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New Mechanism for Neural Pattern Formation
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We show how the diffusive effects of a neuron’s dendritic tree can induce a Turing-like instability
in a purely excitatory or inhibitory recurrent neural network. A crucial feature of the model is the
existence of a correlation between the location of a synaptic connection on the tree and the relative
separation of the associated neurons within the network. [S0031-9007(96)00385-7]

PACS numbers: 87.10.+e, 07.05.Mh, 82.40.Bj

The standard mechanism for pattern formation in spaef the neuron is written ag(U (x, t)) wheref is a nonlin-
tially organized neural network models is based on theear sigmoid function that is strictly monotonically increas-
competition between local excitatory and more long-rangéng and bounded. We takgUU) = 1 + tanH«xU) where
inhibitory interactions between cells [1,2]. Examples in-« is a gain parameter. For simplicity, the dendritic tree of
clude a model of ocular dominance stripe formation ina neuron is represented by a uniform one-dimensional ca-
the visual cortex [3, 4] and a model for the generation ofble. The dendritic membrane potential at the pdire R
visual hallucination patterns [5]. In these models oneon the cable is denoted bBy(&, x, 7). Let W(&,x,x') be
specifies the distribution of neural connections solely ashe connection from a neuron gtimpinging on a synapse
a function of the separation between presynaptic and posiecated at¢ on the dendritic cable of a neuronat
synaptic neurons. However, this neglects an important Using standard cable theory [10], one can write down
aspect of the synaptic organization of cortex, namely, théhe following equations fot) andV:
spatial location of a synapse on the dendritic tree of a neu- oU Ulx, 1)
ron [6]. There is growing evidence that dendritic structure o T s T I(x,1), (1)
could play an important role in information processing )

[7,8]. Of particular interest here is the observation that 9V _ D 0°V._ V(Ex1) + I(£,x,1)

the dendritic location of a synapse is often correlated with 97 9&?

the relative positions of cells in the cortex. For exam- o

ple, recurrent collaterals of pyramidal cells in the olfac- + jﬁw W&, x, x)f(UK, D) dx" + Iexi(§,%),
tory cortex feed back onto the basal dendrites of nearby )

cells and onto the apical dendrites of distant pyramidal 0
cells [6,7]. A similar feature is thought to occur in other Where 1(x,0) = [Z,1(&,x,dé and 1(&,x,1) =
areas of cortex (see the canonical microcircuit of Douglas? (&) [U(x. 1) — V(£,x,1)]. Herel(¢,x,1) is the current
Martin, and Whitteridge [9]). Thus a synapse tends to b&lensity flowing from the soma to the cable atand
located further away from the soma or cell body as the? () is @ conductance (in appropriate units). We assume
separation between neurons increases. This results intgat the functionp(¢) has compact support, i.e., it is
reduction in the effectiveness of the synaptic connectiorioc@lized to the contact region between the soma and the
due to diffusion along the dendritic tree. On the otherdendritic cable. We have also included an external bias
hand, there is growing evidence that such a reduction mafsi: I order to simplify our analysis, we shall assume
be compensated by a number of mechanisms including d#aL 7~ + p = € such thate is independent of and
increase in the density of synapses at distal locations argft? = © _fp(f)d§_= €. Furt?ermore, we |m!oos¢ the
voltage-dependent gates on dendritic spines [8]. homogeneity conditioV (¢, x,x') = W(&,x — x') with

In this Letter, we show that the passive membrand” (¢;x) & symmetric function ok. . A
properties of a neuron’s dendritic tree can induce spa- !N the limit of zero diffusion(D — 0) with € > &,
tial pattern formation in a purely excitatory or inhibitory ¥ ¢&n be treated as a fast variable and Egs. (1) and (2)

recurrent network. This provides an alternative mechatr€duce to the standard form

nism for neural pattern formation that relies on the com- oU * , ; ,
bined effect of (i) diffusion along the dendritic tree and 5; ~ eUx,1) + /700 W = 2)f (UK 1) dx
(ii) recurrent interactions via axodendritic synaptic con- b L(2) 3
nections. To expound the basic idea, we shall follow Er- ext\X) (3)

mentrout and Cowan [5] and consider a one-dimensionakith W(x) = e ' [ W(&,x)p(£)dé. Equation (3) is the
network of analog neurons distributed along thexis. basic model of nerve tissue studied by various authors
Let U(x, t) denote the somatic membrane potential of thg1, 2,5,11]. It is known from these works that in the
neuron located at € N at timet. The output firing rate case of local excitation and long-range inhibition one
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can obtain large-scale spatially organized neural activityfor constantW,, W;. The weights are assumed to be

