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New Mechanism for Neural Pattern Formation

Paul C. Bressloff
Department of Mathematical Sciences, Loughborough University, Loughborough, Leics. LE11 3TU, United K

(Received 8 September 1995)

We show how the diffusive effects of a neuron’s dendritic tree can induce a Turing-like instability
in a purely excitatory or inhibitory recurrent neural network. A crucial feature of the model is the
existence of a correlation between the location of a synaptic connection on the tree and the relativ
separation of the associated neurons within the network. [S0031-9007(96)00385-7]

PACS numbers: 87.10.+e, 07.05.Mh, 82.40.Bj
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The standard mechanism for pattern formation in s
tially organized neural network models is based on
competition between local excitatory and more long-ran
inhibitory interactions between cells [1, 2]. Examples
clude a model of ocular dominance stripe formation
the visual cortex [3, 4] and a model for the generation
visual hallucination patterns [5]. In these models o
specifies the distribution of neural connections solely
a function of the separation between presynaptic and p
synaptic neurons. However, this neglects an import
aspect of the synaptic organization of cortex, namely,
spatial location of a synapse on the dendritic tree of a n
ron [6]. There is growing evidence that dendritic structu
could play an important role in information processi
[7, 8]. Of particular interest here is the observation th
the dendritic location of a synapse is often correlated w
the relative positions of cells in the cortex. For exa
ple, recurrent collaterals of pyramidal cells in the olfa
tory cortex feed back onto the basal dendrites of nea
cells and onto the apical dendrites of distant pyrami
cells [6, 7]. A similar feature is thought to occur in oth
areas of cortex (see the canonical microcircuit of Doug
Martin, and Whitteridge [9]). Thus a synapse tends to
located further away from the soma or cell body as
separation between neurons increases. This results
reduction in the effectiveness of the synaptic connect
due to diffusion along the dendritic tree. On the oth
hand, there is growing evidence that such a reduction m
be compensated by a number of mechanisms includin
increase in the density of synapses at distal locations
voltage-dependent gates on dendritic spines [8].

In this Letter, we show that the passive membra
properties of a neuron’s dendritic tree can induce s
tial pattern formation in a purely excitatory or inhibitor
recurrent network. This provides an alternative mec
nism for neural pattern formation that relies on the co
bined effect of (i) diffusion along the dendritic tree an
(ii) recurrent interactions via axodendritic synaptic co
nections. To expound the basic idea, we shall follow
mentrout and Cowan [5] and consider a one-dimensio
network of analog neurons distributed along thex axis.
Let Usx, td denote the somatic membrane potential of
neuron located atx [ R at timet. The output firing rate
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of the neuron is written asfsssUsx, tdddd wheref is a nonlin-
ear sigmoid function that is strictly monotonically increa
ing and bounded. We takefsUd ­ 1 1 tanhskUd where
k is a gain parameter. For simplicity, the dendritic tree
a neuron is represented by a uniform one-dimensional
ble. The dendritic membrane potential at the pointj [ R
on the cable is denoted byV sj, x, td. Let Wsj, x, x0d be
the connection from a neuron atx0 impinging on a synapse
located atj on the dendritic cable of a neuron atx.

Using standard cable theory [10], one can write do
the following equations forU andV:

≠U
≠t

­ 2
Usx, td

t̂
2 Isx, td , (1)

≠V
≠t

­ D
≠2V
≠j2 2

V sj, x, td
t

1 Isj, x, td

1
Z `

2`
Wsj, x, x0dfsssUsx0, tdddd dx0 1 Iextsj, xd ,

(2)

where Isx, td ­
R

`

2` Isj, x, td dj and Isj, x, td ­
rsjd fUsx, td 2 V sj, x, tdg. HereIsj, x, td is the current
density flowing from the soma to the cable atj and
rsjd is a conductance (in appropriate units). We assu
that the functionrsjd has compact support, i.e., it i
localized to the contact region between the soma and
dendritic cable. We have also included an external b
Iext. In order to simplify our analysis, we shall assum
that t21 1 r ­ e such thate is independent ofj and
set t̂21 1

R
rsjd dj ­ ê. Furthermore, we impose th

homogeneity conditionW sj, x, x0d ­ W sj, x 2 x0d with
W sj, xd a symmetric function ofx.

