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Generalizing the Poynting Vector
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A very general energy conservation law derived from a Lagrangian theory of dielectric cry
is presented. It includes energy propagation from electromagnetic, spin, and acoustic waves.
linear and nonlinear waves are included as well as various polaritonic combinations. W
involving nonlocal (wave-vector–dispersive) interactions are also included. An example o
latter for which the Poynting vector is invalid, but which is correctly handled by this theory
presented. [S0031-9007(96)00459-0]

PACS numbers: 41.20.–q, 03.50.De
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The Poynting theorem has been a cornerstone of e
tromagnetic theory since its publication in 1884. Its su
cesses have been so many that its limitations have so
times been forgotten or even denied. For example
prominent textbook [1] argues for the general truth of t
Poynting vector in the formE 3 H based on its norma
component being continuous across a surface, a prop
that results when the tangential components ofE and H
are continuous across a surface. While the continuity
the normal component of the energy propagation vec
across a surface is a necessary property, that proper
not sufficient to guarantee the physical meaningfulness
a proposed energy propagation vector. Furthermore,
cent work [2] on wave-vector– (i.e., spatially) dispersi
media has shown that the continuity of tangentialH (and
also normalD) across a surface can be violated owing
a surface layer intrinsic to such media.

The limitations of the Poynting theorem are appare
from a brief review of it as it applies to dielectric medi
Maxwell’s equations can be combined to yield

E ?
≠D
≠t

1 H ?
≠B
≠t

1 = ? sE 3 Hd ­ 0 , (1)

where all quantities have their conventional meanin
This equation, however, is not in the form of a conse
vation law which must take the form of≠Uy≠t 1 = ?

S ­ 0. To obtain this form, linear constitutive relations

D ­ e0k
$

? E, B ­ m0m
$

? H , (2)

wherek
$

andm
$

are the relative dielectric and permeabili
tensors, are assumed. The well known result is

≠

≠t

µ
e0

2
E ? k

$
? E 1

m0

2
H ? m

$
? H

∂
1 = ? sE3Hd ­ 0 . (3)

If the dependence on frequencyv of k
$

and m
$

is
considered [3], then the replacementsk

$
! dsvk

$dydv

andm
$

! dsvm
$dydv appear in Eq. (3).

What is shown, and only what is shown, by the Poynti
theorem is thatE 3 H is the energy propagation vecto
whenD is related toE, andB is related toH according
to Eqs. (2). But all nonlinear relations between these fo
0031-9007y96y76(25)y4713(4)$10.00
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vectors, all wave-vector–dispersive interactions [those
which Eqs. (2) would involve space derivatives of one
more of the fields], and all interactions where magnetic
fects are induced by electric variables and vice versa
not included. For these wide categories of interactions
Poynting theorem does not apply, and soE 3 H cannot be
assumed to be the energy propagation vector and, in f
is not. While it may come as no great surprise that
Poynting theorem does not apply to nonlinear interactio
a wave-vector–dispersive interaction, optical activity, h
been known for over seventy years in 1884. For opti
activity the D vs E relation of Eq. (2) must also contai
a term involving the space derivative ofE which leads to
a linear dependence on the wave vector. Also, in rec
decades linear propagation of light at frequencies nea
exciton resonance in semiconductors has been of cons
able interest. Such propagation involves resonant seco
order wave-vector dispersion and so again the Poyn
theorem does not apply, andE 3 H is inadequate for the
energy propagation vector.

A fundamental tenet of the approach summarized h
is that questions such as energy propagation in mate
media can be definitively answered only when the m
ter is treated on as fundamental a basis as the electrom
netic fields are, that is, with equations of motion for a
long wavelength (continuum) material modes of exci
tion. Lax and the author were the first to couple Maxwel
equations to a deforming dielectric medium correctly
1971 [4] as evidenced by the deduction from that th
ory that the photoelastic effect (the lowest order intera
tion of a deformation and the electromagnetic field) h
been wrongly formulated for the 155 years of its ex
tence [5]. The initial applications of this theory consi
ered only electric dipole interactions and did not inclu
wave-vector–dispersive interactions or magnetism aris
from intrinsic spin. The formulation was published as
book [6] in 1979. Since then, magnetization and elect
quadrupolarization effects from bound charge [2,7,8] ha
been included, wave-vector–dispersive interactions [2
have been explored, and magnetism from intrinsic spin
been incorporated with the use of Grassmann (antico
muting) variables [9–11]. The generality of the prese
© 1996 The American Physical Society 4713
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formulation puts this theory in a unique position to discu
energy propagation in a crystalline dielectric medium.