Suppose, for simplicity, that the external biag,(x) =  either purely inhibitory(W, ; < 0) or purely excitatory

— [T, W(x — x/)dx’ so that the resting staté(x) =0  (Wy,, > 0). For simplicity, we impose the additional

for all x is a fixed point of the dynamics. In an analo- condition that the soma is connected to the dendritic cable

gous fashion to Turing or diffusion-driven instabilities in at a single pointé = 0 so thatp(£¢) = poé(£). [More

reaction-diffusion systems [1,12], one finds that the hogenerally, it is reasonable fd¥(¢) to be approximately

mogeneous steady state is stable to small uniform pertuconstant over the domain whepéé) # 0.] Substituting

bations but is (linearly) unstable to small spatially varyingEgs. (7) and (8) into Eq. (6) gives

perturbations of the forn/(x, t) = e”'*7* wherep is the ’

wave number of the pattern andis the so-called growth Alv,p)=¢ + v — Po Al — 2kpoF(v,p), (9)

factor. 2 VoD

We wish to derive conditions for a Turing-like instabil- D b — Do ey

ity in the full model described by Egs. (1) and (2). We F(y,p) = | Wy + W4 — — 1’2 £ —,

assume that the homogeneous zero solufign) = 0, p (# + Dp?) | + p2D

V(£,x) = 0 is a fixed point of the system by taking a (10)

negative external biak, (&, x) = — [~ W(&, x,x') dx'.

Substitution of the solutionU(x,r) = Ae’'*irx and Whered = v + e. o

V(&,x,1) = B(&)e”tiPX into Egs. (1) and (2) linearized ~ We shall use Eq. (9) to prove that a purely inhibitory

about the homogeneous zero solutidli(x,7) =0, OF & pur_el_y excitatory netw_ork_W|th a distribution of

V(£ x,1) = 0yields axodendritic connections satisfying Egs. (7) and (8) can
42B 3 undergo a Turing-like instability. To reduce the number

(e + )B(¢§) = D — + [kW(£,p) + p(§)]A, (4)  of free parameters, we make some further simplifications

2
dg without altering the essential behavior. First, we set
o o = 0, which corresponds to the case of monosynaptic

(e + vA = f p(&)B(&)dé, (5) connectiond¥, = 0 and2kpoW; = W # 0. (Note that

3 it is straightforward to show that a Turing instability
where W (¢, p) is the Fourier transform oW (&, x) with  cannot occur ifW; = 0.) Second, we neglect the
respect tok. On Fourier transforming Eq. (4) with respect dependence of the third term on the right-hand side of
to ¢ and using Eq. (5), we obtain the dispersion relationEq. (9) and se, = é — p3/2VeD. Finally, the units
A(v, p) = 0 where of length and time are fixed by setting =D = 1.

_ . Equation (9) then reduces to the simpler fotw, p) =
Alv.p) =v + & €0 + v — WH(v, p) where

7 pR)[kWk,p) + pK)] dk 1 1=prtw
[P e @ Hon) = s aspme o @
with Wk, p) Zikfgm dg et [7, dx e W(£,x) and A number of properties ofH (v, p) should be noted:
plk) = |2, d&e™p (). (i) H(»,0) = H(v, p) for all », and H(»,0) is a mono-

The condition for a Turing-like instability can be ex- tonically decreasing function o with H(0,0) = 1.
pressed as follows: .(iZ,t\(v,O) # 0 for all Rev = 0 and (i) H(0,p) < 0, forall p > 1 andH(0,v3) = H(», p)
(if) there exists a paiv(p), p) such thatA(v(p),p) = for all p,». A solution to the dispersion relation for a

0 with Rev(p) = 0 andp # 0. It follows from Eq. (6)  fixed p may be obtained graphically by considering the in-
that these conditions depend crucially on the dlstrlbutloqercept ofH(v, p) with the curvey(v) = W~'[e, + »].

