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Generalizing the Poynting Vector
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A very general energy conservation law derived from a Lagrangian theory of dielectric crystals
is presented. It includes energy propagation from electromagnetic, spin, and acoustic waves. Both
linear and nonlinear waves are included as well as various polaritonic combinations. Waves
involving nonlocal (wave-vector—dispersive) interactions are also included. An example of the
latter for which the Poynting vector is invalid, but which is correctly handled by this theory, is
presented. [S0031-9007(96)00459-0]

PACS numbers: 41.20.—q, 03.50.De

The Poynting theorem has been a cornerstone of elesectors, all wave-vector—dispersive interactions [those for
tromagnetic theory since its publication in 1884. Its suc-which Egs. (2) would involve space derivatives of one or
cesses have been so many that its limitations have somsore of the fields], and all interactions where magnetic ef-
times been forgotten or even denied. For example, &ects are induced by electric variables and vice versa are
prominent textbook [1] argues for the general truth of thenot included. For these wide categories of interactions the
Poynting vector in the fornE X H based on its normal Poynting theorem does not apply, and&o< H cannot be
component being continuous across a surface, a properassumed to be the energy propagation vector and, in fact,
that results when the tangential componentEcindH  is not. While it may come as no great surprise that the
are continuous across a surface. While the continuity oPoynting theorem does not apply to nonlinear interactions,
the normal component of the energy propagation vectoa wave-vector—dispersive interaction, optical activity, had
across a surface is a necessary property, that property lieen known for over seventy years in 1884. For optical
not sufficient to guarantee the physical meaningfulness ddctivity the D vs E relation of Eq. (2) must also contain
a proposed energy propagation vector. Furthermore, rex term involving the space derivative Efwhich leads to
cent work [2] on wave-vector— (i.e., spatially) dispersivea linear dependence on the wave vector. Also, in recent
media has shown that the continuity of tangenHa{and decades linear propagation of light at frequencies near an
also normalD) across a surface can be violated owing toexciton resonance in semiconductors has been of consider-
a surface layer intrinsic to such media. able interest. Such propagation involves resonant second-

The limitations of the Poynting theorem are apparenbrder wave-vector dispersion and so again the Poynting
from a brief review of it as it applies to dielectric media. theorem does not apply, altl X H is inadequate for the

Maxwell’'s equations can be combined to yield energy propagation vector.
oD 9B A fundamental tenet of the approach summarized here
E - o +H - o +V-(EXH)=0, (1) Iisthat questions such as energy propagation in material

media can be definitively answered only when the mat-
where all quantities have their conventional meaningster is treated on as fundamental a basis as the electromag-
This equation, however, is not in the form of a conser-netic fields are, that is, with equations of motion for all

vation law which must take the form ofU /ot + V - long wavelength (continuum) material modes of excita-
S = 0. To obtain this form, linear constitutive relations, tion. Lax and the author were the first to couple Maxwell's
D=ex E B = woii - H ) equations to a deforming dielectric medium correctly in

1971 [4] as evidenced by the deduction from that the-
ory that the photoelastic effect (the lowest order interac-
tion of a deformation and the electromagnetic field) had
been wrongly formulated for the 155 years of its exis-
tence [5]. The initial applications of this theory consid-
+ V- (EXH) =0. (3)  ered only electric dipole interactions and did not include
wave-vector—dispersive interactions or magnetism arising
If the dependence on frequenay of k and u is  from intrinsic spin. The formulation was published as a
considered [3], then the replacememis— d(wx)/dw  book [6] in 1979. Since then, magnetization and electric
andu — d(wu)/dw appear in Eq. (3). guadrupolarization effects from bound charge [2,7,8] have
What is shown, and only what is shown, by the Poyntingoeen included, wave-vector—dispersive interactions [2,9]
theorem is thaE X H is the energy propagation vector have been explored, and magnetism from intrinsic spin has
whenD is related toE, andB is related toH according been incorporated with the use of Grassmann (anticom-
to Egs. (2). But all nonlinear relations between these foumuting) variables [9—-11]. The generality of the present