The theory is Lagrangian based and begins from
point particle viewpoint with each particle endowed w
a mass, a charge, and a Grassmann 3-vector which
lates to spin. A long wavelength limit is performed in t
Lagrangian to produce a continuum theory. The the
applies to crystalline media of arbitrary structural co
plexity and can be expanded straightforwardly to arbitr
nonlinear order in the interaction of, or between, the v
ous modes of excitation—electromagnetic, acoustic, o
(both ionic and, to a certain extent, electronic), and s
The electromagnetic equations in the Maxwell-Lore
form (the form with only two electromagnetic fieldsE and
B) are obtained from two parts of the Lagrangian den
in the spatial system (positionz and timet as variables),
the field Lagrangian and interaction Lagrangian densit

LS ­
1
2

se0E2 2 B2ym0d 1 j ? A 2 qF . (4)

Here the electric and magnetic fields are related
the vector potentialA and scalar potentialF by E ;
2=F 2 ≠Ay≠t andB ; = 3 A, q is the bound charge
density, andj is the current density of bound charge a
spin of the dielectric. WhenA and F are taken as the
Lagrangian variables, the two Maxwell-Lorentz equatio

1
m0

= 3 B 2 e0
≠E
≠t

­ j , e0= ? E ­ q , (5)

result. The other two Maxwell equations are dire
consequences of the definitions of the potentials.

An energy continuity equation can be formed fro
these equations in the form

≠

≠t

µ
e0

2
E2 1

1
2m0

B2

∂
1 = ?

µ
E 3 B

m0

∂
­ 2j ? E .

(6)

This equation states that the electromagnetic field sub
tem has an energy sink that is a transfer ofj ? E energy
to the matter subsystem. One can thus expect to fin
energy continuity equation for the matter subsystem
has a source of just this magnitude.

The material equations of motion can be obtained fr
the interaction and matter Lagrangian densities in mate
coordinateX space, the latter given by

LM ­ sr0y2d s Ùxd2 1 s1y2d
X
n

mns ÙyTnd2

1 siy2d
X
a

jTa ? ÙjTa 2 r0S , (7)

wherex is the continuum center-of-mass position,yTn is a
vector internal coordinate linearly related to the optic mo
normal coordinates (T for total indicates it can have a spo
taneous value in the unperturbed state),jTa is a Grass-
mann 3-vector related to spin bysTa ­ 2siy2djTa 3

jTa (nonvanishing because of anticommutativity),S is the
stored energy per unit mass,r0 is the unperturbed mas
density, andmn is the mass density associated with t
4714
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n internal coordinate. The dynamic term proportional
the imaginary uniti is not a kinetic energy as seen fro
its form and its disappearance from the energy density
low. The stored energyS is a function of rotationally in-
variant measures (in the spatial system) ofsTa , yTn, and
x, A, where , A ; ≠y≠XA, and higher derivatives of thes
variables when the interaction considered requires th
Adopting definitions of these measures that vanish in
unperturbed state allows use of a series expansion in t
measures to a level appropriate to the interaction.

The charge and current densities are expanded
electric quadrupole and magnetic dipole order as

qsz, td ­ 2= ? P 1 ==: Q
$

, (8)

jsz, td ­
≠P
≠t

1 = 3 sP 3 Ùxd 2
≠

≠t
s= ? Q

$d

2 = 3 f= ? sQ$ 3 Ùxdg 1 = 3 M , (9)

P ; J21
X
n

qnyTn, (10)

Q
$ ; s2Jd21

X
mn

qmnyTmyTn , (11)

M ; Mc 1 Ms, (12)

Mc ; s2Jd21
X
mn

qmnyTm 3 ÙyTn , (13)

Ms ; J21
X
a

masTa. (14)

Here qn is a dipolar charge of then internal coordinate,
qmn a quadrupolar charge,ma the magnetic moment o
thea spin sublattice, andJ is the Jacobianj≠xy≠Xj.

Equations (5), (8), and (9) combine to produce t
Maxwell equations providedD andH are defined by

D ; e0E 1 P 2 = ? Q
$

, (15)

H ; Bym0 2 M 2 P 3 Ùx 1 = ? sQ$ 3 Ùxd . (16)

The material equations of motion can now be obtain
The Lagrange equation for the center-of-mass continu
after considerable manipulation can be put in the form

rẍi ­ sqE 1 j 3 Bdi 1 tE
il, l , (17)

where, i ; ≠y≠zi, r ; r0yJ, and the elastic stress tens
takes the form

tE
il ­ EiPl 1 eijk

µ
≠Qlj

≠t
1 sQlj Ùxmd, m 1 eljmMm

∂
Bk

2 2eijkQlm Ùxj, mBk 1 2QlmEi, m 2 sQlmEid, m

1 J21xl, A

µ
≠r0S

≠xi, A
2

d
dXB

≠r0S

≠xi, AB

∂
, (18)

where E ; E 1 Ùx 3 B. The Lagrange equation fo
the internal coordinateyTn, after some manipulation
becomes

mn ÿTn
i ­ qnEi 1

X
m

qmny
Tm
j Ei, j 1 eijk

X
m

qmn Ùy
Tm
j Bk

2 eikl

X
m

qmny
Tm
j Ùxk, jBl 2

≠r0S

≠yTn
i

1
d

dXA

≠r0S

≠yTn
i, A

2
d2

dXAdXB

≠r0S

≠yTn
i, AB

. (19)
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The Lagrange equation forjTa yields

