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The time evolution of a closed system of mean fields and fluctuations is Hamiltonian, with the
canonical variables parametrizing the general time-dependent Gaussian density matrix of the system.
Yet, the evolution manifests both quantum decoherence and apparent irreversibility of energy flow from
the coherent mean fields to fluctuating quantum modes. Using scalar QED as an example, we show how
this collisionless damping and decoherence may be understood as the refphaingof the rapidly
varying fluctuations and particle production in the time varying mean field. [S0031-9007(96)00360-2]

PACS numbers: 03.65.Bz, 03.65.Sq, 03.70.+k, 05.70.Ln

Mean field methods have a long history in such To expose the general structure of the time-dependent
diverse areas as atomic physics (Born-Oppenheimerjnean field (or Gaussian) approximation consider first a
nuclear physics (Hartree-Fock), condensed matter (BCS)ne-dimensional harmonic oscillator with Hamiltonian
and statistical physics (Landau-Ginzburg), quantum 1
optics (coherent or squeezed states), and semiclassical How(q, pit) = —[p? + 0*(1)q*], 1)
gravity. Because no higher than second moments of the 2
fluctuations are incorporated, the mean field approximawhere the frequencw (¢) is a smooth function of time,
tion is related to a Gaussian variational ansatz for thetherwise unspecified for the moment. The most general
wave function of the system. The broad applicability
of the approximation, as well as the variety of different
approaches to it in the literature, makes it worthwhile to 4
exhibit its general features unobscured by the particulars
of specific applications. Accordingly, our first purpose
in this Letter is to demonstrate the equivalence of the 2
time-dependent mean field approximation to the genera
Gaussian ansatz for the mixed state density mairiand w0
to underline its Hamiltonian structure.

The Hamiltonian nature of the evolution makes it clear
from the outset that the mean field approximation does
notintroduce dissipation or time irreversibility at a funda-
mental level. Nevertheless, typical evolutions seemingly 4 . . :

manifest an arrow of time, in the sense that energy flows 0 40 5 120

from the mean field to the fluctuations without returning

over times of physical interest [1] (Fig. 1). Closely con- 80 ; ; ;

nected to thiseffectivedissipation is the phenomenon of

quantum decoherence [2], i.e., the suppression with time o | . ]

of the overlap between wave functions corresponding tc
two different mean field evolutions (Fig. 2). Decoher-

ence is the reason why quantum superpositions of differ-
ent mean field states are difficult to observe in nature, anc
is crucial to understanding the quantum to classical tran-
sition in macroscopic systems. Our second aim in this
Letter is to provide a clear physical explanation of both
these behaviors in terms of dephasing of the fluctuations o, ' ' :

40 -

Entropy

. . . . . 40 80 120
i.e., the averaging to zero of their rapidly varying phases mt

on time SC?'eS short compared to the coII_eg:tive motion Or:IG. 1. Evolution of the electric field, and the Boltzmann
the mean field(s), and to present an explicit example of And effective entropies foe? = 0.1. The electric field is

quantum mean field theory (scalar QED) where these efexpressed in units of, = m?c3/eh. Pair creation is rapid
fects are observed. when|E| > E..
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. P =—0n7g,
. = —w?()E + Pat /A8,

and o = 0. Evolution equations for the diverse appli-
cations of the time-dependent mean field approximation
reduce to (multiple copies of) equations of precisely
the general form of (4), withw?(r) a different self-
consistently determined function of the coordinates and
time, depending on the application. This establishes the
equivalence between mean field methods and Gaussian
density matrices for all evolutions of the form of Egs. (4).
We give explicit examples below.

An essential property of the evolution equations (4)
is that they are Hamilton's equations (hence, time re-
versible) for an effective classical Hamiltonian [3], with
7 playing the role of the momentum conjugateg&to

(4)

DNSE
[
SRS

. 1
FIG. 2. Absolute values of the decoherence functiodgs| — —. . _ = (52 + 1?) +
as a function of time. The two field values afeandE — A. Her(q, 73 &, m5.0) = Tr(pH) 2 (P n°) + Verr,

The top figure shows (for fixed) the sharp dependence of (5)
decoherence on particle production whigfl = 0.2E.. The
second illustrates the relatively milder dependence\on and Ve (g, &; o) depending on the particular form of

w?(q(1), £(1);1). For example, if the original system is
an anharmonic double well with quantum Hamiltonian

Gaussian form for the mixed state normalized density H(g,p) = lpz + (A/4) (¢ — v)?, (6)
matrix may be presented as 2
&N p(q. ;& m;0)lx) = Qmed~12 then the (largeN) mean field equations of motion are

o 2 4 identical to Egs. (4) withw?(r) = A[G%(t) + &%(1) —
X exp{i %(x’ - x) — 0852 (' — G2 + (x —g)*] v’] Inthiscase,
Vert (7, €) = (A/4) (@ + & — v*) + BPa?/8%, (7)

tis 0~ g2 - (- 7))
and the resulting Egs. (4) are now quite nonlinear. The

2hé

o? — l(x, “ k- 7) 2) last “centrifugal” term in the effective potential (7) is a
4¢2 4 4 manifestation of the quantum uncertainty principle which
_ . , _ prevents the Gaussian widghfrom vanishing.
in the coordinate representation. The five parameters Tpe unitary operatorUU(t) which affects the time

