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The time evolution of a closed system of mean fields and fluctuations is Hamiltonian, with th
canonical variables parametrizing the general time-dependent Gaussian density matrix of the sys
Yet, the evolution manifests both quantum decoherence and apparent irreversibility of energy flow fr
the coherent mean fields to fluctuating quantum modes. Using scalar QED as an example, we show
this collisionless damping and decoherence may be understood as the result ofdephasingof the rapidly
varying fluctuations and particle production in the time varying mean field. [S0031-9007(96)00360-
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Mean field methods have a long history in su
diverse areas as atomic physics (Born-Oppenheim
nuclear physics (Hartree-Fock), condensed matter (B
and statistical physics (Landau-Ginzburg), quant
optics (coherent or squeezed states), and semiclas
gravity. Because no higher than second moments of
fluctuations are incorporated, the mean field approxim
tion is related to a Gaussian variational ansatz for
wave function of the system. The broad applicabil
of the approximation, as well as the variety of differe
approaches to it in the literature, makes it worthwhile
exhibit its general features unobscured by the particu
of specific applications. Accordingly, our first purpo
in this Letter is to demonstrate the equivalence of
time-dependent mean field approximation to the gen
Gaussian ansatz for the mixed state density matrixr, and
to underline its Hamiltonian structure.

The Hamiltonian nature of the evolution makes it cle
from the outset that the mean field approximation d
not introduce dissipation or time irreversibility at a fund
mental level. Nevertheless, typical evolutions seemin
manifest an arrow of time, in the sense that energy flo
from the mean field to the fluctuations without returni
over times of physical interest [1] (Fig. 1). Closely co
nected to thiseffectivedissipation is the phenomenon
quantum decoherence [2], i.e., the suppression with t
of the overlap between wave functions corresponding
two different mean field evolutions (Fig. 2). Decohe
ence is the reason why quantum superpositions of dif
ent mean field states are difficult to observe in nature,
is crucial to understanding the quantum to classical tr
sition in macroscopic systems. Our second aim in
Letter is to provide a clear physical explanation of bo
these behaviors in terms of dephasing of the fluctuatio
i.e., the averaging to zero of their rapidly varying pha
on time scales short compared to the collective motion
the mean field(s), and to present an explicit example
quantum mean field theory (scalar QED) where these
fects are observed.
0031-9007y96y76(25)y4660(4)$10.00
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To expose the general structure of the time-depend
mean field (or Gaussian) approximation consider first
one-dimensional harmonic oscillator with Hamiltonian

Hoscsq, p; td ­
1
2

fp2 1 v2stdq2g , (1)

where the frequencyvstd is a smooth function of time,
otherwise unspecified for the moment. The most gene
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FIG. 1. Evolution of the electric field, and the Boltzman
and effective entropies fore2 ­ 0.1. The electric field is
expressed in units ofEc ­ m2c3yeh̄. Pair creation is rapid
when jEj . Ec.
© 1996 The American Physical Society
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FIG. 2. Absolute values of the decoherence functionaljF12j
as a function of time. The two field values areE andE 2 D.
The top figure shows (for fixedD) the sharp dependence
decoherence on particle production whenjEj $ 0.2Ec. The
second illustrates the relatively milder dependence onD.

Gaussian form for the mixed state normalized den
matrix may be presented as

kx0jrs q, p; j, h; sdjxl ­ s2pj2d21y2

3 exp

(
i

p
h̄

sx0 2 xd 2
s2 1 1

8j2 fsx0 2 q d2 1 sx 2 q d2g

1 i
h

2h̄j
fsx0 2 q d2 2 sx 2 q d2g

1
s2 2 1

4j2 sx0 2 q d sx 2 q d

)
(2)

in the coordinate representation. The five parame
sq, p; j, h; sd of this Gaussian may be identified wi
the two mean values,q ­ kql ; Trsqrd, p ­ kpl ;
Trsprd, and the three symmetrized variances via

ksq 2 qd2l ­ j2, kspq 1 qp 2 2q p dl ­ 2jh ,

ksp 2 p d2l ­ h2 1 h̄2s2y4j2 . (3)

The one antisymmetrized variance is fixed by the comm
tation relation,fq, pg ­ ih̄. The parameters measures
the degree to which the state is mixed: Trr2 ­ s21 # 1,
the equality holding for pure states. If the state is purer

decomposes into a product,jcl kcj, and only two of the
three symmetrized variances in (3) are independent.

