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Spectral Properties of One Dimensional Insulators and Superconductors
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Conformal field theory and Bethe ansatz are used to investigate the low energy features of the
spectral function in one dimensional models which exhibit a gap in the spin or in the charge
excitation spectrum. Exotic behavior is found in the superconducting case, where the Green
function displays momentum dependent Tomonaga-Luttinger liquid exponents. The predictions of the
formalism are confirmed by Lanczos diagonalizations in #ifemodel up to 32 sites. These results
may be relevant in connection to photoemission experiments in quasi-one-dimensional insulators or
superconductors. [S0031-9007(96)00426-7]

PACS numbers: 75.10.Jm, 71.27.+a, 74.25.Gz

In the last few years direct and inverse photoemissionwith predictions based on conformal field theory and
experiments have considerably improved, allowing for theBethe ansatz techniques.
accurate determination of momentum dependent energy Spin and charge gaps are treated on the same footing
spectra in low dimensional systems [1—-3]. A first princi-in this Letter because they are believed to give rise to
ples interpretation of this class of experiments requireshe same kind of singularities in the spectral function,
a deep understanding of the effects of correlations omlespite the quite distinct physical nature of the state. In
the electron (or hole) spectral function. One dimensionafact, it is possible to build specific models where the
(1D) metals [4] have been the subject of an intense thedwo regimes are mapped one onto the other: A well
retical effort which led to a complete characterization ofknown example is the negativé Hubbard model at zero
the long wavelength, low energy properties of electron dyimagnetization which is the prototype of one dimensional
namics and to the actual calculation of the correlation ex*superconductors,” i.e., 1D models with spin gap and
ponents which appear in the electron Green function [5,6]quasi off diagonal long range order. This model, via
However, some doubt has been cast on the relevance af particle-hole transformation, is mapped into the half
these calculations for photoemission experiments becausdled, positiveU system withnonvanishing magnetization
most of the quasi-1D systems are close to density waverhich, on the contrary, is a Mott insulator characterized
or superconducting instabilities which open a gap in theby a charge gap. The full Green function remains
charge or spin spectrum [3]. If the excitation spectrum isunaltered by particle-hole transformation leading to the
fully gapped the Green function takes a free-particle-like same photoemission spectra in the two cases. In the
form in every dimension. Instead, the effectsao$ingle following, we will explicitly deal only with the repulsive,
branchof gapless excitations (either spin or charge) havenalf filled case, at arbitrary magnetization. The results
not been addressed in detail before, probably because théll, however, hold for both one dimensional insulators
prejudice prevailed that a system with a gap should disand superconductors, being related only to the presence of
play exponentially decaying correlation functions in botha branch of gapless excitations in the spectrum.
space and time. The quantity which we are going to investigate is the

In this Letter, we develop a microscopic theory for hole Green function,
determining the low ener roperties of the spectral . —it(H—E)—i8
function ingone dimension?l/ c%rrglated electron rrr)wodels Gp,1) = i (Wolcj e "B ey [ W) 000, (D)
with a gap either in the charge or in the spin channelwhere |¥,) (E;) is the ground state (energy) of the
The main result of this work is that the presence ofsystem with no holes and(z) is the step function.
gapless excitations induces anomalous exponents in tHgecause of spin-charge decoupling, the total enérgynd
Green function, by a nontrivial interaction with the momentump are naturally written as a sum of a holon
extra electron (or hole) injected into the system. Asterm €,(k) and a spinon contributior,(Q) with p =
a consequence, we generally find a spectral functioh + Q. At long wavelengths it is known that holons and
with singularities along lines in thé, w) plane. These spinons behave as independent particles whose dynamics
singularities are characterized by critical exponents whiclis governed by two commuting Hamiltonian&, and
possibly depend on thenomentumk of the electron: Hy, respectively. By substituting this decompositiin=
Numerical diagonalizations in theJ model atJ = 2t H. + H, into Eg. (1) and taking momentum conservation
fully confirm this picture providing quantitative agreementinto account, we find that the hole Green function can be
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written as a sort of convolution between a holaéh, ) and with [ = L — 1 sites, i.e., without the origirD. The
a spinon g) term, Hamiltonian ¢t is written as the sum of two physically
_ [ 49 different contributions: The magnetic term is the standard
Glp.1) = / 27 Gnlp = 0,0 Z,(Q,1), (2) Heisenberg model witbpenboundary conditions because
where G, (k,t) is just a free propagatoim G,(k,@) = no spin is present at the origin, while the kinetic of
m 8(w — €y(k)). This simple form of the holon Green the hole manifests itself via the action of the translation
function is due to the presence of a gap in the chargeperatorr.
excitation spectrum of the model which confines the low This mapping of the hole problem into a spin Hamil-
energy processes in the single holon sector. Instead, thenian is exact for every and allows one to interpret
spinon contributionZ is highly nontrivial due to the the presence of the hole as the inclusion of a special
presence of gapless excitations and exhibits anomaloygpe of boundary operatoin the bulk spin Hamiltonian.
exponents at particular momer@g. As a result, the most An insight to the general features of the energy spec-
relevant singularity in the full spectral function occurs attrum of this Hamiltonian can be obtained by examining

