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Square Patterns in Bénard-Marangoni Convection

Michael Bestehorn

Institut far Theoretische Physik und Synergetik, Universitat Stuttgart,
Pfaffenwaldring 574, 70550 Stuttgart, Germany
(Received 12 June 1995

The evidence of square patterns in Bénard-Marangoni convection relatively far above threshold is
demonstrated for the first time by means of a direct numerical integration of the three-dimensional
Navier-Stokes equations. It is shown that regular squares are only obtained for a finite Prandtl number.
Finally a qualitative explanation of the obtained sequence of instabilities based on a model of amplitude
equations is discussed.

PACS numbers: 47.20.Dr, 47.32.Cc

If a fluid layer with a free upper surface is heated fromfree upper surface a coupling between temperature and
below convection usually emerges in the form of regulavelocity is established by the surface tension of the fluid
hexagonal patterns. This is known as Bénard-Marangor{e.qg., [9]) forz = 1:
convection (BMC) [1-5]. It is known from experiments , o 2, .
that, if the externally applied temperature gradient if =0, 0:¢=0, oy =-MO, 3.0 =-Bi0,
increased far above the threshold of convection, the 4)
hexagons get more and more disordered and defects builthere M denotes the Marangoni number and is propor-
up of hexagon-pentagon pairs occur [6]. Recently, it wagional to the dependence of the surface tension on tem-
shown experimentally by Nitschke and Thess [7] that goeraturey as well as to the externally applied temperature
fluid unstable to BMC may form also a completely regulardifference; — Ty:
square pattern bifurcating from hexagons as a secondary Y(T\ — To)d
instability (Fig. 1). M= 0 (5)

Direct numerical simulations—In the first part of
this Letter we wish to present numerical results from aThe Biot number Bi was fixed to B+ 0.1, reflecting the
direct solution of the Navier-Stokes equations and themuch lower thermal conductivity of the air compared to
temperature equation for an incompressible fluid withthat of the silicon oil. On the bottorfzx = 0), we assume
finite Pr. We solved the coupled equations for thethe usual rigid boundary conditions (BC's)
Sg;:)ecri]t?cf)irgllzs(se'té)lr,o[lg]a)l! and poloidal partand ¢ of the Or) = b(r) = ¥(r) = .4(r) = 0. 6)
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where T, and Ty are the temperatures on the lower andFIG. 1. Squares obtained experimentally by Nitschke and

upper surfaces of the fluid, respectively, in the staternessats — 3.2, The fluid they used was silicon oil with
without convectionz, is the unit vector in the vertical 3 viscosity of 10 centistokes, corresponding to=P100. In