In the limit of zero diffusionsD ! 0d with e ¿ ê,
V can be treated as a fast variable and Eqs. (1) and
reduce to the standard form

≠U
≠t

­ 2 êUsx, td 1
Z `

2`
W sx 2 x0dfsssUsx0, tdddd dx0

1 Iextsxd , (3)

with W sxd ­ e21
R

W sj, xdrsjd dj. Equation (3) is the
basic model of nerve tissue studied by various auth
[1, 2, 5, 11]. It is known from these works that in th
case of local excitation and long-range inhibition o
© 1996 The American Physical Society
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can obtain large-scale spatially organized neural activ
Suppose, for simplicity, that the external biasIextsxd ­
2

R`
2` W sx 2 x0d dx0 so that the resting stateUsxd ­ 0

for all x is a fixed point of the dynamics. In an anal
gous fashion to Turing or diffusion-driven instabilities
reaction-diffusion systems [1, 12], one finds that the
mogeneous steady state is stable to small uniform pe
bations but is (linearly) unstable to small spatially varyi
perturbations of the formUsx, td ­ ent1ipx wherep is the
wave number of the pattern andn is the so-called growth
factor.

We wish to derive conditions for a Turing-like instab
ity in the full model described by Eqs. (1) and (2). W
assume that the homogeneous zero solutionUsxd ­ 0,
V sj, xd ­ 0 is a fixed point of the system by taking
negative external biasIextsj, xd ­ 2

R`

2` Wsj, x, x0d dx0.
Substitution of the solutionUsx, td ­ Aent1ipx and
V sj, x, td ­ Bsjdent1ipx into Eqs. (1) and (2) linearize
about the homogeneous zero solutionUsx, td ­ 0,
V sj, x, td ­ 0 yields

se 1 ndBsjd ­ D
d2B
dj2

1
£
kW̃sj, pd 1 rsjd

§
A , (4)

sê 1 ndA ­
Z `

2`
rsjdBsjd dj , (5)

whereW̃ sj, pd is the Fourier transform ofWsj, xd with
respect tox. On Fourier transforming Eq. (4) with respe
to j and using Eq. (5), we obtain the dispersion relat
Dsn, pd ­ 0 where

Dsn, pd ­ n 1 ê

2
Z `

2`

r̃s2kd
£
kW̃ sk, pd 1 r̃skd

§
e 1 n 1 k2D

dk
2p

(6)

with W̃ sk, pd ­
R

`

2` dj eikj
R`

2` dx eipxW sj, xd and
r̃skd ­

R
`

2` dj eikjrsjd.
The condition for a Turing-like instability can be e

pressed as follows: (i)Dsn, 0d fi 0 for all Ren $ 0 and
(ii) there exists a pairsssns pd, pddd such thatDsssns pd, pddd ­
0 with Rens pd $ 0 andp fi 0. It follows from Eq. (6)
that these conditions depend crucially on the distribut
of axodendritic connections within the network. Mo
vated by our previous observations concerning the syn
tic organization of cortical tissue, we make the followi
assumptions concerning the distributionW sj, xd: (a) The
average distance of a synapse from the somejjj increases
with the separationjx 2 x0j between neurons. This prop
erty can be realized by a distribution of the form

W sj, xd ­
Wsjd

p
2p s

fe2sx2jd2y2s2

1 e2sx1jd2y2s2

g , (7)

wheres determines the degree of spread of axon colla
als about the pointsj ­ 6x. (b) The density of synapse
is larger at distal locations. We model this by taking

W sjd ­ W0 1 W1jjj (8)
.