ÙjTa
i ­ eijkjTa

j

µ
maBk 2

≠r0S

≠sTa
k

1
d

dXA

≠r0S

≠sTa
k, A

∂
. (20)

Interestingly, the spinsTa can also be shown to obe
Eq. (20) withjTa replaced bysTa .

An energy continuity equation of the matter subsyst
can now be formed by adding the scalar product
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J21 Ùx with Eq. (17), the scalar product ofJ21 ÙyTn with
Eq. (19) (and definern ; J21mn), and the scalar produc
of 2J21maB with Eq. (20) (withjTa replaced bysTa)
and converting the material time derivatives of the iner
response terms to spatial frame time and space derivat
After considerable rearrangements the energy contin
equation of matter has a source term that exactly can
the sink term in Eq. (6), with the final result
≠

≠t

√
r

2
Ùx2 1

X
n

rn

2
sÙyTn

i d2 1 rS 2 Ms ? B 1
e0

2
E2 1

1
2m0

B2

!
1

≠

≠zj

"√
r

2
Ùx2 1

X
n

rn

2
sÙyTn

i d2 1 rS 2 Ms ? B

!
Ùxj 2 stE

ij 1 MiBj 2 M ? Bdijd Ùxi

1 fE 3 sBym0 2 Mdgj 1

√
Ùxi, kQkj 2

≠Qji

≠t
2 sQji Ùxkd, k

!
Ei

2
xj, A

J

√
≠r0S

≠xi, BA
Ùxi, B 1

X
n

≠r0S

≠yTn
i, A

ÙyTn
i 1

X
n

≠r0S

≠yTn
i, AB

ÙyTn
i, B 2

X
n

ÙyTn
i

d
dXB

≠r0S

≠yTn
i, AB

1
X
a

≠r0S

≠sTa
i, A

ÙsTa
i

!#
­ 0 . (21)
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This is the most general statement of energy conserva
in a dielectric yet obtained. It includes energy propagat
from light waves, spin waves, optic mode waves som
what away from Brillouin zone center, various polariton
combinations of these excitations, nonlinear waves of e
of these excitations, and wave-vector–dispersive mod
cations of these various waves. It also includes mov
medium contributions to the energy propagation (for no
relativistic matter velocitiesÙx).

The energy density contains six types of terms.
order, they are the kinetic energy of the center-of-m
continuum, the kinetic energy of the internal vibratio
(optic modes), the stored energy of the bonding forces
spin (only) magnetization energy, the electric field ener
and the magnetic field energy. Note the disappeara
of the kinetic Lagrangian term involving the Grassma
variables; this shows that it is not a resident (kinet
energy.

The energy propagation vector contains seventeen ty
of terms. Many represent moving medium effectss Ùx fi

0d. The first four of those represent the transport
the parts of the energy density that are attached to
matter. The next three are the (total) magnetizatio
modified motion of stress. The next pair contain the fi
two terms in the definition ofH in a vector product
with E. Note that the remaining terms inH do not
match the multipole terms in the energy flow. Thu
the multipole terms cannot be gathered into anE 3 H
Poynting vector term. In particular, note that among t
following three quadrupole energy flow terms one ter
2≠Qy≠t ? E, is not a moving medium term and is no
a part of E 3 H. It contributes importantly to linear
optical propagation in optically active media (such
quartz) as recently shown [2]. The last five terms ar
from wave-vector–dispersive interactions. The first
needed for acoustical activity and the second for opti
activity. (In the absence of deformation,xj, AyJ ­ djA.)
n

-

h
-

-
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a
,
e

s

e
-

,

l

The next two terms have now been added to all
for second-order wave-vector dispersion in the inter
coordinates. They permit demonstrating that a solut
to the reflection and transmission problem near an exc
resonance conserves energy, a failing in previous work
this problem. The last term involving spin gradients
important in spin wave interactions.

