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Conformal field theory and Bethe ansatz are used to investigate the low energy features of the
spectral function in one dimensional models which exhibit a gap in the spin or in the charge
excitation spectrum. Exotic behavior is found in the superconducting case, where the Green
function displays momentum dependent Tomonaga-Luttinger liquid exponents. The predictions of the
formalism are confirmed by Lanczos diagonalizations in thet-J model up to 32 sites. These results
may be relevant in connection to photoemission experiments in quasi-one-dimensional insulators or
superconductors. [S0031-9007(96)00426-7]
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In the last few years direct and inverse photoemiss
experiments have considerably improved, allowing for
accurate determination of momentum dependent en
spectra in low dimensional systems [1–3]. A first prin
ples interpretation of this class of experiments requ
a deep understanding of the effects of correlations
the electron (or hole) spectral function. One dimensio
(1D) metals [4] have been the subject of an intense th
retical effort which led to a complete characterization
the long wavelength, low energy properties of electron
namics and to the actual calculation of the correlation
ponents which appear in the electron Green function [5
However, some doubt has been cast on the relevanc
these calculations for photoemission experiments bec
most of the quasi-1D systems are close to density w
or superconducting instabilities which open a gap in
charge or spin spectrum [3]. If the excitation spectrum
fully gapped, the Green function takes a free-particle-li
form in every dimension. Instead, the effects ofa single
branchof gapless excitations (either spin or charge) h
not been addressed in detail before, probably becaus
prejudice prevailed that a system with a gap should
play exponentially decaying correlation functions in bo
space and time.

In this Letter, we develop a microscopic theory f
determining the low energy properties of the spec
function in one dimensional correlated electron mod
with a gap either in the charge or in the spin chann
The main result of this work is that the presence
gapless excitations induces anomalous exponents in
Green function, by a nontrivial interaction with th
extra electron (or hole) injected into the system.
a consequence, we generally find a spectral func
with singularities along lines in thesk, vd plane. These
singularities are characterized by critical exponents wh
possibly depend on themomentumk of the electron:
Numerical diagonalizations in thet-J model atJ ­ 2t
fully confirm this picture providing quantitative agreeme
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with predictions based on conformal field theory an
Bethe ansatz techniques.

Spin and charge gaps are treated on the same foo
in this Letter because they are believed to give rise
the same kind of singularities in the spectral functio
despite the quite distinct physical nature of the state.
fact, it is possible to build specific models where th
two regimes are mapped one onto the other: A w
known example is the negativeU Hubbard model at zero
magnetization which is the prototype of one dimension
“superconductors,” i.e., 1D models with spin gap a
quasi off diagonal long range order. This model, v
a particle-hole transformation, is mapped into the h
filled, positiveU system withnonvanishing magnetization
which, on the contrary, is a Mott insulator characteriz
by a charge gap. The full Green function remai
unaltered by particle-hole transformation leading to t
same photoemission spectra in the two cases. In
following, we will explicitly deal only with the repulsive,
half filled case, at arbitrary magnetization. The resu
will, however, hold for both one dimensional insulato
and superconductors, being related only to the presenc
a branch of gapless excitations in the spectrum.

The quantity which we are going to investigate is th
hole Green function,

Gsp, td ­ i kC0j cy
p,s e2itsH2E02idd cp,s jC0l ustd, (1)

where jC0l (E0) is the ground state (energy) of th
system with no holes andustd is the step function.
Because of spin-charge decoupling, the total energyE and
momentump are naturally written as a sum of a holo
term ehskd and a spinon contributionessQd with p ­
k 1 Q. At long wavelengths it is known that holons an
spinons behave as independent particles whose dyna
is governed by two commuting Hamiltonians:Hc and
Hs, respectively. By substituting this decompositionH ­
Hc 1 Hs into Eq. (1) and taking momentum conservatio
into account, we find that the hole Green function can
© 1996 The American Physical Society
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written as a sort of convolution between a holon (Gh) and
a spinon (Z) term,

Gsp, td ­
Z dQ

2p
Ghsp 2 Q, td ZpsQ, td, (2)

whereGhsk, td is just a free propagator:Im Ghsk, vd ­
p dsssv 2 ehskdddd. This simple form of the holon Gree
function is due to the presence of a gap in the cha
excitation spectrum of the model which confines the l
energy processes in the single holon sector. Instead
spinon contributionZ is highly nontrivial due to the
presence of gapless excitations and exhibits anoma
exponents at particular momentaQn. As a result, the mos
relevant singularity in the full spectral function occurs
frequencies determined by the hole dispersion,

Asp, vd ­
1
p

Im Gsp, vd ~ fv 2 ehsp 2 Qndg2Xn spd21.