-
r-

n

p-

r-

for constantW0, W1. The weights are assumed to b
either purely inhibitory

°
W0, 1 , 0

¢
or purely excitatory°

W0, 1 . 0
¢
. For simplicity, we impose the additiona

condition that the soma is connected to the dendritic ca
at a single pointj ­ 0 so thatrsjd ­ r0dsjd. [More
generally, it is reasonable forWsjd to be approximately
constant over the domain wherersjd fi 0.] Substituting
Eqs. (7) and (8) into Eq. (6) gives

Dsn, pd ­ ê 1 n 2
r

2
0

2

s
1

n̂D
2 2kr0Fsn, pd , (9)

Fsn, pd ­

24W0 1 W1

s
D
n̂

n̂ 2 Dp2

sn̂ 1 Dp2d

35 e2p2s2y2

n̂ 1 p2D
,

(10)

wheren̂ ­ n 1 e.
We shall use Eq. (9) to prove that a purely inhibito

or a purely excitatory network with a distribution o
axodendritic connections satisfying Eqs. (7) and (8) c
undergo a Turing-like instability. To reduce the numb
of free parameters, we make some further simplificatio
without altering the essential behavior. First, we
s ­ 0, which corresponds to the case of monosynap
connectionsW0 ­ 0 and2kr0W1 ­ W fi 0. (Note that
it is straightforward to show that a Turing instabilit
cannot occur ifW1 ­ 0.) Second, we neglect then
dependence of the third term on the right-hand side
Eq. (9) and sete0 ­ ê 2 r

2
0y2

p
eD. Finally, the units

of length and time are fixed by settinge ­ D ­ 1.
Equation (9) then reduces to the simpler formDsn, pd ­
e0 1 n 2 WHsn, pd where

Hsn, pd ­
1

p
1 1 n

1 2 p2 1 n

s1 1 p2 1 nd2 . (11)

A number of properties ofHsn, pd should be noted:
(i) Hsn, 0d $ Hsn, pd for all n, and Hsn, 0d is a mono-
tonically decreasing function ofn with Hs0, 0d ­ 1.
(ii) Hs0, pd , 0, for all p . 1 andH

°
0,

p
3

¢
# Hsn, pd

for all p, n. A solution to the dispersion relation for
fixed p may be obtained graphically by considering the
tercept ofHsn, pd with the curveysnd ­ W21fe0 1 ng.
(By symmetry we need only consider positive valu
of p.)

First, consider the case of a purely excitatory netwo
Property (i) of Hsn, pd shows that the zero solution i
stable provided that0 , W , e0yHs0, 0d and is unstable
otherwise. However, this does not lead to a Turing-l
instability since the range of wave numbers over wh
the system is unstable invariably contains the origin. N
consider the case of a purely inhibitory networksW , 0d.
It follows from property (ii) that for jW j sufficiently
small there does not exist a solution to the equat
Dsn, pd ­ 0 when n $ 0, which implies that the zero
solution is linearly stable. However, asjW j increases, a
critical valueWc ; e0yH

°
0,

p
3

¢
­ 28e0 is reached for
4645
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0,

p
3

¢
­ 0 so thatDsssns pd, pddd ­ 0, ns pd $ 0

over an interval
£p

3, psW d
§

when W , Wc. Thus the
conditions for a Turing-like instability hold. One expec
the resulting pattern to have a spatial variation clos
related to the wave number of the fastest growing lin
mode within the range

£p
3, psW d

§
. The existence of a

stable spatial pattern can be confirmed numerically for
full nonlinear model as shown in Fig. 1.

So far we have assumed that the growth factor is r
If we considern to be complex then it is possible for
Turing-like instability to occur due to a pair of comple
roots crossing the imaginary axis. Such a scenario
a precursor for dynamic pattern formation in whi
there exists an oscillating, spatially varying pattern
network activity. [In order to obtain such behavior
the reduced system (3), one would require at least
distinct populations of neurons coupled together [2,
A necessary condition for dynamic pattern formation
that there exists a pairv, p fi 0 such thatDsiv, pd ;
e0 1 iv 2 Hsiv, pd ­ 0 with H defined in Eq. (11).
(Without loss of generality, we takev, p $ 0.) Equating
real and imaginary parts leads to the pair of equations
e0