The Gaussian form of the density matrix (2) is p
served under time evolution withHosc. In the Schrödinger
picture, r evolves according to the Liouville equatio
Ùr ­ 2ifH, rg. Substitution of the Gaussian form (2) in
this equation with Hamiltonian (1) and equating coe
cients ofx, x0, x2, x02, andxx0 gives five evolution equa
tions for the five parameters specifying the Gaussian,
s

-

Ùq ­ p, Ùp ­ 2v2stdq ,

Ùj ­ h, Ùh ­ 2v2stdj 1 h̄2s2y4j3 ,
(4)

and Ùs ­ 0. Evolution equations for the diverse appl
cations of the time-dependent mean field approximat
reduce to (multiple copies of ) equations of precise
the general form of (4), withv2std a different self-
consistently determined function of the coordinates a
time, depending on the application. This establishes
equivalence between mean field methods and Gaus
density matrices for all evolutions of the form of Eqs. (4
We give explicit examples below.

An essential property of the evolution equations (
is that they are Hamilton’s equations (hence, time
versible) for an effective classical Hamiltonian [3], wit
h playing the role of the momentum conjugate toj,

Heffs q, p; j, h; sd ­ TrsrHd ­
1
2

sp2 1 h2d 1 Veff ,

(5)

and Veffs q, j; sd depending on the particular form o
v2sss qstd, jstd; tddd. For example, if the original system is
an anharmonic double well with quantum Hamiltonian

Hsq, pd ­
1
2

p2 1 sly4d sq2 2 y2d2 , (6)

then the (largeN) mean field equations of motion ar
identical to Eqs. (4) withv2std ­ lf q2std 1 j2std 2

y2g. In this case,

Veffs q, jd ­ sly4d sq2 1 j2 2 y2d2 1 h̄2s2y8j2 , (7)

and the resulting Eqs. (4) are now quite nonlinear. T
last “centrifugal” term in the effective potential (7) is
manifestation of the quantum uncertainty principle whic
prevents the Gaussian widthj from vanishing.

The unitary operatorUstd which affects the time
evolution of the Gaussian density matrix (2) is eas
found, but we shall not need its explicit form here.
generates the time evolution of the Heisenberg operato

qstd ­ Uystdqs0dUstd ­ qstd 1 afstd 1 ayfpstd ,

pstd ­ Uystdps0dUstd ­ pstd 1 a Ùfstd 1 ay Ùfpstd ,
(8)

in the Fock representation wherefa, ayg ­ 1, and the
commutation relation requires the complex functionsf to
satisfy the Wronskian condition,

f Ùfp 2 Ùffp ­ ih̄ . (9)

Actually, there is considerable latitude to redefinef
by the Bogoliubov transformationf ! coshgeisu1fdf 1

sinhgeisu2fdfp without affecting the Wronskian condi
tion. Such Bogoliubov transformations form a noncom
pact Lie group, whose Lie algebra is generated by
three symmetric bilinearsaa, ayay, andaay 1 aya. If
the a and ay operators are appended to these three,
algebra again closes upon itself, forming a five parame
4661
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Lie group. The unitary evolution of the Gaussian dens
matrix (2) is an explicit representation of this group wi
Casimir invarianth̄2s2y4.

The Lie group structure can be exploited to choos
basis in which all expectation values vanish, except

kayal ­ kaayl 2 1 ; N $ 0 . (10)

The Gaussian density matrix is diagonal in the cor
spondingaya time-independent number basis,

kn0jrjnl ­
2dn0n

s 1 1

µ
s 2 1
s 1 1

∂n

, (11)

with

s ­ 2N 1 1, j2std ­ sj fstdj2, h ­ Ùj .
(12)

Upon identifyings ­ cothsh̄vy2kBTd, the diagonal form
(11) will be recognized as a thermal density matrix
temperatureT . The smoothness of the finite temperatu
classical limit h̄s ! 2kBTyv as h̄ ! 0, s ! ` shows
that quantum and thermal fluctuations are treated by
mean field approximation in a unified way.