wherek andu are the relative dielectric and permeability
tensors, are assumed. The well known result is
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formulation puts this theory in a unique position to discussv internal coordinate. The dynamic term proportional to

energy propagation in a crystalline dielectric medium.  the imaginary unit is not a kinetic energy as seen from
The theory is Lagrangian based and begins from thés form and its disappearance from the energy density be-

point particle viewpoint with each particle endowed with low. The stored energy is a function of rotationally in-

a mass, a charge, and a Grassmann 3-vector which reariant measures (in the spatial system}bf, yT”, and

lates to spin. A long wavelength limit is performed in the x 4, where 4 = 9/3dX4, and higher derivatives of these

Lagrangian to produce a continuum theory. The theorywariables when the interaction considered requires them.

applies to crystalline media of arbitrary structural com-Adopting definitions of these measures that vanish in the

plexity and can be expanded straightforwardly to arbitraryunperturbed state allows use of a series expansion in these

nonlinear order in the interaction of, or between, the vari-measures to a level appropriate to the interaction.

ous modes of excitation—electromagnetic, acoustic, optic The charge and current densities are expanded to

(both ionic and, to a certain extent, electronic), and spinelectric quadrupole and magnetic dipole order as

The electromagnetic equations in the Maxwell-Lorentz g(z,t) = =V - P + VV: O, (8)

form (the form with only two electromagnetic fiel#isand 9P 5

B) are obtained from two parts of the Lagrangian density jz,t) = — + VX P Xx)— —(V-0)

in the spatial system (positianand timer as variables), ot ot

the field Lagrangian and interaction Lagrangian densities, —VX[V-(OXX]+VXM, (9
L5 =3 (eof” — B/po) + - A - qb. (4) P=7"2qy" (10)
Here the electric and magnetic fields are related to 0= (zj)*lzquTuyTv’ (11)
the vector potentialA and scalar potentiadb by E = wv
—V® — 9A/9t andB = V X A, ¢ is the bound charge M = M® + M°, (12)
density, andj is the current density of bound charge and ¢ — —1 wr Tu « oTv
spin of the dielectric. WheA and ® are taken as the M = (@2J) ;q youXy (13)
Lagrangian variables, the two Maxwell-Lorentz equations, M =g ! Z uste. (14)
1 oE “«
—V XB - ¢ o j eV-E=¢q, (5 Hereg” is a dipolar charge of the internal coordinate,
Ho t g*’ a quadrupolar chargeu® the magnetic moment of
result. The other two Maxwell equations are directthe o spin sublattice, and is the Jacobiafix/dX]|.
consequences of the Qefinitiong of the potentials. Equations (5), (8), and (9) combine to produce the
An energy continuity equation can be formed fromMaxwell equations provide® andH are defined by
these equations in the form D=¢E+P-V-0 (15)
a 6(] 2 1 2 E X B . o . P =q .
E?E +2—,LL0B + V- % =—j-E. H=B/ugo—M—-P Xx+V-(0 Xx). (16)
(6) The material equations of motion can now be obtained.

The Lagrange equation for the center-of-mass continuum

This equation states that the electromagnetic field SUbSyﬁTter considerable manipulation can be put in the form

tem has an energy sink that is a transfetjofE energy

.o . E
to the matter subsystem. One can thus expect to find an pki = (qE + j X B)i + 15, 17)
energy continuity equation for the matter subsystem thawhere ; = 9/dz;, p = p°/J, and the elastic stress tensor
has a source of just this magnitude. takes the form
The material equations of motion can be obtained from £ _ 90y :
. X : e Nt =TEiP + €| — + (Qujxm),m + €1jmMu |By
the interaction and matter Lagrangian densities in material \ at
coordinateX space, the latter given by — 2€;jk Qin¥Xj.mBx + 20 Eim — (QunEi).m
. . 0 0
Ly = (p°/D X7 + (1/2) Y m" (") N J—lx,A<ap 2 _d dp 2) (18)
. v ’ 8x,-,A dXB 8x,-,AB ’
+(i/2) Y T - £ - pOs, (7)  where £ =E + x X B. The Lagrange equation for
a