of axodendritic connections within the network. Moti- (By symmetry we need only consider positive values
vated by our previous observations concerning the synags;

tic organization of cortical tissue, we make the following First, consider the case of a purely excitatory network.
assumptions concerning the distributisf(£, x): (a) The Property (i) of H(v, p) shows that the zero solution is
average distancg of a synapse from the sbﬁdncrgases stable provided thadd < W < €3/H(0,0) and is unstable
with the separatiofx — x'| between neurons. This prop- gtherwise. However, this does not lead to a Turing-like
erty can be realized by a distribution of the form instability since the range of wave numbers over which
the system is unstable invariably contains the origin. Now
consider the case of a purely inhibitory netw@k < 0).

whereo determines the degree of spread of axon coIIaterI-t follows from property (i) that for |[W] sufficiently

als about the pointg = +x. (b) The density of synapses small there does not exist a solution to the equation

; . . . . A(v,p) = 0 when v = 0, which implies that the zero
is larger at distal locations. We model this by taking squtiI())n is linearly stable. Howeverp 4W| increases, a

W(&) = Wy + Wilé€] (8) critical valueW, = €,/H(0,+/3) = —8¢ is reached for

W, x) = %[e—(ﬁf—fwz”2 + e_(x+§)2/2”2], 7)
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which A(0,+/3) = 0 so thatA(v(p), p) = 0, »(p) = 0 02sl@ \@
over an interval[+/3, p(W)] when W < W,. Thus the H(o.p) ®)
conditions for a Turing-like instability hold. One expects o . o

the resulting pattern to have a spatial variation closely
related to the wave number of the fastest growing linear
mode within the rangg+/3, p(W)]. The existence of a
stable spatial pattern can be confirmed numerically for the ©
full nonlinear model as shown in Fig. 1.

So far we have assumed that the growth factor is real.
If we considerr to be complex then it is possible for a FIG. 2 Plot of functionH;(w, p), i = 1,2, againstw for
Turing-like instability to occur due to a pair of complex Wave numberg = 0,1. (@)i =1,p =0;(b)i =1, p = L,
roots crossing the imaginary axis. Such a scenario i) i=2p=0di=2p=1
a precursor for dynamic pattern formation in which
there exists an oscillating, spatially varying pattern ofThe functions H, and H, are plotted in Fig. 2. It
network activity. [In order to obtain such behavior in can be seen that fop = 1 there exists a unique so-
the reduced system (3), one would require at least Wqution w(p) to H,(w(p), p) = eoHr(w(p), p) with
distinct populations of neurons coupled together [2,5].]H, ,(w(p), p) = 0; there is no such solution when
A necessary condition for dynamic pattern formation is, = (0. Hence a dynamic Turing instability can arise
that there exists a pai@, p # 0 such thatA(iw,p) =  in the case of an excitatory network. The bifurcation
€ +iow — H(iw,p) = 0 with H defined in Eq. (11). point is obtained by determining the minimum positive
(Without loss of generality, we take, p = 0.) Equating value of W for which W' = H,(w(p), p) has a so-
real and imaginary parts leads to the pair of equations |ution. The result wheney = 1 is p = 0.8, w = 0.1,

€ . W = 7.3. [A dynamic Turing instability does not arise
w Hi(w, p) = Av(w)alw, p) + wA-(w)b(w, p), for an inhibitory network since there exists a solution to
| (12) Htl(w(po),]p) = eoHy(w(p), p) with H 2(w(p),p) =0
— = = — A_ atp = 0.
w = Halo.p) = Adwblo.p) = A(walw. p)fe, Although we have restricted ourselves to linear stability
. . 12 analysis, it is possible to establish the existence of spa-
with A+ (o) = (V1 + ? = 1]/2)"/? and tial patterns at the nonlinear level using bifurcation theory
(= pH+ p?)? + w? + 3w?p? along similar lines to Ref. [5]. We briefly indicate how
a(w, p) = [(1 + p2)? + 2P ’ to proceed in the case of a static pattern. To simplify
1+ p22 — 0 — 21 — p*) (13)  the analysis we impose periodic boundary conditions such
b(w, p) = P d P thatU(x + A) = U(x) for all x, etc. The solution space
(1 + p?)? + 02 is thus restricted to continuous, bounded, periodic func-

