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First-Order Symmetric Hyperbolic Einstein Equations with Arbitrary Fixed Gauge
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We find a one-parameter family of variables which recasBthe 1 Einstein equations into first-order
symmetric hyperbolic form for any fixed choice of gauge. Hyperbolicity considerations lead us to a
redefinition of the lapse in terms of an arbitrary factor times a power of the determinant of the 3-metric;
under certain assumptions, the exponent can be chosen arbitrarily, but positive, with no implication of
gauge fixing. [S0031-9007(96)00413-9]

PACS numbers: 04.20.Ex

The issue of setting up a well-posed initial-value admits a symmetric hyperbolic formulation for arbitrary
formulation for general relativity has been studied withfixed gauge [4,5]. Here we extend the existing results by
the help of varied strategies, including special gaugeshowing that, under certain assumptions, there is a one-
and higher-order formulations [1]. Recently, a renewecbarameter family of new first-order variables for general
interest [2] in the problem has arisen, in connection withrelativity which satisfies first-order hyperbolic evolution
the numerical evolution of the Einstein equations awayfor arbitrary but fixed choice of gauge.
from an initial hypersurface. Although the relevance Several concepts of hyperbolicity (e.g., strict, strong)
of a manifestly hyperbolic formulation to the numerical can assert the well posedness of a system of partial differ-
integration of the Einstein equations is not yet clear, it isential equations (PDE’s). Among all different concepts,
believed that a code tailored in a hyperbolic formulationsymmetric hyperbolicity is especially appealing, for the
would share properties of the exact system; namely, iteason that most interesting physical systems admit a for-
would guarantee uniqueness and stability of solutionsnulation of this type [6]. Symmetric hyperbolicity is
evolved from proper initial data. However, technical based on the symmetry properties of the differential op-
issues, associated with the discretization of the equatiorerator [7]; therefore, multiple eigenvalues, which usually
and the precision of the approximation, which mayoccur due to the presence of symmetries, play no role, as
concern numerical stability, are not necessarily ruled oubpposed to the case of other types of hyperbolicity. The
by a pure theoretical hyperbolic development. reason for the well posedness in the symmetric-hyperbolic

In regards to the manifest hyperbolicity of the Einsteincase is that the energy norm (an integral expression in
equations, the relevance of gauge choices has long beéerms of the fields) at later times can still be seen to be
a question open to consideration. The gauge freedorounded by the norm at the initial time, because of can-
of 3 + 1 general relativity is embodied by the lapse cellation of terms under integration by parts. The symme-
function and shift vector, which are completely arbitrarytry of the differential operator in the evolution equations
since their evolution is not determined by the theory. Inguarantees the cancellation.
general, a theory expressed in terms of equations on fields In the following, we set up the problem of general
which admit gauge freedom may not admit a well-posedelativity in the3 + 1 formulation due to Arnowitt, Deser,
formulation unless improper gauge choices are ruled ouand Misner (ADM) in a noncanonical (though widely
or the true gauge-invariant variables of the theory araised) choice of variables, i.e., the intrinsic metric and
found. A typical example is Maxwell's theory; on the one the extrinsic curvature of the spatial hypersurfaces. We
hand, it admits a hyperbolic formulation at fixed gaugethen redefine the variables in order to reduce the system
and in terms of gauge-invariant variables as well; on theo first order; the redefined variables depend on a set of
other hand, anomalous gauges can be found for which thearameters to be fixed by hyperbolicity considerations.
resulting system does not have a well-posed initial-valud-inally, we use the argument of the cancellation of terms
formulation. under integration by parts in the energy norm to determine

Our intention is to give an explicit argument to rewrite the parameters. In the process, we find that the lapse
the 3 + 1 Einstein equations into a manifestly well- function must be redefined in terms of the determinant
posed form, without the need of resorting to a choice ofof the 3—metric, without any loss of gauge freedom.
gauge. It has certainly been known that general relativity In order to fix notation, we summarize some necessary
in special gauges can be set in symmetric hyperbolipoints of the3 + 1 formulation. The3 + 1 splitting
form [3]. Furthermore, it has recently been shown thatof the fully four-dimensional formalism consists of a
for certain special first-order variables, general relativityspacelike foliation by the level surfaces of a function
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t(x?). The unit normal form is:, = —NV,t, whereN  spatial derivative of the densitized 3-metrigf"/, =
is the lapse function. The unit normal vector is given by%ha(h—ahlii),k, wherer is the determinant of;;. Equa-
n = %(l“ — N%), where N? is the shift vector. The tions (5) and (6) can be inverted into

metric g¢* induces a 3-metric on the spatial surfaces, i = o pii a_ i 7
by h® = g% + nub. In a coordinate systerfx?,x’}, k= <M T 3a 11 Mk>’ (7)
i = 1,2,3, adapted to the surfaces (such that x°), the 5

induced metri:*> reduces td:/. The extrinsic curvature KV = pi — ——pip, (8)
of the 3-surfaces is defined "> = %£,,h“b, and is also 3B + 1

a 3-tensor. with the notationM = h;;M".

