authors ha
considered the question of reconnection [4], but for
perfluids rather less work has been done. In a pre
ous Letter [5] we considered the reconnection of vor
filaments, showing that in the steady-state homogene
flows considered by Schwarz [2], oppositely oriented fi
ments would always reconnect locally. Other rela
work has considered the origin and nucleation of vortic
due to interaction with walls [6].

In this Letter we consider the interaction of superflu
vortex rings. Our motivation is to understand the relatio
between vortex dynamics in normal and superfluids, b
as a matter of scientific curiosity and as a practical dev
in computations. It is known [7] that the superfluid equ
tions of motion reduce to the Euler equations of invisc
fluid dynamics outside the vortex cores, but the ext
of analogy when core-scale dynamics applies is uncl
An extensive literature exists on NS vortex ring inte
actions (see [4,8] for surveys), inviting comparison w
the superfluid case. Since the computational requirem
of superfluid calculations are somewhat simpler than
0031-9007y96y76(25)y4745(4)$10.00
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NS, to the extent that the results are similar one m
be able to obtain insight into ordinary turbulence wi
less effort.

As a microscopic description of superfluid dynamic
we adopt the Gross-Pitaevskii model [9], a nonline
Schrödinger equation for the boson wave function,

i
≠c

≠t
­ 2=2c 1 cfjcj2 2 1g . (1)

We have nondimensionalized the equation, and unit v
ues of distance and time are about an angstrom and a
cosecond, respectively. The superfluid density isjcj2 and
the flux is2 Imscp=cd. A straight-line vortex filament is
a solution of this equation of the formc1sxd ­ fsrdeiu

in cylindrical coordinates. The functionf has the lim-
its f ! 1 asr ! `, corresponding to a vortical velocity
field v ­ 2ûyr, andf ! 0 asr ! 0, corresponding to a
short distance regularization of the vortex core. An ef
cient algorithm for numerical integration of (1) in periodi
boundary conditions is a split-step spectral Euler meth
[10] which we employed previously [5]; this method a
lows us to integrate in time preserving both the norm
c and the energy. In comparing to NS calculations, w
should emphasize that there is no dissipation or vor
stretching present, and that the superfluid vortices hav
compressible core [1]. Most calculations were perform
on a CM-5, largely using a 1283 Fourier decomposition,
and we have verified the insensitivity of the results
changes in resolution or time step.

General vortex configurations are studied by evolvi
an appropriate initial condition. For one vortex ring, fo
example, at any pointx we consider the plane passin
through the point and containing the axis of the rin
The ring then intersects this plane at two pointsx6, once
in the positive and once in the negative sense, and
take csx, t ­ 0d ­ c1sx 2 x1dcp

1 sx 2 x2d. A single
vortex ring produced from this initialization translate
indefinitely along its central axis due to its self-induce
© 1996 The American Physical Society 4745
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velocity field. The core oscillates slightly in time, but th
ring is neutrally stable through many traversals of the b
Analytic calculations [11] have shown that a single vor
ring is linearly stable. Here, there is a slight subtle
due to the fact that the initial wave function is on
approximate and does not have exactly the correct ene
since the numerical algorithm is energy conserving,
discrepancy persists in time and shows up as a harm
oscillation. The initialization generates rings whose c
sizes are the same as that of a straight filament,
the stability of the resulting ring justifies this assertio
Lastly, we note that the value of the ring’s velocity is
good agreement with the analytic result of Roberts
Grant [12].

Turning to ring-ring interactions, we first consider t
mutual annihilation of two identical rings in an on-ax
n-

the
mal
3]
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FIG. 1. Symmetric annihilation of two vortex rings; (dime
sionless) times shown are 0, 20, 25, 37, 38, and 39.
4746
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head-on collision, and in Fig. 1 we plot the surfacejcj2 ­
0.3 at various times. (Other density values, or analog
surface plots of the energy density or the vorticity, yie
similar pictures. Likewise, rings of different radii or othe
box sizes display the same behavior, provided the rad
is large compared to the core size but small compare
the box size.) The initial value ofc is just the product
of the previous one-ring initial wave function and i
complex conjugate (which then has reversed veloci
with the appropriate vertical separation. As the rin
approach, their radii change only slightly until clos
approach, and the cores do not change at all until
separation is a few units. Contour plots ofjcj2 in a
vertical plane bisecting the ring show a smooth mer
of the respective isodensity curves, followed by th
gradual disappearance as annihilation proceeds. The
that substantial change in radius does not occur until
separation approaches the core size is familiar for nor
fluid vortices, and occurs in both head-on collisions [1
and when a vortex nears a wall [14]. Provided the t
cores do not overlap, this behavior can be underst
from the classical reasoning in the latter paper, but
course the dynamics differ in the late stages. Two ca
occur if two rings ofdifferent sizes approach on axis:
the ratio of radii is large, the rings simply leapfrog ea
other. If, however, the radii are comparable, one ag
sees annihilation similar to the equal-sized case, ex
that the partially overlapping rings continue to transla
during the merger stage preceding annihilation.