By making another group transformation it is alwa
possible to diagonalize (1) at any given time, bringi
the quadratic Hamiltonian into the standard harmo
oscillator form,Hosc ­ sh̄vy2dsããy 1 ãyãd with ã time
dependent. This time-dependent basis is defined by

qstd ­ ãf̃ 1 ãyf̃p, pstd ­ 2ivã 1 ivãyf̃p,

f̃std ­

s
h̄

2vstd
exp

µ
2i

Z t

0
dt0vst0 d

∂
, (13)

in place of (8). In theãyã number basis,r is no
longer diagonal,kãl, kããl, etc., are nonvanishing, an
Ñ ; kãyãl fi N in general, becoming equal only in th
static case of constantv.

If vstd varies slowly in time, an adiabatic invariantW
may be constructed from the Hamilton-Jacobi equat
corresponding to the effective Hamiltonian (5), i.e.,

Wy2p h̄ ­ Heffyh̄v 2 sy2 ­ Ñ 2 N . (14)

SinceN is time independent,̃Nstd is an adiabatic invarian
of the evolution. On the other hand, the phase an
conjugate to the action variableW varies rapidly in time.
Since the diagonal matrix elements ofr in theÑ basis are
independent of this phase angle, they are slowly vary
whereas theoff-diagonal matrix elements ofr in this
basis (which depend on the phase angle) arerapidly
varying functions of time. If we are interested only
the effects of the fluctuations on the more slowly varyi
mean fields, it is natural to define aneffectivedensity
matrix reffstd by time averagingthe density matrix (2),
thereby truncatingr to its diagonal elements only, in th
adiabaticÑ basis [4]. Clearly, for this truncation to b
justified there must be very efficient phase cancellati
4662
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i.e., dephasing, either by averaging the fluctuations ov
time or by summing over many independent fluctuati
degrees of freedom at a fixed time, as in field theory.

Obtaining the general form of the diagonal matr
elements ofr in the Ñ basis is straightforward, but th
result is rather unwieldy and will be presented elsewhe
Here we restrict our attention to the case of a pu
state with vanishingq mean field. Using the methods o
Ref. [5], one finds simply

kñ ­ 2ljrjñ ­ 2llj s­1
q­p­0

­
s2l 2 1d!!

2ll!
sechg tanh2lg ,

(15)

with rññ ­ 0 for ñ odd andgstd the parameter of the
Bogoliubov transformation between thea and ã bases,
given explicitly by

sinh2 g ­ Ñ ­ j Ùf 1 ivfj2y2h̄v . (16)

Decoherence is addressable within the same mean
framework. Consider the case wherevstd is a function
of one mean field degree of freedomAstd. If only the
evolution of A is of interest, then the fluctuating mode
described byfstd may be treated as the “environment
To solve for the evolution of the reduced density mat
of A, one needs to compute the influence function
This is a functional of two trajectoriesA1std and A2std
[corresponding to two different evolution operatorsU1std
andU2std], and is defined by

F12std ; expfiG12stdg ; TrfU1stdrs0dUy
2 stdg . (17)

Restricting again to pure states with vanishingq mean
fields, we find

G12j s­1
q­p­0

­ 2
i
2

ln

(
ih̄

j f1f2j

√
f1fp

2

f1
Ùfp

2 2 Ùf1fp
2

!)
(18)

in terms of the two sets of mode functionsf1std and
f2std. This G12 is precisely the closed time path (CTP
effective action functional which generates the connec
real timen-point vertices in the quantum theory [6,7]. Fo
a pure initial state, the absolute value ofF12 measures
the overlap of the two different evolutions at som
time t, beginning with the same initialjcs0dl. In mean
field theory, instead of evaluatingG12 for two arbitrary
trajectories, the evaluation is over trajectories determin
by the self-consistentevolution of the closed system
beginning with two different initial mean fields.