The equations for the evolution of the intrinsic con- A third parameter,y, is introduced in the evolution
travariant metrich’/ can be taken as (from [8], with the equations to allow for a combination of (1) and (2) with
notation of Chap. 10 and App. E of [9]) the constraints (3) and (4). In this way, the principal

i ij _ mini — pini part of the evolution equations (1) and (2) can be
h VK DN DN, @ modified. The constraints (3) and (4) will be assumed
to be conserved by the resulting equations. Sipqeays
- 3 o a crucial role in the hyperbolicity of the system, in the
— k(SY — %h”(S - p))] — D'D'N following we point out its exact place in the evolution
k ij _ ik i _ ok i equations.
, + NEDKY = K DkNJ, K7 DiN'. _(2) The evolution equation foM/, can be obtained by,
The notation(-) stands for£;. or simply a/at. Indices  first, taking a space derivativie/9x* of Eq. (1), and then
i,j.k,... are raised and lowered with the 3-meth¢;  {acing and combining the resultant equation according
the operatoD; is the covariant derivative with respect to tg the definition (5). We also add the vector constraint

the 3-metrich;; [9]. For any 3-tenso/”, the notation i with an appropriate—uniquely determined—factor,
U stands for its trace with respect to the 3-metric:gptaining the following:

K'Y = N[RY — 2K* K/, + KVK

U = U*.. The matter tensos”/ is the projection of i Lootif i i \prs

: . ; e = 5((hY) 5 + Thys + h"
the four-dimensional stress-energy tengo¥ into the M7y = 5((h )’k” a(_h hrs + 1 z”)_h ok
spatial hypersurfaces, apdis the projection o “® in the + ahVhyg(hy) ;) — N8 CP. 9

direction normal to the surfaces. The results derived inf Eq. (1) is used in the right-hand side of (9) to eliminate
this Letter do not depend strongly on the particular mattetime derivatives in favor of space derivatives of the new
source, but hold for any sources that admit a first-ordefields, the right-hand side becomes a combination of the

symmetric hyperbolic formulation on their own. fields h'/, M, P, lapse, shift, and sources; first-space
Equations (1) and (2) for the field§:/,K") are derivatives of M/,, P, lapse, and shift; and second-
supplemented by the constraints space derivatives of the shift. This equation is shown
C = %(R + K? — KijK"7) — kp =0, (3)  explicitly below [Eq. (17)], correct to principal terms.
. . . 4 The evolution equation faP"/ is obtained directly from
C'=D;K" - D'K — «xJ' =0, (4)  Eq. (2), by the appropriate combination with its trace, as

whereJ7 is the mixed projection of®® onto the hyper- prescribed by the definition (6). We also add the scalar

; constraintC with a suitable factor:
surface and the normal. If and C' can be shown to TR ” i s iy ors
be conserved as a consequence of (1) and (2), then the PY =K + BYK + hhy K™ + hYhyK™)
constraints need only to be imposed on an initial hyper- + 2Nyh'C . (10)

surface. This will be our point of view in the following. \yhen Egs. (1) and (2) are substituted appropriately in

Introdgction of the parametersT.In order.to show that_ (10), the right-hand side becomes a combination of the
there exists a one-parameter family of variables for whlcr}iems Wi, MU, PU, lapse, shift, and sources; first-

general relativity takes a first-order symmetric hyperbolicSloace derivatives oMMi/,, P, lapse, and shift; and

form, we first introduce a set of four parametess, 5, second-space derivatives of lapse. This equation is shown
v, ande; we eventually require the parameters to satisfyeyplicitly below [Eq. (16)], correct to principal terms.
a set of three algebraic conditions that guarantee the The fourth parameter, is introduced in order to

hyperbolicity. , _ redefine the lapsa by
Two parametersg and 8, are used to redefine vari- N = h—(3a+1)5/2Q (11)

ables as follows: ] ] ) ]
for an arbitrary functionQ. The lapse is thus redefined

ij = Lepij ij rs
M7 =30+ ahhesh” i) (5)  without loss of generality; the gauge freedom is trans-
. . . ferred toQ, and the parameterremains to be specified.
PY = K" + Bh'K. (6)  Notice that
The definition (5) reduces the Einstein equations to Ny
first order. Note that the variabl&//, represents the N eM + (INQ) . (12)
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Since second derivatives of the lapse appear in (10), thihe principal terms can be eliminated under integration by
redefinition allows for a modification of the principal parts, then the system becomes hyperbolic.

terms in (10). In the following we write the principal terms of the
Hyperbolicity imposed on the systemWe define the evolution equations and find the conditions that are
“energy norm” of the system at timeas necessary to symmetrize the system.
1 y i i X The Ricci tensorR;; is needed in terms of the new
B0 =7 jzh]hij T PTPy o MUMiE (13 felgs, Recall '
where the integration is performed on the surfate ' . & i kol
defined byr = const. The spatial symmetry of the system Rij = Tije = Ui + Tyl — TyiT s
is guaranteed if the principal terms in the time derivative L | | |
of the energy [10] can be combined into total divergenceswith I'j; = —zhyh* ; — 3hyh* i + h¥ hiphjh™ ;. In

since in this case their contribution to the energy estimateterms ofM/, the connectiorff‘j takes the form
would vanish.