(q.p:¢.m:0) of this Gaussian may be identified with eyolution of the Gaussian density matrix (2) is easily

the two mean valuesg = (g) = Tr(gp), P =(P) =  found, but we shall not need its explicit form here. It
Tr(pp), and the three symmetrized variances via generates the time evolution of the Heisenberg operators,
(g =9 =¢. ((pqg+aqp—2qp)) =2n, q(t) = UM (1)gO)U®1) = Gt) + af(t) + at f* (1), @
(p =PV =n+ B*c?/4&. @ p() =UTOpOUW) =B0) + af) + atf* (1),

The one antisymmetrized variance is fixed by the commuin the Fock representation whefe,af]= 1, and the
tation relation,[¢, p] = ii. The parameterr measures commutation relation requires the complex functignt
the degree to which the state is mixedp¥r= o~ ! =1, satisfy the Wronskian condition,
the equality holding for pure states. If the state is pyre, ek .
decomposes into a produdts)(ys|, and only two of the S =S =ih. ©)
three symmetrized variances in (3) are independent. Actually, there is considerable latitude to redefirie
The Gaussian form of the density matrix (2) is pre-by the Bogoliubov transformatiofi — coshye!* %) f +
served under time evolution witH,.. In the Schrodinger sinhye"("*‘f’)f* without affecting the Wronskian condi-
picture, p evolves according to the Liouville equation, tion. Such Bogoliubov transformations form a noncom-
p = —i[H, p]. Substitution of the Gaussian form (2) into pact Lie group, whose Lie algebra is generated by the
this equation with Hamiltonian (1) and equating coeffi-three symmetric bilinearsa, atat, andaat + ata. If
cients ofx, x/, x2, x2, andxx’ gives five evolution equa- the a anda’ operators are appended to these three, the
tions for the five parameters specifying the Gaussian, algebra again closes upon itself, forming a five parameter
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Lie group. The unitary evolution of the Gaussian densityi.e., dephasing either by averaging the fluctuations over
matrix (2) is an explicit representation of this group with time or by summing over many independent fluctuating

Casimir invarianti’o?/4. degrees of freedom at a fixed time, as in field theory.
The Lie group structure can be exploited to choose a Obtaining the general form of the diagonal matrix
basis in which all expectation values vanish, except elements ofp in the N basis is straightforward, but the
oy ity 1 result is rather unwieldy and will be presented elsewhere.
(@'a)=(aa’) —1=N=0. (10)  Here we restrict our attention to the case of a pure
The Gaussian density matrix is diagonal in the correstate with vanishingg mean field. Using the methods of
spondingata time-independent number basis, Ref. [5], one finds simply
20y, (0 — 1 21 — NN
! _ I
(n'lplny = m(m) ) (11) ;i = 21| pli = 21| gﬁio = (Tsecl”ytanhyy,
with (15)
o =2N + 1, ) = al fF(nI% n=E¢. with p;z = 0 for i odd andy(r) the parameter of the

(12)  Bogoliubov transformation between the and & bases,

Upon identifyingoe = coth(iw /2kgT), the diagonal form given explicitly by

(11) will be recognized as a thermal density matrix at sinffy = N = If +iofl?/2he . (16)
temperature’. The smoothness of the finite temperature
classical limitic — 2kpT/w ash — 0,0 — = shows Decoherence is addressable within the same mean field
that quantum and thermal fluctuations are treated by thgamework. Consider the case whesds) is a function
mean field approximation in a unified way. of one mean field degree of freedaatr). If only the

By making another group transformation it is alwaysevolution of A is of interest, then the fluctuating modes
possible to diagonalize (1) at any given time, bringingdescribed byf(r) may be treated as the “environment.”
the quadratic Hamiltonian into the standard harmonicTo solve for the evolution of the reduced density matrix
oscillator form,Ho. = (hiw/2)(@a’ + a'a) with a time  of A, one needs to compute the influence functional.
dependent. This time-dependent basis is defined by  This is a functional of two trajectoried(r) and A(¢)

= At 7 - _ ~t 7 [corresponding to two different evolution operat@rs(r)
a=af+alf,  pl)=-iedtiodlf, andU,(1)], and is defined by
70 = 50— o exp( [ dt' o t)) 13)  Fo® =exdila0] = T{U0p@Ui 0], @7

_ _ _ Restricting again to pure states with vanishipgmean
in place of (8). In theata number basis,p is no fields, we find