tions. LetA be a bifurcation parameter associated with
the weight distribution; that is, se¥(&,x) = Aw(&,x)
wherew is independent ofA. Suppose that ag is in-
creased a critical valug, is reached signaling the onset
of a Turing-like instability. At the critical poinfh = A,

we haveA(0, p.) = 0, p. = 2mn./A # 0 for some in-
tegern. with A(v, p) defined in Eq. (6). The basic idea
is to investigate the nature of stationary solutions= 0)

of Egs. (1) and (2) around the bifurcation point. Since
the dendritic membrane potentials appear linearly in these
equations, we can eliminate them to obtain a nonlinear
w ° Volterra integral equation of the form

ViLx)

FIG. 1. Spatial pattern formation in a one-dimensional in- i

hibitory network of neurons distributed over the finite interval Ulx) = /\f K(x — x)tanfxkU(x)] dx', (14)
[0, L] and evolving according to Egs. (1) and (2). The steady- —

state dendritic potentidl (¢, x) is plotted as a function of den- -

dritic coordinate¢ and network coordinate. The dendritc Where K(x) = [~ e Ve/PlEhy(£ x)p(£)dé. (A fac-
tree of each neuron is modeled as a finéi;[g cabl(e of) lehgth tor of [zg\/ﬁ]*l has been absorbed intd and a
attached to the soma at one end such that) = V(0,x) and ; ; ;

V(&,x)/€lg=L = 0 at the other end. The dimensions of var- ?OnV(.)IUtII(.)n. term linear In(i(x) has bzeen negle30ted
ious physical quantities are fixed by settilg= ¢ = x = 1. or simplicity,) Set 2’\ — A= 77"% + A + 0(n),
Also L = 10, ) = 1.0, p(£) = 5(¢).” The weight distribution  U(x) = nUi(x) + n°U2(x) + O(x°) and  expand
is W(&,x) = éW[8(¢ — x) + 6(¢ + x)] with W, = —10. Eq. (14) as a perturbation seriesqn This leads to an
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ordered sequence of equations of the fakilii;(x) = 0,  rons. This would involve replacing(U) in Egs. (2) or
LU:(x) = [K * G;](x), i =2, where L is the linear (3) by a series of delta-function spikes and resettina-
integral operator obtained by linearizing Eq. (14); thatter each spike. Recent work has shown the emergence of
is, LU(x) = U(x) — kA[K = U](x), and = denotes collective excitations in integrate-and-fire networks with
the convolution operator. Her&; is a function of local excitation and long-range inhibition [15, 16], as well
Ui(x) and A, for all k <i. The first equation has as for purely excitatory connections [17, 18]. Although a
the solutionU;(x) = Acod p.x) for some constanA  form of dendritic interaction has been included in these
with 1 = A.kK(p.). The remaining equations can be works using time delays and synaptic transfer functions,
solved systematically provided that an associated set @&fs far as the author is aware, no explicit connection has
solvability conditions is satisfied (the so-called Fredholmbeen made between dendritic structure and pattern forma-
alternative [13]). Define the inner product of two periodiction. An integrate-and-fire neuron is more biologically
functions U,V by (U,V) = g’T/A U(x)V(x)dx. The realistic than a firing-rate model, although it is still not
solvability conditions are then generated by taking theclear that details concerning individual spikes are impor-
inner product of each equation with respect to the lowestant for neural information processing. An advantage of
order solution/; and exploiting the fact that the operator firing-rate models from a mathematical viewpoint is the
L is self-adjoint, that is(U,LV) = (LU, V). [Recall differentiability of the output function; integrate-and-fire
that W(¢, x) is a symmetric function ok.] The result is networks tend to be analytically intractable without re-
(U1, L(K * G;)) = 0foralli = 2. Using the solvability course to further approximations such as mean field the-
conditions fori = 2,3, it can be shown that; = 0 and  ory [17].
Ay = k?A.A%/4. The fact thata, is positive indicates
that one has a supercritical bifurcation, which is generally
associated with the formation of a stable pattern.
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