(3)
Here Xnspd is a momentum dependentcritical exponent
determined by the low energy properties of the spin
dynamics, whileQn ­ s2n 1 1dQF is an odd multiple
of the spinon Fermi momentumQF ­ ps1y2 2 md, m
being the magnetization per site. Equation (2) general
the exact form found in theU ! ` limit of the half
filled Hubbard model [7] whereZpsQ, td was explicitly
calculated and turned out to be independent ofp and t.
In this limit, the hole dispersion isehskd ­ 22 cosk and
the critical exponent takes the valueX0 ­ X21 ­ 1y4.

In the following, we will analyze the long waveleng
behavior ofZpsQ, td which leads to Eq. (3) in the partic
ular case of single (spin down) hole in thet-J model at
arbitrary magnetizationm. The casem ­ 0 gives infor-
mation about the Mott insulator while them . 0 (m , 0)
choice refers to photoemission (inverse photoemiss
experiments in “superconductors” via spin-up (spin-dow
particle-hole transformation in the less than half fill
attractive Hubbard model. Because of the universa
underlying the behavior of one dimensional physics,
expect that these results will be qualitatively valid f
generic 1D electron systems displaying a gap in the
citation spectrum. In fact, it is well known [8] that in th
case the renormalization group flow drives the model
wards the Luther-Emery fixed point irrespective of the
tails of the microscopic Hamiltonian. On the other ha
the t-J model allows for a direct comparison with Lan
zos diagonalizations which can be pushed to fairly la
lattice size in such a system.

The single hole problem in thet-J model can be re
duced to a pure spin problem by a Galileo transforma
[9] which fixes the hole at the originO of theL-site lattice
(L is chosen to be even). In this way, the charge deg
of freedom can be exactly traced out leaving the prob
of an effective momentum dependent spin Hamiltonian

Heff
p ­ 2feipT 1 e2ipTyg 1 J

L22X
i­1

Si ? Si11. (4)

Herep is the total lattice momentum of the one hole st
andT is the translation operator along the squeezed c
e

e

s

s

)

-

-

e

n

with l ­ L 2 1 sites, i.e., without the originO. The
HamiltonianHeff is written as the sum of two physicall
different contributions: The magnetic term is the stand
Heisenberg model withopenboundary conditions becaus
no spin is present at the origin, while the kinetic
the hole manifests itself via the action of the translat
operatorT .

This mapping of the hole problem into a spin Ham
tonian is exact for everyJ and allows one to interpre
the presence of the hole as the inclusion of a spe
type of boundary operatorin the bulk spin Hamiltonian.
An insight to the general features of the energy sp
trum of this Hamiltonian can be obtained by examini
the J ! 0 limit, where all the spin configurations on th
squeezed chain which are eigenstates of the transla
operatorT jcQl ­ eiQjcQl are degenerate provided the
correspond to the same (spinon) momentumQ. This de-
generacy is lifted by the magnetic term, which, at fi
order inJ, selects the lowest energy state of the Heis
berg ring with the given spinon momentumQ. The corre-
sponding hole energy isE ­ ehsp 2 Qd 1 essQd, where
the holon band isehskd ­ 22 cosk and theOsJd spinon
dispersionessQd only depends on the bulk properties
the Heisenberg model. In this limit, the effects of sp
charge decoupling on the energy spectrum come out ra
naturally as well as the role of the hole kinetic contrib
tion in modifying the boundary conditions of the Heise
berg model, from open to periodic. Because of the pe
liar form of the hole boundary operator in Eq. (4), th
long wavelength behavior ofHeff is associated with a
new class of fixed points different from those found
the framework of thestatic impurity problem [10].