_ _ - _ the internal coordinatey™, after some manipulation,
wherex is the continuum center-of-mass positigh” isa  becomes

vector internal coordinate linearly related to the optic mode ., .7» v v Tu veTu
. T . S = -+ R T P T mYy P B
normal coordinate<({for total indicates it can have a spon- i 4= %q Vi i G’fk%q Vi Pk
taneous value in the unperturbed statg}¢ is a Grass- 903
i a . Ta — 124 Tu. — p
mann 3-vector related to spin yf* = —(i/2)&Te X e,»kIZq yj' Xk, jBi 7
£T@ (nonvanishing because of anticommutativify)is the N ) ay;’)
stored energy per unit mass? is the unperturbed mass n d 9p°%  d Ip’% (19)
density, andm” is the mass density associated with the dXa ay}f;" dXadXp aylhg
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The Lagrange equation f@’ yields J7'x with Eq. (17), the scalar product of 'y™” with
. 9p"3 d apOE Eg. (19) (and defing” = J~!'m”), and the scalar product
gle = eijkfl-T"(,u"Bk - =+ > (20)  of —J ' u¥B with Eq. (20) (with £ replaced bysT®)
' 98k dXa as and converting the material time derivatives of the inertial
Interestingly, the spins™® can also be shown to obey response terms to spatial frame time and space derivatives.
EQ. (20) with&T* replaced by Te. After considerable rearrangements the energy continuity
An energy continuity equation of the matter subsystemequation of matter has a source term that exactly cancels
can now be formed by adding the scalar product |otthe sink term in Eq. (6), with the final result

i(%if + Z%(yf”)z +p3 — M - B+ %Ez + LB2>
v 0

ot 2
9 . Vo . .
+ (:)_|:(% X2 + Z %(yiTV)z + pE - MS . B)Xj - (l‘lb; + M,‘Bj -M - B8,~j)x,~
Zj v '
. aQ;l
+ [E X (B/mo — M)]j + | Xk Oxj — o — (Qjixi) k