direction, andd is the height of the layer. On the the dark areas, the fluid is colder and descends.
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convection sets in aM. = 80 in the form of spatially leads to a destabilization of the disordered states as in
periodic patterns with wave vectdk.| = 2 (see, e.g., Fig. 2(a) and catalyzes a further transient until a more or
[9,10]). To solve the full nonlinear problem, we usedless regular square pattern is reached, where eventually
an extension of the algorithm described in detail in [5]only a few defects can survive. It is supposed [7] that
to the case of a finite Pr. In the two lateral directionsthis transient is mediated by pentagons. The pentagons
we assume periodic BC. With our code we are able tare not equilateral but have a smallest side that slowly
describe pattern formation for relatively large values ofvanishes during the transient phase, leaving finally a
the reduced control parameter= (M — M.)/M. up to  square. The time scale on which this ordering effect takes
e = 5. Figure 2(a) shows a stable solution for= 3 and  place is proportional to Pr, just as the relaxation of the
large Pr= 10000 that was achieved afte300z, (t, =  vertical vorticity. If Pr is decreased further, the ordering
d?/k is the vertical diffusion time of heat). The structure effect gets stronger and the time in which the formation
resembles very much those obtained experimentally bgnd stabilization of regular squares takes place becomes
Cerisier et al.[11] and contains mainly pentagons and shorter (Fig. 4).
deformed hexagons (in [6] the working fluid was a Amplitude equations—Hexagons and rolls as well as
silicon oil with Pr= 880). The situation changes if Pr the hysteretic transition between them can be described in
is decreased to smaller, but still large values. Figure 2(bdhe frame of amplitude equations, as shown by numerous
shows a stable structure for Pr500 ande = 3. The authors (for a review, see, e.g., [14,15], and references
pattern is now more ordered and shows larger regiontherein). It is well known that the quadratic terms in the
of regular squares. For still smaller Pr50 we found amplitudes account for the formation of hexagons [16],
an even more regular structure of squares [Fig. 2(c)]. livhereas the cubic nonlinearities may select either rolls or
we decrease the heating to= 1 the typical hexagons squares, depending on the value of the cross coupling term
are reconstructed for all Pr in a very short time ofbetween perpendicular rolls [17]. To be more specific we
about 5¢,. This is in agreement with [7]. Nitschke discuss the following model:
and Thess determined the transition from squares to ;. .
rolls at & = 2.35 = 0.4 for Pr=100. In Fig. 3 we &1 =86+ ALG
used a modified Wigner-Seitz method (e.g., [12,13]) to — £1(Boé? + Bgoés + Beoés + Booél),
construct the elementary cells around the maxima of the ;.
temperature fields at the free surface shown in Fig. 2. &2 = 8o T ALE
Obviously the number of squares (here colored black) — &(Boé3 + Bgoé? + Beoés + Bioél),
increases significantly with decreasing Pr. P

From the above mentioned results one may deduce & =BG T AOE
the flollopl/ving picture: fNear éheFthreIshold oflconvdeﬁction — &3(Boé3 + Bgoél + Beoés + B3oél),
regular hexagons are formed. For larger values dfe PR 2 2 2 2
tendency for the stabilization of squares increases and §4 = 864 — LaBoéi + By + Bas + Bui),
a stationary “mixed state” of squares and hexagons is (7
reached, dominated by many defects, deformed hexagonsr,]d w5 H A litud £ ol ith
and penta-hepta defects as shown in Fig. 2(a). Tha'de > & Hereg; are amplitudes of plane waves wi
vertical vorticity & that is of orderl/Pr and which is Wave VeCtors;, wherek; = [kc|, 2 k; =0, andk,
always present for a finite Pr seems to act as a “lubricant> perpendicular tdk;. The four equations (7) contain

“ " ; . _the solution rolls £; # 0, & =0, i > 1), hexagons
and may help to “soften” the structure. Its inclusion
y help (61 =6 =& #0,& =0), and squaresé( = &4 #

0, & = & = 0) as fixed points. The stability of these

FIG. 2. Contour lines of the temperature at the surface of the
fluid far above thresholdt = 3. Starting from a randomly
distributed initial condition, the numerical integration of (1) was FIG. 3. Wigner-Seitz cells defined by the maxima of the fields
carried out for three different values of Pr unti 3007, was  shown in Fig. 2. The contribution of squares (S), pentagons
reached. All patterns were then stationary. With a decreasinf), and hexagons (H) in percent is for (a)#r10000: 40%
Prandtl number, the tendency to form regular squares increaseS, 45% P, 6% H, (b) P+ 500: 45% S, 40% P, 5% H, (c)
(@) Pr= 10000, (b) Pr=500, (c) Pr= 50. Pr=50:52% S, 37% P, 5% H.
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' ' of the amplitudes is no longer possible. In this sense, all
Pr=500, ] the amplitude equations derived for BMC and discussed
in the literature (e.g., [6,16,18—20]) are not systematic in
e. Under these restrictions we continue considering (7)
A e with (8) as a model. If we chosg, > 0, a scenario as
toob Ve \;/"l';\’ ] shown in Fig. 5 is found. For large enougha transition
from hexagons to squares is now possible, and the region
.08 Pr=50 — . of rolls can no longer be reached. In the phase diagram
100 150 200 250 ; exist large regions of bistability of rolls and hexagons, or
squares and hexagons, here denoted as RH,HR or SH,HS,
FIG. 4. Nusselt number measuring the vertical heat fluxrespectively. The pattern that finally emerges in such a

through the fluid layer for the different runs leading to the final region corresponds to a global minimum of the potential
states shown in Fig. 2. The patterns are stationary when Nu