Ionger d|agonal {a), (aa), etc., are nonvanishing, and
= (ata) # N in general, becomlng equal only in the i i ( fif2 )
ol o=t = —==1n . . (18)
statlc case of constamt. . o . 725=0 2 l| R\ ff = nfs
If w(r) varies slowly in time, an adiabatic invariait
may be constructed from the Hamilton-Jacobi equationn terms of the two sets of mode functiorfs(z) and
corresponding to the effective Hamiltonian (5), i.e., f2(¢). This I'y; is precisely the closed time path (CTP)
. . effective action functional which generates the connected
W/2mh = Het/hiw = 0/2 =N = N. (14) real timen-point vertices in the quantum theory [6,7]. For
SinceN is time independenty(¢) is an adiabatic invariant a pure initial state, the absolute value Bf, measures
of the evolution. On the other hand, the phase anglé¢he overlap of the two different evolutions at some
conjugate to the action variabl& varies rapidly in time. time ¢, beginning with the same initidiy(0)). In mean
Since the diagonal matrix elementsmin the N basis are field theory, instead of evaluatinkj;, for two arbitrary
independent of this phase angle, they are slowly varyingrajectories, the evaluation is over trajectories determined
whereas theoff-diagonal matrix elements ofp in this by the self-consistentevolution of the closed system,
basis (which depend on the phase angle) aeidly  beginning with two different initial mean fields.
varying functions of time. If we are interested only in  For an explicit field theoretic example, consider scalar
the effects of the fluctuations on the more slowly varyingQED with no scalar self-coupling. In the largsy
mean fields, it is natural to define affectivedensity limit, the evolution of electric fields and charged matter
matrix p.(t) by time averagingthe density matrix (2), field fluctuations may be described in the self-consistent
thereby truncating to its diagonal elements only, in the mean field or Gaussian approximation. For a spatially
adiabaticV basis [4]. Clearly, for this truncation to be homogeneous electric field in thedirection, in the gauge
justified there must be very efficient phase cancellationd = A(r)z, the time evolution equations read [1,7]
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d’ The two entropi defined b
|:ﬁ + w,%(t):|f12(t) =0, e two entropies are aerine Yy
wl(t) = [k — AP + m?, 1 Sg = DAIN(GK) + 11IN[N(K) + 1] — N(k) InN (&)},
i) = G (19) i 5 b
) Seit = —Trpes INperr = — pa (k) Inpy(k),
=5 %[kz — eA]If 0Py, =5 -

with (9) holding for every discrete wave numberin
the finite volumeV. In field theory there are an infinite respectively. Both display a general increase during in-
number of fluctuating plane wave modgsof the charged tervals of particle creation [4,6], when the electric field is
scalar field, each varying rapidly in time with its own sufficiently strong for the Schwinger pair creation mecha-
characteristic frequency;. The Gaussian density matrix nism to be effective. Neither quantity is a strictly mono-
for the complex scalar field is an infinite product of tonic function of time (nad theorem). Since the charged
Gaussians each of the form (2) with zero mean values, particle modeg; interact with the mean electric field but
o . not directly with each other, the effective damping ob-
[Tp(d =09 =0:&. n:09) (20)  served is certainlcollisionless and the dephasing here
k is similar to that responsible for Landau damping of col-
and the parameter§;, n;, o) having the same signifi- lective modes in classical electromagnetic plasmas. The
cance as in (12), for each plane wakendependently. entropy Ser of the effective density matrix provides a
Likewise, there is a Bogoliubov parametg(k; ) for each ~ Precise measure of the information lost by treating the
A given by an expression of the form (16). phases as random. The _Boltzmann “entropy” _Would_ be
The equations of motion (19) are again Hamiltonian in?XPeCted to equaﬁeff on.Iy in rue thermo_dynamlc equi-
structure, and, in this example, I|br|l_Jm, which is not achleved_ln the collisionless approxi-
i 5 : B2 mation of Eqs. (19)._ Otherwise, we see f_rom Flg.' 1 that
eff _ £7 _Z<771% n w]%f]% n k) (21) S generally overestimates the amount of information lost
k

Vv 2 Vv 451% by phase averaging. That decoherence is closely related
describes charged particle production in the electric fielc%o the same dephasing of the particle modes is seen most
. . learly by comparing the absolute value Bf, for dif-

E = —A by the Schwinger mechansm and the effects o erent initial electric fields. Decoherence is very slow

or electric fields less than the Schwinger pair produc-

the current(j.(¢)) generated by these charged particlei
ion threshold but becomes very rapid above it [8]. This

back on the electric field, through the semiclassica

Maxwell equation in (19) [1,7]. The mean value of
- " shows the strong dependence of the decoherence process
the scalar field itselip = (@) = 0 so that we may use on the particle production by the mean field.

the expressions (15) and (18) for the effective density The authors wish to acknowledge several helpful dis-
matrix and decoherence functional of the charged ﬁelq:ussions with F. Cooper and A. Kovner

fluctuations. The valuep,; given by (15) are then the
probabilities of observind charged particle pairs in the
adiabaticN basis. The diagonal matrix elementsgofor

odd# vanish because particles can only be created in pairs
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