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Square Patterns in Bénard-Marangoni Convection
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The evidence of square patterns in Bénard-Marangoni convection relatively far above thresh
demonstrated for the first time by means of a direct numerical integration of the three-dimen
Navier-Stokes equations. It is shown that regular squares are only obtained for a finite Prandtl n
Finally a qualitative explanation of the obtained sequence of instabilities based on a model of amp
equations is discussed.

PACS numbers: 47.20.Dr, 47.32.Cc
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If a fluid layer with a free upper surface is heated fro
below convection usually emerges in the form of regu
hexagonal patterns. This is known as Bénard-Marang
convection (BMC) [1–5]. It is known from experiment
that, if the externally applied temperature gradient
increased far above the threshold of convection,
hexagons get more and more disordered and defects
up of hexagon-pentagon pairs occur [6]. Recently, it w
shown experimentally by Nitschke and Thess [7] tha
fluid unstable to BMC may form also a completely regul
square pattern bifurcating from hexagons as a second
instability (Fig. 1).

Direct numerical simulations:—In the first part of
this Letter we wish to present numerical results from
direct solution of the Navier-Stokes equations and
temperature equation for an incompressible fluid w
finite Pr. We solved the coupled equations for t
dimensionless toroidal and poloidal partc and f of the
velocity field (e.g., [8]):Ω

D 2
1
Pr

≠t

æ
DD2c ­ 2

1
Pr

h=== 3 === 3 sṽ ? ===ṽjz ,Ω
D 2

1
Pr

≠t

æ
D2f ­ 2

1
Pr

h=== 3 sṽ ? ===ṽjz , (1)

as well as the equation for the dimensionless deviation
the linear basic temperature profile

hD 2 ≠tjQ ­ D2c 1 ṽ ? ===Q (2)

with the Prandtl number Pr­ nyk being the ratio be-
tween viscosity and thermal conductivity and the horizo
tal LaplacianD2 ­ ≠xx 1 ≠yy. Then temperatureT and
velocity v of the fluid are given as

T sr, td ­ T0 1 sT1 2 T0d fz 1 Qsr, tdg ,

ṽsr, td ­ === 3 hfsr, tdz0j 1 === 3 === 3 hcsr, tdz0j , (3)

v ­
k

d
ṽ ,

where T0 and T1 are the temperatures on the lower a
upper surfaces of the fluid, respectively, in the sta
without convection,z0 is the unit vector in the vertica
direction, andd is the height of the layer. On the
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free upper surface a coupling between temperature a
velocity is established by the surface tension of the flu
(e.g., [9]) forz ­ 1:

c ­ 0 , ≠zf ­ 0 , ≠2
zc ­ 2MQ , ≠zQ ­ 2BiQ ,

(4)
whereM denotes the Marangoni number and is propo
tional to the dependence of the surface tension on te
peratureg as well as to the externally applied temperatur
differenceT1 2 T0:

M ­
gsT1 2 T0dd

rnk
. (5)

The Biot number Bi was fixed to Bi­ 0.1, reflecting the
much lower thermal conductivity of the air compared t
that of the silicon oil. On the bottomsz ­ 0d, we assume
the usual rigid boundary conditions (BC’s)

Qsrd ­ fsrd ­ csrd ­ ≠zcsrd ­ 0 . (6)

A linear stability analysis of (1) and (2) with (4) and
(6) shows that the motionless state loses stability a

FIG. 1. Squares obtained experimentally by Nitschke an
Thess at´ ­ 3.2. The fluid they used was silicon oil with
a viscosity of 10 centistokes, corresponding to Pr­ 100. In
the dark areas, the fluid is colder and descends.
© 1995 The American Physical Society
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convection sets in atMc ø 80 in the form of spatially
periodic patterns with wave vectorjkcj ø 2 (see, e.g.,
[9,10]). To solve the full nonlinear problem, we use
an extension of the algorithm described in detail in [
to the case of a finite Pr. In the two lateral directio
we assume periodic BC. With our code we are able
describe pattern formation for relatively large values
the reduced control parameter´ ­ sM 2 McdyMc up to
´ ­ 5. Figure 2(a) shows a stable solution for´ ­ 3 and
large Pr­ 10 000 that was achieved after300ty (ty ­
d2yk is the vertical diffusion time of heat). The structu
resembles very much those obtained experimentally
Cerisier et al. [11] and contains mainly pentagons an
deformed hexagons (in [6] the working fluid was
silicon oil with Pr ­ 880). The situation changes if P
is decreased to smaller, but still large values. Figure 2
shows a stable structure for Pr­ 500 and ´ ­ 3. The
pattern is now more ordered and shows larger regi
of regular squares. For still smaller Pr­ 50 we found
an even more regular structure of squares [Fig. 2(c)].
we decrease the heating tó­ 1 the typical hexagons
are reconstructed for all Pr in a very short time
about 5ty. This is in agreement with [7]. Nitschke
and Thess determined the transition from squares
rolls at ´ ­ 2.35 6 0.4 for Pr ­ 100. In Fig. 3 we
used a modified Wigner-Seitz method (e.g., [12,13])
construct the elementary cells around the maxima of
temperature fields at the free surface shown in Fig
Obviously the number of squares (here colored bla
increases significantly with decreasing Pr.