The j[ime derivative of the energy, correct to principal rk = — Zhl(iMklj) + hklhirh,'sM”z + 2a 5(kiMj)
terms, is J : : Ja + 1
: = AT pijp. . YUY a
E([) [zh l’ll] + P Plj + M le] . (14) _ P hijhklMl ) (15)

The evolution equations (1), (9), and (10) can be used
to trade time derivatives for space derivatives in (14). | IfThe principal part of (10) is then

y N o 20 +1 ., . 2 +1) — y y
PU = NP, + N<hklM”k1 oty + 2L iy, 2BO D @y, 2,8h”Mklkl>
’ ’ ’ 3 + 1 ’ 3 + 1 ’ ’
oo y y +1
— W RNy — BTN + 2Nyh'-/<—M’<’k,, + 3“—+1h“Mk,,>. (16)
o
The principal terms of (9) are the following: | with the assumptions tha® > 0, that 4/ is positive
i g ij a— B definite, that the algebraic conditions (18) are met by the
M = NM7y + N\ PPy + 38 + 1 h™ P four parameters, B, y, ande, and that the constraints

' 1 . andC' are conserved, the field&”/, M/, Pl/) satisfy a
—2N&U P, + 2N'8—+ s\ n'p,. (17) symmetric hyperbolic system of PDE’s, namely Egs. (1),

3B + 1 9), and (10), with the initial dat trained by (3), (4
In view of (16) and (17), the cancellation under (an)(’i?g).( ), wi € initial data constrained by (3), (4),

integration by parts in (14) takes place if the following — Ngrice that the conditions (18) leave free one of the
algebraic conditions are imposed on the parametei8, o parameters. Any one of the parameters can be chosen

v, ande: freely, within a real range that allows for real values for
2a+1 e =0, (18a) the remaining three parameters as solutions of (18). For
3a + 1 instance, ifa is considered as the free parameter, then

B +1 can take values ifi—«, —1/2), while 8 must be chosen
38 + 1 +B+vy=0, (180) asaroot of the following quadratic equation:

2(B+y)(a+1)—a_a—ﬁ_ﬁ6:0 (180) 3,32+2B+(3a+1)(oz+1)+1:0_ (19)

3a + 1 38 + 1 ' Qa +1)

Condition (18a) has the effect of the cancellation of A most interesting choice of variables #/ = K/ —

the fourth and seventh terms in (16), even before their/ K (proportional to the canonical ADM momentum), or
contribution to the energy is considered. This is done in3 = —1. This choice ofg, in turn, fixesy =1, a =

this way, because the fourth term in (16) has no symmetrie-1, and e = 1/2. The redefinition of lapse becomes
counterpart in (17) with respect to its contribution to N = Q+/h, and the number of terms in the principal parts
the energy, and, therefore, needs to be eliminated frorim Eqgs. (16) and (17) reduces considerably. Regarding
the system. Condition (18b) guarantees the cancellationhe propagation of the constraints, for= 1 it can be
under integration by parts, of the sixth and ninth termsshown that the Bianchi equations imply a homogeneous
in (16), together with their symmetric counterpart, i.e.,symmetric hyperbolic evolution system f@ and C'.

the fifth term in (17). Lastly, condition (18c) guaranteesit follows that the constraints are conserved. This case
the symmetry of the fifth, eighth, and tenth terms in (16)was explored earlier by the authors, and has been found
with the third term in (17), which subsequently make nosuitable for the development of a smooth Newtonian limit
contribution toE. [4] if certain gauge choices are imposed in addition to the
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well-posed formulation. Most remarkably, for # 1 the investigated as of now). Aside from that, we find it very
evolution of the constraints is not symmetric hyperbolicappealing for its remarkable simplicity and clarity.
nor strictly hyperbolic, and the validity of the assumption It is our pleasure to thank H. Friedrich for valu-
of the conservation of the constraints must be studie@ble suggestions and criticisms. O.A. Reula acknowl-
carefully. The details will soon appear elsewhere. edges support from CONICOR and SECYT (Argentina).

Equation (18a) shows that the exponent\df in the  S. Frittelli acknowledges partial support from NSF.
redefinition of the lapse (11) is equal+d2a + 1), being
thus any positive real number, but never zero. Thus, it is
not possible to have a set of variables of the form (5) and
(6) with symmetric hyperbolic evolution without relating
the true laps&v to the 3-metric.

The system (1), (9), and (10) has a nontrivial set
of characteristics [11]. Using the notatidn = (v, ¢&;)
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