After a standard Jordan-Wigner transformation the s
Hamiltonian maps onto a system of interacting spinl
fermions at densityr ­

1
2 2 m. At low energy, the

relevant degrees of freedom are the momenta clos
the Fermi points6QF . It is then possible to take th
continuum limit of the model defining two independe
fermionic fieldscRsxd andcLsxd [6] for the rightk , QF

and left k , 2QF movers on the squeezed chain wi
0 , x , l. The long wavelength limit of the translatio
operator can be written in terms of a well defined spin
momentum operator̂P, T ­ eiP̂ where

P̂ ­ QF

Z l

0
dx hfcy

R sxdcRsxd 2 c
y
L sxdcLsxdg

1 ifcy
R sxd≠xcRsxd 1 c

y
L sxd≠xcLsxdgj.

(5)

As anticipated, the competition between the hole kine
term and the magnetic interaction inHeff selects a
particular effective boundary condition for the interacti
fermion gas which simulates the presence of a scatte
potential at the boundary together with a magnetic fl
across the ring. This gives rise to independent bound
conditions for the right and left movers defined by tw
4605
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phase shifts,

c
y
R sx 1 ld ­eidR c

y
R sxd,

c
y
L sx 1 ld ­eidLc

y
L sxd.

(6)

The long wavelength analysis proceeds by noting that,
to spin-charge decoupling, the effective Hamiltonian sp
into the sum of twocommutingterms

Heff ­ ehsp 2 P̂d 1 HJ (7)

governing charge and spin dynamics, respectively. H
HJ is the usual long wavelength form of the Heisenb
Hamiltonian in terms of the fermionic fields (cL, cR)
[6] with the particular boundary conditions (6). It
known that the interacting Hamiltonian (7) can be turn
into a free Fermi problem by a canonical transformat
[6] which further modifies the boundary conditions (
The bulk Tomonaga-Luttinger liquid properties ofHJ are
described by the dressed chargeKr shown in the inset o
Fig. 1 [5].

Having characterized the long wavelength physics
the effective hole Hamiltonian (4) in terms of the dress
charge and the two phase shifts, let us move to
analysis of the spectral properties of the hole motion.
a first step, we fix our attention on theoverlapzp between
the pure Heisenberg ground state onL sitesjC0l and the
one hole ground statejCpl at fixed momentump,

zp ­ jkCpjcp,#jC0lj2 ~ L22Xnspd. (8)
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FIG. 1. Lowest critical exponentXnspd as a function of the
total momentump of the spin down hole in thet-J model
at J ­ 2 with several magnetizationsm. Results are obtaine
by numerical solution of the set of integral equations defin
the correction to scaling of the one hole ground state ene
[15]. In the inset: Correlation exponent (or dressed char
Kr for the Heisenberg model as a function of magnetizat
obtained by numerical solution of the integral equation forj22
of Ref. [5].
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This quantity naturally enters the calculation of the ho
spectral function as can be immediately checked by
of the Lehmann representation. As indicated in Eq. (
the overlapzp vanishes in the thermodynamic limit with
a critical exponent which can be explicitly evaluated
terms of the previously introduced phase shifts,

Xnspd ­ Kr

µ
dR 1 dL

2p
1 n

∂2

1
1

4Kr

µ
dR 2 dL

2p

∂2

.

(9)

The calculation parallels the known derivation of th
orthogonality catastrophe in the impurity problem [11
Here, the integer numbern defines the total spinon
momentum of the one hole statesQn ­ s2n 1 1dQF

corresponding to an odd number of low energy spinons
The phase shifts (6) are nonuniversal depending on

short wavelength properties of the model; however, it
possible to relate them to the form of the energy spectr
Espd of one hole at fixed momentump which, according
to Eq. (7), can be written as a sum of a charge an
spin contribution. In fact, we expect that low energ
spinon dynamics is governed by some effective conform
field theory which should reflect the structure of the si
corrections to thespinon contributionto the ground state
energy,Espd 2 L e`spd ­ fDEcspd 1 DEsspdgyL with

DEsspd ­ 2ys
p

6
1 2pysXnspd. (10)

Here ys is the spinon velocity:ys ­ dessQdydQ evalu-
ated atQF and Xnspd coincides with the critical expo-
nent (9).