frequenciesldetermined by the hole dispersion, the J — 0 limit, where all the spin configurations on the
Alp,w) = —ImG(p,w) * [0 — e,(p — 0,)X»~1 ~ squeezed chain which are eigenstates of the translation
(P, @) T (p, @) o o(p = 0] operatorT |p) = ¢¢|yp) are degenerate provided they

(3)  correspond to the same (spinon) momenim This de-

Here X, (p) is a momentum dependentitical exponent generacy is lifted by the magnetic term, which, at first
determined by the low energy properties of the spinorprder inJ, selects the lowest energy state of the Heisen-
dynamics, whileQ, = (2v + 1)Qr is an odd multiple  berg ring with the given spinon momentugh The corre-
of the spinon Fermi momentur@r = #(1/2 — m), m  sponding hole energy & = €,(p — Q) + €,(Q), where
being the magnetization per site. Equation (2) generalizeghe holon band ig,(k) = —2 cosk and theO(J) spinon
the exact form found in the/ — « limit of the half  dispersione,(Q) only depends on the bulk properties of
filled Hubbard model [7] whereZ,(Q, 1) was explicitly  the Heisenberg model. In this limit, the effects of spin-
calculated and turned out to be independenpadnds.  charge decoupling on the energy spectrum come out rather
In this limit, the hole dispersion is,(k) = —2cosk and  naturally as well as the role of the hole kinetic contribu-
the critical exponent takes the valdg = X—; = 1/4. tion in modifying the boundary conditions of the Heisen-

In the following, we will analyze the long wavelength berg model, from open to periodic. Because of the pecu-
behavior ofZ,(Q, ) which leads to Eg. (3) in the partic- Jiar form of the hole boundary operator in Eq. (4), the
ular case of single (spin down) hole in the/ model at  |ong wavelength behavior off*'f is associated with a
arbitrary magnetizatiom. The casen = 0 gives infor-  new class of fixed points different from those found in
mation about the Mott insulator while the > 0 (m < 0) the framework of thestaticimpurity problem [10].
choice refers to photoemission (inverse photoemission) After a standard Jordan-Wigner transformation the spin
experiments in “superconductors” via spin-up (spin-down)Hamiltonian maps onto a system of interacting spinless
particle-hole transformation in the less than half filledfermions at densityp = % — m. At low energy, the
attractive Hubbard model. Because of the universalityeleyant degrees of freedom are the momenta close to
underlying the behavior of one dimensional physics, Wene Fermi points=Qr. It is then possible to take the
expect that these results will be qualitatively valid for continuum limit of the model defining two independent
generic 1D electron systems displaying a gap in the extermionic fieldsy (x) andy; (x) [6] for the rightk ~ O
citation spectrum. In fact, itis well known [8] that in this anq |eft k ~ — (0 movers on the squeezed chain with
case the renormalization group flow drives the model tog < < ;. The long wavelength limit of the translation

wards the Luther-Emery fixed point irrespective of the de-gperator can be written in terms of a well defined spinon
tails of the microscopic Hamiltonian. On the other hand'momentum operatcﬁa T = ¢” where

the t-J model allows for a direct comparison with Lanc-

zos diagonalizations which can be pushed to fairly largep _ QF[ldx {[lﬂ;(X)lﬂR(X) _ lﬂg(X)lﬂL(X)]
lattice size in such a system. 0

