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Generalized Nonextensive Thermodynamics Applied to the Cosmic Background Radiatio
in a Robertson-Walker Universe
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(Received 21 March 1996)

Statistical mechanics is useful to introduce generalizations of standard thermodynamics through the
generalization of the entropy and other state functions. Along these lines the Tsallis nonextensive
and the Bergmann group symmetric generalizations have proven to be very useful. We combine
both formalisms to describe the nonextensive thermostatistics in a relativistic setting. We obtain the
generalized forms of the first and second laws of thermodynamics for reversible processes, and apply
the resulting theory to the cosmic blackbody radiation in a Robertson-Walker model of the Universe.
We show that the temperature of the cosmic blackbody radiation varies as the inverse of the scale factor
of the Universe, and is independent of the degree of nonextensivity. [S0031-9007(96)00423-1]

PACS numbers: 05.70.–a, 05.20.–y, 95.30.Tg, 98.70.Vc
d
m
na

un
te

nd

rna
nd

thi
er
he

i
o

ug
tat
1–
ve
e

th
li-
no
sti
th
o
u-

le
n
he
ay
iv
0]
on

o

te

the
n,
the

t

r a

rs,

)

ters
The thermodynamics of a general system is containe
the knowledge of two state functions of its thermodyna
ics parameters. Usually, we are satisfied with the inter
energy and the entropy of the system. The other state f
tions, which are useful in determining the equilibrium sta
of a system that is not isolated, are obtained as Lege
transformations involving those initial functions.

Many methods have been used to derive the inte
energy and entropy of a system. Among them we fi
experimental and theoretical procedures, and within
last group we can mention kinetic theory or, more gen
ally speaking, statistical mechanics and information t
ory. In particular, the statistical mechanics approach
very useful when we wish to introduce generalizations
the standard thermodynamics (thermostatistics) thro
the generalization of the entropy and other basic s
functions. Along these lines the group symmetric [
3] and the nonextensive generalizations [4] have pro
to be useful. Indeed, on one hand, the group symm
ric approach has provided an interesting insight into
formulation of relativistic thermodynamics and its app
cation to systems for which a unique rest frame does
exist [3]. On the other hand, the nonextensive stati
cal approach has been successful in the context of
Lévy-like anomalous diffusion [5], of the solar neutrin
problem [6], of electron plasma two-dimensional turb
lence [7], and of optimization techniques [8].

In this Letter we wish to show that it is possib
to combine both generalizations to obtain a simple a
elegant formalism, including the generalized forms of t
first and second laws of thermodynamics, which m
be applied, for instance, to describe the nonextens
thermodynamics of the cosmic blackbody radiation [9,1
starting from the description of a single pencil of radiati
for which aunique rest frame does not exist.We treat this
particular example, for a class of cosmological models
the Universe, at the end of our Letter.
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Let r ; sr1, r2, . . .d, with rs $ 0 and
P

rs  1, be
a discrete probability distribution characterizing the sta
of a physical system (in a quantum mechanical versionr

is the density operator). From now on we shall use
density operator formalism for simplicity in the notatio
and take the Boltzmann constant equal to 1. Consider
q-entropy functional [11]

Sqfrg  f1 2 trsrqdg sq 2 1d21, (1)

where q is a positive real number. We verify tha
limq!1 Sqfrg  2trsrlnrd.

We shall say that a system with givenq-expectation
valuesU

j
q ( j may represent a set of tensorial indices) fo

set of observablesUj is in thermodynamic equilibrium if
its density operator maximizes the value of theq-entropy
functional under the subsidiary conditions

trsrd  1, trsrqUjd  Uj
q . (2)

Therefore, by using the method of Lagrange multiplie
we find thatr is an extremal for the functionalSqfrg,
consistent with conditions (2) if and only if√

q
1 2 q

1 q
X

j

bjUj
s

!
rq21

s 1 g  0 , (3)

wherebj and g are Lagrange multipliers. Equation (3
gives

rs  Z21
q

"
1 2 s1 2 qd

X
j

bjUj
s

#1ys12qd

. (4)

Theq-partition function,Zq, is given by the expression

Zqsbj; ld  tr

"
1 2 s1 2 qd

X
j

bjUj

#1ys12qd

, (5)

with l representing a possible set of external parame
entering the definition of the operatorsUj. In theq ! 1
© 1996 The American Physical Society
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limit we recover the standard expression of the partit
function of a canonical ensemble.

To satisfy the conditions (2) we have to use (5) a
formally compute the values ofbj from

Uj
q  2

≠

≠bj

√
Z

12q
q 2 1
1 2 q

!
. (6)

The reason to add the constantf21ys1 2 qdg will become
clear in what follows.

The value of theq entropy for a system in therma
equilibrium, from (1) and (4), is

SqsUj
q; ld  2

X
j

bj
≠

≠bj

√
Z

12q
q 2 1
1 2 q

!
1

√
Z12q 2 1

1 2 q

!
,

(7)

where we have indicated the “natural” independent va
ables on which theq entropy depends. According to (6
and (7),Sq is the Legendre transform in the variablesbj

of the state function

2
Z12q 2 1

1 2 q
;

X
k

bkFk
q sbj; ld . (8)

The functionsFk
q generalize the free energy of the syste

and for the limitq ! 1 we recover
P

k bkFk
1  2lnZ1.