The more general and interesting situation is
oblique interaction of vortex rings. In Fig. 2 we sho
a semisymmetric collision of two rings—the initial axe
of the rings lie in a plane and intersect at 90±. In a
manner similar to the NS case [15–17], the rings fi
contact and merge locally by the reconnection mechan
observed in [5], then the new ring bends up under
self-induced velocity, intersects itself, splits by the sa
reconnection mechanism, and then two new rings eme
in a plane orthogonal to the plane of incidence. N
that this is a scattering process in the standard quan
mechanical sense: initially there is a “free particle” sta
containing two separated circular rings moving essenti
independently of each other, which upon close appro
form a new and nontrivial “interacting” quantum stat
which in turn decays to a different free particle sta
containing two new rings. The analogy to scattering w
first made for vortex filament interactions in cosmologic
string models in 2D [18], and then for NS filaments
3D [19], but only in the ring cases do the initial and fin
states correspond tolocalizedparticles.

We have simulated about twenty such collisions, va
ing the angle of intersection and the impact parameter,
to some extent the relative sizes of the rings. We h
not seen an obvious pattern enabling us to predict the
nal state, but in general there is a change in the num
and radius of emerging rings. For example, if the init
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FIG. 2. In-plane collision of two vortex rings at 90± incidence,
seen from the side. Times 0, 15, 25, 50, 60, and 100.

velocities intersect in plane at a slightly different ang
120±, we obtain (Fig. 3) a four-ring final state. The fin
state contains more rings because the self-induced mo
of the intermediate merged ring differs, and it happen
doubly intersect itself near its ends, rather than singly
,

on
o
n
FIG. 3. In-plane collision of two vortex rings at 120± inci-
dence, seen from above. Times 0, 25, 40, 50, 70, and 80.
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its center as in the previous case. At later tim
pairs of rings repeatedly collide, merge and break
Off-center intersections have still different intermedia
configurations, and may produce still different states.
example, a 90± intersection with a lateral displaceme
of one diameter gives three final rings. There is thus
evident restriction on the final state topology. When th
are only two rings in the final state, they emerge rough
at 90± to the incident velocity plane as in Fig. 2, for sm
enough impact parameters. At larger values, for glanc
collisions, the rings merge transiently in a local cont
region but then split and go on their way with no ultima
deflection. If the rings pass nearby without direct conta
we see only a slight temporary shape perturbation.

These calculations are somewhat restricted in
they involve a small region of space with fixed ener
and probability, which limits the possible final state
For example, while some collisions produce new r
structure, there is no net production of vorticity,
the sense that the total ring arclength has the s
value in initial and final states. This behavior follow
from the global conservations laws, combined with
requirement of a fixed core size. Realistically, dens
and energy fluctuations are possible as well, due
both thermal effects and radiation supplied from dist
regions, so that still further vorticity configurations m
arise. Thus, in a turbulent many-vortex state, multi
collisions with random initial orientations and impa
parameters are likely to generate new vorticity. Fina
many of the vortex scattering results here resemble
NS results—the shape evolution in annihilation and
initial stages of oblique collision are the same, althou
the latter calculations have not reached the stage
isolated final rings. Note that while the previous
established reconnection mechanism [5,19] makes
existence of multiring final states plausible, their detai
evolution requires multiple reconnections, some on len
scales comparable to the core size, and the num
cal calculations presented here are needed to deter
which final states actually occur. The role of quantu
mechanics in such processes is to limit possible core s
and values of circulation to specific values, and in gen
to smooth the reconnection process (compare [5] to
NS analog in [19]). However, most of the ring evolutio
simply reflects the effects of the induced velocity, and t
is the same in both cases. Superfluidz vortices may
4748
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serve as a more tractable analog of vortex dynamic
normal turbulence.
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