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Generalized Nonextensive Thermodynamics Applied to the Cosmic Background Radiation
in a Robertson-Walker Universe
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Statistical mechanics is useful to introduce generalizations of standard thermodynamics through the
generalization of the entropy and other state functions. Along these lines the Tsallis nonextensive
and the Bergmann group symmetric generalizations have proven to be very useful. We combine
both formalisms to describe the nonextensive thermostatistics in a relativistic setting. We obtain the
generalized forms of the first and second laws of thermodynamics for reversible processes, and apply
the resulting theory to the cosmic blackbody radiation in a Robertson-Walker model of the Universe.
We show that the temperature of the cosmic blackbody radiation varies as the inverse of the scale factor
of the Universe, and is independent of the degree of nonextensivity. [S0031-9007(96)00423-1]

PACS numbers: 05.70.—a, 05.20.-y, 95.30.Tg, 98.70.Vc

The thermodynamics of a general system is contained in Let p = (py, p2,...), With p, = 0 and Y p, = 1, be
the knowledge of two state functions of its thermodynam-a discrete probability distribution characterizing the state
ics parameters. Usually, we are satisfied with the internabf a physical system (in a quantum mechanical vergion
energy and the entropy of the system. The other state funds the density operator). From now on we shall use the
tions, which are useful in determining the equilibrium statedensity operator formalism for simplicity in the notation,
of a system that is not isolated, are obtained as Legendiand take the Boltzmann constant equal to 1. Consider the

transformations involving those initial functions. g-entropy functional [11]
Many methods have been used to derive the internal .
energy and entropy of a system. Among them we find Sglpl =11 — tr(pD](g — D7, 1)

experimental and theoretical procedures, and within thi%/vhere is a positive real number. We verify that
last group we can mention kinetic theory or, more gener- 9 P '

. . : . . limy—; S,[p] = —tr(plnp).
ally speaking, statistical mechanics and information the We shall say that a system with givepexpectation

ory. In particular, the statistical mechanics approach is i N

very useful when we wish to introduce generalizations of/@u€sUs (j may represent a set of tensorial indices) for a
the standard thermodynamics (thermostatistics) throught Of observableg’” is in thermodynamic equilibrium if
the generalization of the entropy and other basic statiiS density operator maximizes the value of thentropy
functions. Along these lines the group symmetric [1—functional under the subsidiary conditions

3] and the nonextensive generalizations [4] have proven ; ;

tc! be useful. Indeed, ongone hand, the[g]roup sypmmet- tr(p) = 1, w(p?U’) = Uy. (2)

ric approach has provided an interesting insight into therherefore, by using the method of Lagrange multipliers,

formulation of relativistic thermodynamics and its appli- we find thatp is an extremal for the functiona,[ p],
cation to systems for which a unique rest frame does nafonsistent with conditions (2) if and only if

exist [3]. On the other hand, the nonextensive statisti-
cal approach has been successful in the context of the ( 7 q Z ,8.,-U§'>p;11 + vy =0, 3
Lévy-like anomalous diffusion [5], of the solar neutrino — 4 J
problem [6], of electron plasma two-dimensional turbu'whereﬁ- and y are Lagrange multipliers. Equation (3)
lence [7], and of optimization techniques [8]. gives / '

In this Letter we wish to show that it is possible 1/(1—¢)
to combine both generalizations to obtain a simple and ps = qu[l - (1 - ‘I)Z B;‘U{:| . @

J

elegant formalism, including the generalized forms of the

first and second laws of thermodynamics, which may.

be applied, for instance, to describe the nonextensivé ag)
thermodynamics of the cosmic blackbody radiation [9,10], . 1

starting from the description of a single pencil of radiation Zy(Bjz M) = tr|:1 - (- ‘1)2 'B.fU]:| )

for which aunique rest frame does not exidVe treat this !

particular example, for a class of cosmological models ofvith A representing a possible set of external parameters
the Universe, at the end of our Letter. entering the definition of the operatats. Intheqg — 1

he g-partition function,Z,, is given by the expression
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limit we recover the standard expression of the partition 08, = Z ﬁj(ﬁQU«;. (12)
function of a canonical ensemble. J
To satisfy the conditions (2) we have to use (5) an

formally compute the values g, from dExpressmns (11) and (12) are then the generalized forms

of the first and second laws of thermodynamics, for

; o (z4 % -1 reversible processes, as obtained in the framework of
UA = - | —-—
q a,Bj

The reason to add the constantl /(1 — ¢)] will become
clear in what follows.