Pr = 10000 .
1.10

Ny 4 4
reaches a constant value. For very large (or infinite) Pr, pattern 1. 5 By 4
formation ends in a rather disordered state after a short time.V (§i) = — B & Z & + 2481663 — X Z &
For smaller Pr, the states get more and more ordered and may i=1 )y ) ) 12:1
overcome many of the defects on a time scalBr. — Beo(£7€7 + 185 + £763)

— E(BooéT + Baoés + Bzofg)] 9)
solutions depends on the values of the coefficients. In a
previous work [18] we showed by a numerical calculationfrom which (7) can be obtained by variation gf. If
of the coefficients4, By, and Bg, that for BMC always (9) reaches only a local minimum and if the amplitudes
A, By, Bgo > 0 and By < Bgy. Moreover, we found that may depend on the spatial coordinates, small disturbances
By < By SO squares should never be stable and thé&ay lead to regions where the more stable pattern (global
transition goes from hexagons to rollsdfis increased. Minimum) evolves. The domain boundaries separating
On the other hand, using amplitude equations one usualiis region suffer a force (analog to the Peach-Kéhler
computes the coefficients at the critical paine= 0. This  force in solid state physics [22]) and move in such a way
may explain also the relatively small value found bythat (9) will decrease further towards its global minimum.
other authors [19,20] of, = 1.8, where hexagons finally In this way the hysteretic regions in Fig. 5 vanish and
lose their stability and should give way to rolls [in [18] shrink to the dashed line where the values of (9) are
we founde, =~ 0.9 (Bi = 0), a value which later turned equal for the two stable pattern types [23]. We note
out to be erroneous by a factor of 2]. However, inthat even in this case a small region of bistability may
all experiments on BMC, rolls were never obtained andexist if pinning effects between such a front and the
hexagons were stable for much larger valueg §6,21].  underlying small scale structures are taken into account.
A sequence of instabilities that is qualitatively similar to The front can then be trapped by a hexagon (or a
that obtained in experiments is found if we allow the cubicroll/square) for values of the control parameters in the
coefficients to depend weakly an It is sufficient if only
By is assumed to vary linearly:

By = by + BoE. (8) 125

We mention that this assumption is completely heuristic
and will lead to a model that describes the numerically
found sequence of instabilities qualitatively. In fact, all
the coefficients in (7) depend oa; however, we do
not claim to derive them from the basic equations (1)
far above threshold. A more systematic approach should
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at least include amplitude equations for the modes with 0.95F BH
positive eigenvalues. We note also that (8) leads to a Z
higher order expression ia then the usual cubic terms. X

Then it could be important to include at least quartic terms o 20 30 40 g

in the amplitudes (due to symmetry reasons they woulgtiG. 5. Phase diagram showing the regions of different
not change the stability of squares, but that of hexagonstable solutions of the model Egs. (7) withy = 1.8, Bgy =
Also the question of validity of (7) may be asked so farl.5. By = 1.1, andB, according to (8) withh, = 1 and B, =
above threshold. For a pitchfork bifurcatioa & 0) the 005 R: rolls, S: squares, H: hexagons, St6: bistability

. of squares and hexagons, RHR: bistability of rolls and
amplitudes may be expanded and aretf/s). On the hexagons. The first letter in each bistable region denotes that

other hand, ifA # 0, and, moreover4 is not of O(\/e),  pattern that minimizes the potential (9). On the dashed line,
which is always the case for BMC, a propeexpansion the potential for both pattern types is equal.
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vicinity of the dashed line [23,24]. This region increasesalso wish to thank them for interesting discussions and

exponentially with e. Therefore pinning effects may the permission to publish Fig. 1 of this Letter.
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