xj, apE apE ) apE Vd ap' p"S .1,

axlsBA v dXB 9)’1 AB a asng l

This is the most general statement of energy conserva'tio'ﬁhe next two terms have now been added to allow
in a dielectric yet obtained. Itincludes energy propagatiorfor second-order wave-vector dispersion in the internal
from light waves, spin waves, optic mode waves someeoordinates. They permit demonstrating that a solution
what away from Brillouin zone center, various polaritonic to the reflection and transmission problem near an exciton
combinations of these excitations, nonlinear waves of eactesonance conserves energy, a failing in previous work on
of these excitations, and wave-vector—dispersive modifithis problem. The last term involving spin gradients is
cations of these various waves. It also includes movingmportant in spin wave interactions.
medium contributions to the energy propagation (for non- In discussions of the Poynting vector the question of
relativistic matter velocitiex). the uniqueness of a quantity appearing inside a divergence
The energy density contains six types of terms. Ininevitably arises. It has been shown [6] that such a
order, they are the kinetic energy of the center-of-masguantity is unique provided (i) the divergence term is
continuum, the kinetic energy of the internal vibrationsin a conservation law (no sources or sinks), (ii) the
(optic modes), the stored energy of the bonding forces, aormal component of the quantity is continuous across
spin (only) magnetization energy, the electric field energyany surface (in particular, a body surface), fixed in the
and the magnetic field energy. Note the disappearancepatial frame, and (iii) the quantity reduces to the known
of the kinetic Lagrangian term involving the Grassmannform of that quantity in a vacuum. While these criteria
variables; this shows that it is not a resident (kinetic)work well at the electric dipole level of expansion, a
energy. problem arises at the electric quadrupole level because
The energy propagation vector contains seventeen typee term in the energy flow(Q;:x) « E;, has a spatial
of terms. Many represent moving medium effetts#  derivative of a material quantity, in this cagé”, which
0). The first four of those represent the transport ofbecomes infinite over a zero distance when the standard
the parts of the energy density that are attached to thpillbox” argument is used with the Gauss theorem at a
matter. The next three are the (total) magnetizationmaterial surface. This is not surprising since it has been
modified motion of stress. The next pair contain the firstfound [2] that the boundary conditions on the tangential
two terms in the definition ofH in a vector product components ofH and the normal component @ fail
with E. Note that the remaining terms iH do not when quadrupolarization terms are present for the same
match the multipole terms in the energy flow. Thus,reason. This is a result of the inherent production of
the multipole terms cannot be gathered intolank H  a surface layer, thin compared to a wavelength, by a
Poynting vector term. In particular, note that among thewvave-vector—dispersive (nonlocal) interaction to which
following three quadrupole energy flow terms one termthe quadropolar interaction contributes. This problem
—dQ/ar - E, is not a moving medium term and is not has been solved by a new wave-vector space method
a part of E X H. It contributes importantly to linear [9] capable of solving problems of wave propagation in
optical propagation in optically active media (such asbounded media without using any boundary conditions.
quartz) as recently shown [2]. The last five terms ariseThis method produces an alternative criterion to (ii)
from wave-vector—dispersive interactions. The first isabove, that is, that the normal component of the flow
needed for acoustical activity and the second for opticafjuantity, here the energy propagation vector, must be
activity. (In the absence of deformation; 4/J = 8;4.)  continuous across the surface layer, which being thin
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compared to a wavelength, arises naturally in the theoryd (w? — Q2)/Q2, k = M/(N — 0), and Q2 =

as surface distributions of the relevant fields. 2M /m®. In terms of these quantities the wave-vector—
Optical propagation at frequencies near the excitordispersive exciton susceptibility is given yf*(k, w) =

resonance in crystals such as CdS has been a continuing, k3, /(k2 — k2) With yex = (¢°)2/2€0M.

problem of interest since the 1950s. Because the light Continuity of the time-averagetl normal component

wave mixes with the mobile polarizable exciton, two of the energy propagation vector from Eq. (21) requires

propagating polaritonic waves result, and it was initially

believed that anadditional boundary condition (ABC)

was needed for the solution of the problem leading to <

1 vac 1 a 0
—(EXB),-> =<—<E><B)i— P2 o
Ho

it being termed the ABC problem. In the early 1970s Ko norm meday?i ’

a solution of the problem was obtained without an ABC _ap'3s cex d 9p°%

by terminating the susceptibility by a step function at ay;?”‘k,. Yik dX; ay;?”‘kl. i omm

the crystal surface [12—14]. The interaction, however, (27)

is very nonlocal, involving second-order resonant wave-

vector dispersion, and leads to a substantial surface layef,,pyitytion of the fields into this equation leads to
effect. The severity of the abrupt termination assumption,
called the dielectric approximation, was only later realized

[15] when it was found to violate energy conservation at | 2 2 2 miti(ny — ne
. . . —ro=nty tnpt; - ———————
the surface in the transmission and reflection problem. ni — n2
The wave-vector space method in conjunction with the 2002 _ 2
: . mty(ni — ng)
energy conservation law, Eq. (21), resolves this energy I (28)
problem completely. Being a macroscopic approach, ny = M

it cannot, however, describe the nature of the surface

layer, the object of much work in the field. Here anwhich is satisfied by Egs. (23)—(26). Thus, the energy
oversimplied model of the problem is presented, but it isviolation in previous work on this problem [15] is elimi-
one sufficient to illustrate the energy continuity at issuenated. This demonstrates the correctness and importance
here. Let all first-order wave-vector dispersion termsof the new energy flow vector.
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