From (7) we immediately get

bj 
≠Sq

≠U
j
q

. (9)

We notice from (4) that the invariance ofrs with
respect to a homogeneous linear transformation
leads from the setUj to a set Uj 0

implies that bj

transforms contragradiently toUj. We shall refer to
the parametersbj as thegeneralized temperatureof the
system. We shall apply the present formalism to disc
the cosmic blackbody radiation in a relativistic model
the Universe within the framework of the nonextensi
thermostatistics.

Let us present first the extended forms of the first a
second laws of thermodynamics. The generalized con
of performance of work on the system is related to
change in theq-expectation value of the observablesUj

when the parametersl change. We obtain in this wa
what is called the adiabatic change [2] ofU

j
q,

dadUj
q  tr

µ
rq ≠Uj

≠l

∂
dl . (10)

The generalized “transfer of heat” is then introduc
through the difference between the total change of theq-
expectation value ofUj and (10),

dQUj
q  dUj

q 2 dadUj
q . (11)

From (7), (6), and (4), we immediately find that
i-

,

at

s

d
pt

dSq 
X

j

bjdQUj
q . (12)

Expressions (11) and (12) are then the generalized fo
of the first and second laws of thermodynamics,
reversible processes, as obtained in the framework
a nonextensive thermostatistics and invariant under
symmetry group of r given by (4). We obtain a
relativistic generalization in the particular case in whi
the symmetry group is the Lorentz group or a gene
coordinate transformation. All the quantities are to
considered at a particular spacetime point.

Let us return now to the cosmic blackbody radiatio
We isolate, at a given spacetime point, a pencil of el
tromagnetic radiation (a light beam), characterized b
frequency and direction of propagation. All this inform
tion is contained in a null vectork sk ? k  0d. In a local
frame of reference we writek  hkmj. The correspond-
ing four-momentum operator ispmsld  h̄kmsldn, where
n is the number operator whose eigenvalues are n
negative integers. The set of operatorsUjsld are given
by pmsld. The external parametersl are the frequency
and direction of propagation of the light beam. They m
be identified with the wave vector$k. Let us now suppose
that we are in a region of space that is filled with ra
ation. A straightforward generalization, for any value
q, of the results obtained by Hamity [3] will show that
the radiation is in thermal equilibrium we can choose
different world vectorsbm, of the various pencils of radi
ation passing through the point, to have the same va
On the other hand, from the requirement of havingnq

finite and positive definite for all values of$k, and consid-
ering the expression for the generalized Planck law
we have thatbm must be timelike and pointing toward
the future; i.e., there exists a (local) frame of referen
in which bm will only have the time component differ
ent from zero: bm  sb, 0, 0, 0d. The parameterb may
be identified with 1yT, whereT is the absolute tempera
ture assigned to the radiation. In order to computenq and
Sq we need the generalized partition functionZqsbm, $kd.
The calculation ofnq in the limit bs1 2 qd ! 0 and the
comparison of the results with the Boltzmann-Gibbs s
tistics are given by Tsallis, Sa Barreto, and Loh [9] (s
also Plastino, Plastino, and Vucetich [10]).

We wish to end our discussion with a brief comme
on the thermal history of the cosmic blackbody radiati
in a relativistic model of the Universe. We notice th
the generalized partition function depends onbm and $k
through the quantitybmkm. Consider any homogeneou
isotropic model of the Universe (a Robertson-Walk
model) [12] and the isotropic observers with wor
velocity u, at “rest” with respect to the cosmic blackbod
radiation. Then, in a frame of reference defined byu, we
have

bm 
um

T
. (13)
4665
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Sincek is a null vector, we have

k ? u  2
k ? j

sj ? jd1y2
, (14)

where j is a Killing vector field which points in the
direction of the propagation ofk into the spacelike
hypersurface of homogeneity [12]. The length ofj varies
from point to point in the spacetime and is proportiona
the length scale factor of the Universe

sj ? jd1y2
1

sj ? jd1y2
2


ast1d
ast2d

. (15)

On the other hand, we have thatj ? k is constant
along the geodesic with tangent vectork; also, since
the free propagation of a light beam is a reversi
process, theq-expectation valuenq is constant [it is
straightforward to verify that (12) becomes in this ca
dSq  h̄dnq

P
m bmkm [3]], and we have

sb ? kd1  sb ? kd2 )
Tst1d
Tst2d


ast2d
ast1d

. (16)

Thus, the temperature of the cosmic blackbody radiat
varies as the inverse of the scale factor of the Unive
and is independent of q,i.e., independent of the degree
nonextensitivity. The cooling in the course of the expa
sion is adiabatic. It is interesting to notice that althou
nq is constant along a null ray the temperature vectorbm

changes from point to point. The use of the cosmic bla
body radiation to set observational bounds toq have been
discussed by Plastino, Plastino, and Vucetich [10].
though these bounds have been judiciously computed
do not agree with the authors’ conclusions that they fo
no violation of extensitivity in alarge scaleon the basis
of these results. As our calculations show, the applica
of thermodynamics to the cosmic blackbody radiation
strictly local, and what we do in a large scale is just
compare intrinsic parameters, such as the temperatu
4666
e

-

-

-
e

d

n
s

at

different epochs. Of course, the blackbody spectrum d
pends on the parameterq, and it has been approximately
calculated by Tsallis, Sa Barreto, and Loh [9]. We hop
the present considerations enlighten the physical interp
tation of experimental data such as those obtained with
COBE (Cosmic Background Explorer), and will stimulat
further experiments and analysis.
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