In discussions of the Poynting vector the question
the uniqueness of a quantity appearing inside a diverge
inevitably arises. It has been shown [6] that such
quantity is unique provided (i) the divergence term
in a conservation law (no sources or sinks), (ii) t
normal component of the quantity is continuous acr
any surface (in particular, a body surface), fixed in t
spatial frame, and (iii) the quantity reduces to the kno
form of that quantity in a vacuum. While these criter
work well at the electric dipole level of expansion,
problem arises at the electric quadrupole level beca
the term in the energy flow,2sQji Ùxkd, kEi, has a spatial
derivative of a material quantity, in this caseqmn , which
becomes infinite over a zero distance when the stand
“pillbox” argument is used with the Gauss theorem a
material surface. This is not surprising since it has be
found [2] that the boundary conditions on the tangen
components ofH and the normal component ofD fail
when quadrupolarization terms are present for the sa
reason. This is a result of the inherent production
a surface layer, thin compared to a wavelength, by
wave-vector–dispersive (nonlocal) interaction to whi
the quadropolar interaction contributes. This probl
has been solved by a new wave-vector space me
[9] capable of solving problems of wave propagation
bounded media without using any boundary conditio
This method produces an alternative criterion to
above, that is, that the normal component of the fl
quantity, here the energy propagation vector, must
continuous across the surface layer, which being t
4715
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compared to a wavelength, arises naturally in the the
as surface distributions of the relevant fields.

Optical propagation at frequencies near the exci
resonance in crystals such as CdS has been a contin
problem of interest since the 1950s. Because the li
wave mixes with the mobile polarizable exciton, tw
propagating polaritonic waves result, and it was initia
believed that anadditional boundary condition (ABC)
was needed for the solution of the problem leading
it being termed the ABC problem. In the early 197
a solution of the problem was obtained without an AB
by terminating the susceptibility by a step function
the crystal surface [12–14]. The interaction, howev
is very nonlocal, involving second-order resonant wav
vector dispersion, and leads to a substantial surface la
effect. The severity of the abrupt termination assumpti
called the dielectric approximation, was only later realiz
[15] when it was found to violate energy conservation
the surface in the transmission and reflection problem.

The wave-vector space method in conjunction with t
energy conservation law, Eq. (21), resolves this ene
problem completely. Being a macroscopic approa
it cannot, however, describe the nature of the surfa
layer, the object of much work in the field. Here a
oversimplied model of the problem is presented, but it
one sufficient to illustrate the energy continuity at iss
here. Let all first-order wave-vector dispersion term
arising from the stored energy and from the magnetizat
and quadrupolarization terms be dropped. The sto
energy can be expanded as

r0S ­
X
mn

M
mn
ij y

m
i yn

j 1 Nijkly
ex
i, jyex

k, l

1 Oijkly
ex
i yex

j, kl , (22)

assuming for simplicity that the excitonic coordinate
uncoupled from the other internal coordinates. Cu
symmetry, M

mn
ij ­ Mdijdmn, Nijkl ­ Ndikdjl, Oijkl ­

Odijdkl, is also assumed. The internal motion equatio
(19) are combined with the wave equation and the wa
vector space method is applied as in [9]. For simplici
normal incidence from the vacuum is assumed. T
transmission coefficients for the two polaritonic mod
and the reflection coefficient are found to be

t1 ­ 2sn2
1 2 n2

exdysn1 2 n2dd , (23)

t2 ­ 22sn2
2 2 n2

exdysn1 2 n2dd , (24)

r ­ 2skb 1 n1n2 2 n1 2 n2dyd , (25)

d ­ kb 1 n1n2 1 n1 1 n2 , (26)

wheren1 andn2 are the refractive indices of the two po
laritonic modes,kb is the background dielectric constan
in the exciton resonance region,nex ; kexcyv, k2

ex ;
4716
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k2
Vsv2 2 V2dyV2, k2

V ; MysN 2 Od, and V2 ;
2Mymex. In terms of these quantities the wave-vecto
dispersive exciton susceptibility is given byxexsk, vd ­
xexk2

Vysk2 2 k2
exd with xex ; sqexd2y2e0M.

Continuity of the time-averagedk l normal component
of the energy propagation vector from Eq. (21) require

*
1

m0
sE 3 Bdi

+vac

norm

­

*
1

m0
sE 3 Bdi 2

≠r0S

≠yex
j, i

yex
j

2
≠r0S

≠yex
j, ki

Ùyex
j, k 1

d
dXk

≠r0S

≠yex
j, ki

Ùyex
j

+med

norm

.

(27)

Substitution of the fields into this equation leads to

1 2 r2 ­ n1t2
1 1 n2t2

2 2
n1t2

1 sn2
2 2 n2

exd
n2

1 2 n2
ex

2
n2t2

2sn2
1 2 n2

exd
n2

2 2 n2
ex

, (28)

which is satisfied by Eqs. (23)–(26). Thus, the ene
violation in previous work on this problem [15] is elim
nated. This demonstrates the correctness and import
of the new energy flow vector.
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