W
­ H1sv, pd ; A1svdasv, pd 1 vA2svdbsv, pd ,

1
W

­ H2sv, pd ; A1svdbsv, pd 2 A2svdasv, pdyv ,

(12)

with A6svd ­ sf
p

1 1 v2 6 1gy2d1y2 and

asv, pd ­
s1 2 p2d s1 1 p2d2 1 v2 1 3v2p2

fs1 1 p2d2 1 v2g2
,

bsv, pd ­
s1 1 p2d2 2 v2 2 2s1 2 p4d

fs1 1 p2d2 1 v2g2 .

(13)
in
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FIG. 1. Spatial pattern formation in a one-dimensional
hibitory network of neurons distributed over the finite interv
f0, Lg and evolving according to Eqs. (1) and (2). The stea
state dendritic potentialV sj, xd is plotted as a function of den
dritic coordinatej and network coordinatex. The dendritic
tree of each neuron is modeled as a finite cable of lengtL
attached to the soma at one end such thatUsxd ­ V s0, xd and
≠V sj, xdy≠jjj­L ­ 0 at the other end. The dimensions of va
ious physical quantities are fixed by settingD ­ e ­ k ­ 1.
Also L ­ 10, e0 ­ 1.0, rsjd ­ dsjd. The weight distribution
is W sj, xd ­ jW1fdsj 2 xd 1 dsj 1 xdg with W1 ­ 210.
4646
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FIG. 2 Plot of function Hisv, pd, i ­ 1, 2, against v for
wave numbersp ­ 0, 1. (a) i ­ 1, p ­ 0; (b) i ­ 1, p ­ 1;
(c) i ­ 2, p ­ 0; (d) i ­ 2, p ­ 1.

The functions H1 and H2 are plotted in Fig. 2. It
can be seen that forp ­ 1 there exists a unique so
lution vs pd to H1sssvs pd, pddd ­ e0H2sssvs pd, pddd with
H1, 2sssvs pd, pddd $ 0; there is no such solution whe
p ­ 0. Hence a dynamic Turing instability can aris
in the case of an excitatory network. The bifurcatio
point is obtained by determining the minimum positiv
value of W for which W21 ­ H2sssvs pd, pddd has a so-
lution. The result whene0 ­ 1 is p ø 0.8, v ø 0.1,
W ø 7.3. [A dynamic Turing instability does not aris
for an inhibitory network since there exists a solution
H1sssvs pd, pddd ­ e0H2sssvs pd, pddd with H1, 2sssvs pd, pddd # 0
at p ­ 0.]

Although we have restricted ourselves to linear stabil
analysis, it is possible to establish the existence of s
tial patterns at the nonlinear level using bifurcation theo
along similar lines to Ref. [5]. We briefly indicate how
to proceed in the case of a static pattern. To simp
the analysis we impose periodic boundary conditions s
that Usx 1 Ld ­ Usxd for all x, etc. The solution space
is thus restricted to continuous, bounded, periodic fu
tions. Let l be a bifurcation parameter associated w
the weight distribution; that is, setW sj, xd ­ lwsj, xd
where w is independent ofl. Suppose that asl is in-
creased a critical valuelc is reached signaling the onse
of a Turing-like instability. At the critical pointl ­ lc,
we haveDs0, pcd ­ 0, pc ­ 2pncyL fi 0 for some in-
tegernc with Dsn, pd defined in Eq. (6). The basic ide
is to investigate the nature of stationary solutionssn ­ 0d
of Eqs. (1) and (2) around the bifurcation point. Sin
the dendritic membrane potentials appear linearly in th
equations, we can eliminate them to obtain a nonlin
Volterra integral equation of the form