For an explicit field theoretic example, consider sca
QED with no scalar self-coupling. In the largeN
limit, the evolution of electric fields and charged matt
field fluctuations may be described in the self-consist
mean field or Gaussian approximation. For a spatia
homogeneous electric field in theẑ direction, in the gauge
$A ­ Astdẑ, the time evolution equations read [1,7]
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"
d2

dt2 1 v
2
$k
std

#
f$kstd ­ 0,

v
2
$k
std ; f $k 2 e $Astdg2 1 m2 ,

Ästd ­ kjzstdl

­
2e
V

X
$k

fkz 2 eAstdg jf$kstdj2s$k ,

(19)

with (9) holding for every discrete wave number$k in
the finite volumeV . In field theory there are an infinit
number of fluctuating plane wave modesf$k of the charged
scalar field, each varying rapidly in time with its ow
characteristic frequency,v$k. The Gaussian density matr
for the complex scalar fieldF is an infinite product of
Gaussians each of the form (2) with zero mean valuesY

$k

rs f ­ 0, Ù
f ­ 0; j$k , h$k; s$kd (20)

and the parameterssj$k , h$k , s$kd having the same signifi
cance as in (12), for each plane wave$k independently
Likewise, there is a Bogoliubov parametergs $k; td for each
$k given by an expression of the form (16).

The equations of motion (19) are again Hamiltonian
structure, and, in this example,

Heff

V
­

E2

2
1

1
V

X
$k

√
h

2
$k

1 v
2
$k
j

2
$k

1
h̄2s

2
$k

4j
2
$k

!
(21)

describes charged particle production in the electric fi
E ­ 2 ÙA by the Schwinger mechansm and the effects
the currentkjzstdl generated by these charged partic
back on the electric field, through the semiclass
Maxwell equation in (19) [1,7]. The mean value
the scalar field itselff ­ kFl ­ 0 so that we may us
the expressions (15) and (18) for the effective den
matrix and decoherence functional of the charged fi
fluctuations. The valuesr2l given by (15) are then th
probabilities of observingl charged particle pairs in th
adiabaticÑ basis. The diagonal matrix elements ofr for
odd ñ vanish because particles can only be created in p
from the vacuum.

In this specific model we present numerical results
1 1 1 dimensions with vacuum initial conditions,s$k ­
1) on damping and decoherence of the mean electric
in Figs. 1 and 2. The nonlinear collective oscillations
the electric field observed in Fig. 1 are plasma oscillati
with v

2
pl ø e2ñtotym, where ñtot ­ 2

P
$k Ñs $kdyV is the

total number density of created particles plus antipartic
Since all thev$k ¿ vpl , the phase cancellation betwe
the fluctuations is very effective on the time scale
the plasma oscillations. A measure of the appare
irreversible flow of energy from the electric field towar
the charged particle modes observed due to this depha
is the von Neumann entropy of theeffective density
matrix. In Fig. 1 we plot this effective entropy and t
Boltzmann entropy for comparison.
d
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The two entropies are defined by

SB ­
X

$k

hfÑs $kd 1 1g lnfÑs $kd 1 1g 2 Ñs $kd lnÑs $kdj ,

Seff ; 2Trreff lnreff ­ 2
X

$k

X̀
l­0

r2ls $kd lnr2ls $kd ,

(22)

respectively. Both display a general increase during
tervals of particle creation [4,6], when the electric field
sufficiently strong for the Schwinger pair creation mec
nism to be effective. Neither quantity is a strictly mon
tonic function of time (noH theorem). Since the charge
particle modesf$k interact with the mean electric field bu
not directly with each other, the effective damping o
served is certainlycollisionless, and the dephasing her
is similar to that responsible for Landau damping of c
lective modes in classical electromagnetic plasmas.
entropy Seff of the effective density matrix provides
precise measure of the information lost by treating
phases as random. The Boltzmann “entropy” would
expected to equalSeff only in true thermodynamic equ
librium, which is not achieved in the collisionless appro
mation of Eqs. (19). Otherwise, we see from Fig. 1 t
SB generally overestimates the amount of information l
by phase averaging. That decoherence is closely rel
to the same dephasing of the particle modes is seen
clearly by comparing the absolute value ofF12 for dif-
ferent initial electric fields. Decoherence is very slo
for electric fields less than the Schwinger pair prod
tion threshold but becomes very rapid above it [8]. T
shows the strong dependence of the decoherence pr
on the particle production by the mean field.
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