The single hole problem in theJ model can be re- + l-w);(x)& dr(x) + !J/Z(X)t? b ()]}
duced to a pure spin problem by a Galileo transformation * *
[9] which fixes the hole at the origi@ of the L-site lattice (5)

(L is chosen to be even). In this way, the charge degregs anicipated, the competition between the hole kinetic
of freedom can be exactly traced out leaving the problemerm and the magnetic interaction iH! selects a
of an effective momentum dependfg spin Hamiltonian, aricylar effective boundary condition for the interacting
H — —[oPT + o ?TH 2 7SS, - Siuy, 4 fermlon gas which simulates the presence of a scattering
P Le ¢ ] ; P 4) potential at the boundary together with a magnetic flux
Herep is the total lattice momentum of the one hole stateacross the ring. This gives rise to independent boundary
andT is the translation operator along the squeezed chaioonditions for the right and left movers defined by two
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phase shifts, This quantity naturally enters the calculation of the hole
tﬂ;er(x +1) =e"5f<¢p);(x), spectral function as can be immediately checked by use
+ st (6) of the Lehmann representation. As indicated in Eq. (8),

gr(x + 1) =€ iy (x). the overlap{, vanishes in the thermodynamic limit with

The long wavelength analysis proceeds by noting that, du@ critical exponent which can be explicitly evaluated in
to spin-charge decoupling, the effective Hamiltonian splitgerms of the previously introduced phase shifts,

into the sum of twa:ommutingt?rms %) = K <5R + 5, . >2 . 1 <5R _ 5L>2
H = ey(p — P) + H, (7) A ") T ak,\ 2w )
governing charge and spin dynamics, respectively. Here )

H, is the usual long wavelength form of the Heisenbergrhe calculation parallels the known derivation of the
Hamiltonian in terms of the fermionic fieldsi(, ¥r)  orthogonality catastrophe in the impurity problem [11].
[6] with the particular boundary conditions (6). It is Here, the integer number defines the total spinon
known that the interacting Hamiltonian (7) can be turnedmomentum of the one hole state®, = 2v + 1)Qr
into a free Fermi problem by a canonical transformatiorborresponding to an odd number of low energy spinons.
[6] which further modifies the boundary conditions (6). The phase shifts (6) are nonuniversal depending on the
The bulk Tomonaga-Luttinger liquid properties B are  short wavelength properties of the model; however, it is
described by the dressed chadgg shown in the inset of possible to relate them to the form of the energy spectrum
Fig. 1 [5]. E(p) of one hole at fixed momentum which, according
Having characterized the long wavelength physics ot Eq. (7), can be written as a sum of a charge and a
the effective hole Hamiltonian (4) in terms of the dresse(%pin contribution. In fact, we expect that low energy
charge and the two phase shifts, let us move to thgpinon dynamics is governed by some effective conformal
analysis of the spectral properties of the hole motion. Asjeld theory which should reflect the structure of the size
a first step, we fix our attention on toeerlap(, between  corrections to thespinon contributiorto the ground state
the pure Heisenberg ground state losites| %) and the  energy,E(p) — L e.(p) = [AE.(p) + AE,(p)]/L with
one hole ground statel,) at fixed momentunp, AE,(p) — T ) X, (p) 10
éVp = |<q’p|Cp,l|q’0>|2 oo [7HAP), (8) P v 6 TSP (10)
Here v, is the spinon velocityv,; = de;,(Q)/dQ evalu-
ated atQr and X, (p) coincides with the critical expo-
nent (9).
In order to determine the unknown phase shéftsand
8., we have analyzed the size corrections to the ground
state energy (at fixed momentup) in the Bethe ansatz
soluble models: The Hubbard model &@t> 0 [12] and
the -/ model atJ = 2 [13] with one hole and arbitrary
magnetization. By suitably generalizing the pioneering
work of Woynarovich [14] to the single hole case, we
found exactly the form (10) of the energy size corrections,
with quantitative predictions for the phase shifts which, in
fact, explicitly depend on the total momentymat every
nonzero magnetizatiom. Form = 0, i.e., for the Mott
insulator case, instead, we always find that only one of the
two phase shifts is different from zero and takes the value
7r, both in the Hubbard and in theJ model. Another
analytic limit is the J — 0 at arbitrary magnetization
m where again the phase shifts are independenp of
but are functions of the magnetizatiofy = 7 (1 — m)
p/m and 6; = wm. Figure 1 shows the exponer¥y(p)
FIG. 1. Lowest critical exponenX,(p) as a function of the as a function Of_ the total momentum for the Bethe
total momentump of the spin down hole in the-/ model ansatz solvable limit of the-/ model ( = 2) at several
atJ = 2 with several magnetizations. Results are obtained magnetizations. A comparison with the value of the
by numerical solution of the set of integral equations definingoverlap exponent obtained by the use of Eq. (8) through