Usxd ­ l
Z `

2`
Ksx 2 x0d tanhfkUsx0dg dx0 , (14)

where Ksxd ­
R`

2` e2
p

eyD jjjwsj, xdrsjd dj. sssA fac-
tor of

£
2ê

p
eD

§
21 has been absorbed intol and a

convolution term linear inUsxd has been neglected
for simplicity.ddd Set l 2 lc ­ hl1 1 h2l2 1 Osh3d,
Usxd ­ hU1sxd 1 h2U2sxd 1 Osh3d and expand
Eq. (14) as a perturbation series inh. This leads to an
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ordered sequence of equations of the formL̂U1sxd ­ 0,
L̂Uisxd ­ fK p Gig sxd, i $ 2, where L̂ is the linear
integral operator obtained by linearizing Eq. (14); th
is, L̂Usxd ­ Usxd 2 klcfK p Ug sxd, and p denotes
the convolution operator. HereGi is a function of
Uksxd and lk for all k , i. The first equation has
the solution U1sxd ­ A coss pcxd for some constantA
with 1 ­ lckK̃s pcd. The remaining equations can b
solved systematically provided that an associated se
solvability conditions is satisfied (the so-called Fredho
alternative [13]). Define the inner product of two period
functions U, V by sU, V d ­

R2pyL
0 UsxdV sxd dx. The

solvability conditions are then generated by taking
inner product of each equation with respect to the low
order solutionU1 and exploiting the fact that the operat
L̂ is self-adjoint, that is,sU, L̂V d ­ sL̂U, V d. [Recall
that Wsj, xd is a symmetric function ofx.] The result is
sssU1, L̂sK p Gidddd ­ 0 for all i $ 2. Using the solvability
conditions fori ­ 2, 3, it can be shown thatl1 ­ 0 and
l2 ­ k2lcA2y4. The fact thatl2 is positive indicates
that one has a supercritical bifurcation, which is genera
associated with the formation of a stable pattern.

In conclusion, the above results establish analytica
a mechanism for pattern formation in which the diff
sive effects of the dendritic tree play a crucial role.
the limit of zero diffusion, Eq. (3), the effective weigh
distribution defined by Eqs. (7) and (8) becomesW sxd ­
sse

p
py2 d21W0r0 exps2x2y2s2d; such a weight distri-

bution cannot lead to a Turing instability. As note
previously, we also requireW sjd to be an increasing
function of jjj. This provides a competitive mechanis
that counteracts the effective weight reduction due to
fusion. Our results are robust with respect to the p
ticular choice ofWsjd. For example, one could replac
the linear function in Eq. (8) by a quadratic or cub
function. More generally, since a Turing instability
structurally stable, our conclusions do not depend on
various simplifying assumptions introduced for mathem
ical clarity. Of course, having established the existence
a new mechanism for pattern formation, it is important
explore how the full nonlinearities of the system effect t
shape and stability of the resulting patterns, as well as
precise dependence on the various biological and phys
parameters of the system. Therefore, we are currently
rying out detailed numerical simulations of Eqs. (1) a
(2), the results of which will be presented elsewhere.

There are a number of possible extensions of this wo
First, a study of more general choices of dendritic tr
topology. Here one would need to solve Eq. (4) w
appropriate boundary conditions at the terminal no
and branching nodes of the tree. One could, for exa
ple, use the Green’s function approach developed by
author elsewhere [14]. Second, to consider the role
dendritic structure in networks of “integrate-and-fire” ne
t
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rons. This would involve replacingfsUd in Eqs. (2) or
(3) by a series of delta-function spikes and resettingU af-
ter each spike. Recent work has shown the emergenc
collective excitations in integrate-and-fire networks wi
local excitation and long-range inhibition [15, 16], as we
as for purely excitatory connections [17, 18]. Although
form of dendritic interaction has been included in the
works using time delays and synaptic transfer functio
as far as the author is aware, no explicit connection
been made between dendritic structure and pattern for
tion. An integrate-and-fire neuron is more biological
realistic than a firing-rate model, although it is still n
clear that details concerning individual spikes are imp
tant for neural information processing. An advantage
firing-rate models from a mathematical viewpoint is th
differentiability of the output function; integrate-and-fir
networks tend to be analytically intractable without r
course to further approximations such as mean field t
ory [17].
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