In order to determine the unknown phase shiftsdR and
dL, we have analyzed the size corrections to the grou
state energy (at fixed momentump) in the Bethe ansatz
soluble models: The Hubbard model atU . 0 [12] and
the t-J model atJ ­ 2 [13] with one hole and arbitrary
magnetization. By suitably generalizing the pioneeri
work of Woynarovich [14] to the single hole case, w
found exactly the form (10) of the energy size correctio
with quantitative predictions for the phase shifts which,
fact, explicitly depend on the total momentump at every
nonzero magnetizationm. For m ­ 0, i.e., for the Mott
insulator case, instead, we always find that only one of
two phase shifts is different from zero and takes the va
p , both in the Hubbard and in thet-J model. Another
analytic limit is the J ! 0 at arbitrary magnetization
m where again the phase shifts are independent op
but are functions of the magnetization,dR ­ p s1 2 md
and dL ­ p m. Figure 1 shows the exponentX0spd
as a function of the total momentump for the Bethe
ansatz solvable limit of thet-J model (J ­ 2) at several
magnetizations. A comparison with the value of t
overlap exponent obtained by the use of Eq. (8) throu
Lanczos diagonalization of the model with magnetizati
m ­ 60.25 is shown in Fig. 2. Lattice sizes rangin
from 16 up to 32 sites have been used to fit t
exponent 2Xnspd in Eq. (8) leading to a quite good
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agreement between analytical and numerical results.
comparison gives confidence on the interpretation of
Bethe ansatz results for the single hole size correctio
the framework of conformal field theory.

Now we are ready to use the previous analysis
the evaluation of the hole spectral function. In fa
the spinon contribution to the Green functionZpsQ, td
appearing in (1) can be calculated within the descri
formalism leading to the expression

ZpsR, td ­ kC0je
isP̂R2HJ t1E0tdjC0l. (11)

The dependence on the total momentump occurs only
through the phase shifts (6) defining the boundary co
tion to HJ . The asymptotic behavior ofZpsR, td can be
analytically evaluated as

ZpsR, td ,
eiQnR

sR 2 ystdXnspd1DsR 1 ystdXnspd2D
, (12)

showing that singularities characterized by different
ponents (9) occur at wave vectorsQn ­ s2n 1 1dQF .
The additional critical exponentD can be expressed i
terms of the phase shifts:D ­ sdR 1 dL 1 2pnd sdR 2

dLdys2pd2. When the Fourier transform of Eq. (12)
. 1
r

e

,

,
d,
FIG. 2. Comparison between the analytical results of Fig
for m ­ 60.25 and Lanczos diagonalization. In the latte
case, the exponentXnspd is obtained by a size scaling of th
numerical evaluation of the overlapzp as defined by Eq. (8).
Lines: analytical results, open dots: Lanczos data form ­ 0.25,
full dots: Lanczos data form ­ 20.25.
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substituted into the asymptotic form of the Green functi
(2) we obtain the anticipated expression (3) which con
tutes the main result of this Letter together with the an
lytical evaluation of the critical exponentXnspd in Bethe
ansatz soluble models. Because of the allowed values
n in (9) singularities atQn ­ s2n 1 1dQF are predicted,
determining “shadow bands” in the spectral function.

From a physical point of view, our results show th
the spectral function of Mott insulators and supercond
tors is characterized by branch cut singularities with e
ponents depending, in the latter case, on the momen
p of the injected particle. This feature is shared by
the models we have investigated: The Bethe ansatz s
able Hubbard andt-J models and theJ ! 0 limit of the
tJXY model [15]. We believe that it is a general featu
of hole motion in 1D correlated systems thereby prov
ing definite predictions for the analysis of photoemissi
experiments in quasi-one-dimensional systems charac
ized by a gap either in the charge or in the spin spectru
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