The value of theq entropy for a system in thermal
equilibrium, from (1) and (4), is

(6)  a nonextensive thermostatistics and invariant under the
symmetry group ofp given by (4). We obtain a
relativistic generalization in the particular case in which
the symmetry group is the Lorentz group or a general
coordinate transformation. All the quantities are to be
considered at a particular spacetime point.
=g - Let us return now to the cosmic blackbody radiation.
0 (Zg 1 AR We isolate, at a given spacetime point, a pencil of elec-
B\ 1 —¢q 1 —¢g /)’ tromagnetic radiation (a light beam), characterized by a
frequency and direction of propagation. All this informa-
(7) tion is contained in a null vectdr (k - k = 0). In alocal
where we have indicated the “natural” independent variframe of reference we writé = {k*}. The correspond-
ables on which the entropy depends. According to (6) ing four-momentum operator jg*(A) = 7ik*(A)n, where
and (7),S, is the Legendre transform in the variablgs N is the number operator whose eigenvalues are non-

I —¢q

SU ) == B
J

of the state function negative integers. The set of operat@i§(A) are given
Zl-4 _ | by p#(A). The external parameters are the frequency
- = Z ngpg(lgj;)l)_ (8)  and direction of propagation of the light beam. They may
1 —¢q k be identified with the wave vectdr. Let us now suppose

) ) that we are in a region of space that is filled with radi-
The functionsF; generalize the free energy of the system ation. A straightforward generalization, for any value of
and for the limitg — 1 we recover) ,Bka = —InZ,.  q, of the results obtained by Hamity [3] will show that if
From (7) we immediately get the radiation is in thermal equilibrium we can choose the
s different world vectorsg,,, of the various pencils of radi-
Bj = —’i.. (9) ation passing through the point, to have the same value.
aUq On the other hand, from the requirement of having
We notice from (4) that the invariance of, with finite and positive definite for all values &f and consid-
respect to a homogeneous linear transformation thadring the expression for the generalized Planck law [9],
leads from the setU’ to a setU’ implies that8;  we have that3, must be timelike and pointing towards
transforms contragradiently t&//. We shall refer to the future; i.e., there exists a (local) frame of reference
the parameterg; as thegeneralized temperaturef the  in which 8, will only have the time component differ-
system. We shall apply the present formalism to discusgnt from zero: B. = (8,0,0,0). The parameteg may
the cosmic blackbody radiation in a relativistic model ofpe identified with ¥T, whereT is the absolute tempera-
the Univer_se_ within the framework of the nonextensiveture assigned to the radiation. In order to compytend
thermostatistics. _ S, we need the generalized partition functi@p(B,,., k).
Let us present first the extended forms of the first andrne calculation ofr, in the limit B(1 — g) — 0 and the

second laws of thermodynamics. The generalized conceghmparison of the results with the Boltzmann-Gibbs sta-

of performance of work on the system is related to thg;giics are given by Tsallis, Sa Barreto, and Loh [9] (see
change in theg-expectation value of the observables  5i5o Plastino. Plastino. and Vucetich [10]).

when the parameters change. We obtain in this way  \ye wish to end our discussion with a brief comment

what is called the adiabatic change [2], on the thermal history of the cosmic blackbody radiation
_ BYedi in a relativistic model of the Universe. We notice _that
8.aU) = tr<p‘17 W)CM' (10)  the generalized partition function depends Bp and k

through the quantity3,k*. Consider any homogeneous
The generalized “transfer of heat” is then introducedisotropic model of the Universe (a Robertson-Walker
through the difference between the total change ofgghe model) [12] and the isotropic observers with world

expectation value of// and (10), velocity u, at “rest” with respect to the cosmic blackbody
radiation. Then, in a frame of reference definedupye
SoUl = 8U] — 8,4U3 . (11) have
ut
From (7), (6), and (4), we immediately find that Br = T (13)

4665



VOLUME 76, NUMBER 25 PHYSICAL REVIEW LETTERS 17JNE 1996

Sincek is a null vector, we have different epochs. Of course, the blackbody spectrum de-
k- & pends on the parametgr and it has been approximately

k-u= —(—1/2, (14) calculated by Tsallis, Sa Barreto, and Loh [9]. We hope

£ 9 the present considerations enlighten the physical interpre-

where ¢ is a Killing vector field which points in the tation of experimental data such as those obtained with the
direction of the propagation ok into the spacelike COBE (Cosmic Background Explorer), and will stimulate

hypersurface of homogeneity [12]. The lengthéofaries ~ further experiments and analysis.
from point to point in the spacetime and is proportional to  This work has been supported by a grant from the

12 C. Tsallis for useful comments and references on the
(€ & _ aln) (15)  applications of the nonextensive statistical approach.

-8, alm)
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