the correction to scaling of the one hole ground state energy 5nc705 diagonalization of the model with magnetization
[15]. In the inset: Correlation exponent (or dressed charge) 4025 is sh in Eig. 2. Latti . .
K, for the Heisenberg model as a function of magnetization” = =Y-2> IS Shown In Fg. 2.~ Latlicé Sizeés ranging

obtained by numerical solution of the integral equationder ~ 1fom 16 up to 32 sites have been used to fit the
of Ref. [5]. exponent2X,(p) in Eq. (8) leading to a quite good
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agreement between analytical and numerical results. Thsubstituted into the asymptotic form of the Green function
comparison gives confidence on the interpretation of th€2) we obtain the anticipated expression (3) which consti-
Bethe ansatz results for the single hole size correction itutes the main result of this Letter together with the ana-
the framework of conformal field theory. lytical evaluation of the critical exponeiX, (p) in Bethe
Now we are ready to use the previous analysis formansatz soluble models. Because of the allowed values for
the evaluation of the hole spectral function. In fact,» in (9) singularities a, = 2v + 1)Qf are predicted,
the spinon contribution to the Green functiéh,(Q,r)  determining “shadow bands” in the spectral function.
appearing in (1) can be calculated within the described From a physical point of view, our results show that
formalism leading to the expression the spectral function of Mott insulators and superconduc-
Z,(R.1) = <\I,O|ei([3R—Hjt+Eot)|\I,O>. (11) tors is character_ized_by branch cut singularities with ex-
ponents depending, in the latter case, on the momentum
.p of the injected particle. This feature is shared by all
'the models we have investigated: The Bethe ansatz solv-
able Hubbard and-J models and thg — 0 limit of the
tJxy model [15]. We believe that it is a general feature

The dependence on the total momentpnoccurs only
through the phase shifts (6) defining the boundary cond
tion to H;. The asymptotic behavior o, (R, t) can be
analytically evaluated as

iQ,R . . .
~ e’ of hole motion in 1D correlated systems thereby provid-
Zp(Rst) X ( )+A X ( )7A 2 (12) . . . . . . . .

_ (R — vt)WP*A(R + yr)XP)=8 ing definite predictions for the analysis of photoemission
showing that singularities characterized by different exexperiments in quasi-one-dimensional systems character-
ponents (9) occur at wave vecto®, = (2v + 1)Or.  jzed by a gap either in the charge or in the spin spectrum.
The additional critical exponenh can be expressed in |t js a pleasure to thank M. Fabrizio for extensive
terms of the phase shift& = (6 + 6, + 27»)(6r —  discussions and to acknowledge the kind hospitality at

8.)/(2m)*>. When the Fourier transform of Eq. (12) is g|SSA (A.P.), Cantoblanco University (S.S.), and ISI

o5 foundation (EU Contract No. ERBCHRX-CT920020).
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