From the above mentioned results one may ded
the following picture: Near the threshold of convectio
regular hexagons are formed. For larger values of´ the
tendency for the stabilization of squares increases
a stationary “mixed state” of squares and hexagons
reached, dominated by many defects, deformed hexag
and penta-hepta defects as shown in Fig. 2(a). T
vertical vorticity F that is of order1yPr and which is
always present for a finite Pr seems to act as a “lubrica
and may help to “soften” the structure. Its inclusio

FIG. 2. Contour lines of the temperature at the surface of
fluid far above threshold́ ­ 3. Starting from a randomly
distributed initial condition, the numerical integration of (1) wa
carried out for three different values of Pr untilt ­ 300ty was
reached. All patterns were then stationary. With a decreas
Prandtl number, the tendency to form regular squares increa
(a) Pr­ 10 000, (b) Pr=500, (c) Pr­ 50.
]
s
to
f

by

b)

ns

If

f

to

o
he
2.
k)

ce

nd
s
ns,
he

t”

e

ng
es.

leads to a destabilization of the disordered states as
Fig. 2(a) and catalyzes a further transient until a more
less regular square pattern is reached, where eventu
only a few defects can survive. It is supposed [7] th
this transient is mediated by pentagons. The pentag
are not equilateral but have a smallest side that slow
vanishes during the transient phase, leaving finally
square. The time scale on which this ordering effect tak
place is proportional to Pr, just as the relaxation of th
vertical vorticity. If Pr is decreased further, the orderin
effect gets stronger and the time in which the formatio
and stabilization of regular squares takes place becom
shorter (Fig. 4).

Amplitude equations:—Hexagons and rolls as well as
the hysteretic transition between them can be describe
the frame of amplitude equations, as shown by numero
authors (for a review, see, e.g., [14,15], and referenc
therein). It is well known that the quadratic terms in th
amplitudes account for the formation of hexagons [16
whereas the cubic nonlinearities may select either rolls
squares, depending on the value of the cross coupling te
between perpendicular rolls [17]. To be more specific w
discuss the following model:

Ùj1 ­ ˜́j1 1 Aj2j3

2 j1

°
B0j2

1 1 B60j2
2 1 B60j2

3 1 B90j2
4

¢
,

Ùj2 ­ ˜́j2 1 Aj1j3

2 j2

°
B0j2

2 1 B60j2
1 1 B60j2

3 1 B30j2
4

¢
,

Ùj3 ­ ˜́j3 1 Aj1j2

2 j3

°
B0j2

3 1 B60j2
1 1 B60j2

2 1 B30j2
4

¢
,

Ùj4 ­ ˜́j4 2 j4

°
B0j2

4 1 B30j2
2 1 B30j2

3 1 B90j2
1

¢
,

(7)

and ´ ~ ˜́ . Hereji are amplitudes of plane waves with
wave vectorski , whereki ­ jkcj,

P3
i­1 ki ­ 0, andk4

is perpendicular tok1. The four equations (7) contain
the solution rolls (j1 fi 0 , ji ­ 0 , i . 1), hexagons
(j1 ­ j2 ­ j3 fi 0, j4 ­ 0), and squares (j1 ­ j4 fi

0, j2 ­ j3 ­ 0) as fixed points. The stability of these

FIG. 3. Wigner-Seitz cells defined by the maxima of the field
shown in Fig. 2. The contribution of squares (S), pentago
(P), and hexagons (H) in percent is for (a) Pr­ 10 000: 40%
S, 45% P, 6% H, (b) Pr­ 500: 45% S, 40% P, 5% H, (c)
Pr ­ 50: 52% S, 37% P, 5% H.
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FIG. 4. Nusselt number measuring the vertical heat fl
through the fluid layer for the different runs leading to the fin
states shown in Fig. 2. The patterns are stationary when
reaches a constant value. For very large (or infinite) Pr, patt
formation ends in a rather disordered state after a short tim
For smaller Pr, the states get more and more ordered and
overcome many of the defects on a time scale~ Pr.

solutions depends on the values of the coefficients. In
previous work [18] we showed by a numerical calculatio
of the coefficientsA, B0, and B60 that for BMC always
A, B0, B60 . 0 and B0 , B60. Moreover, we found that
B0 , B90 so squares should never be stable and
transition goes from hexagons to rolls if´ is increased.
On the other hand, using amplitude equations one usu
computes the coefficients at the critical point´ ­ 0. This
may explain also the relatively small value found b
other authors [19,20] of́2 ø 1.8, where hexagons finally
lose their stability and should give way to rolls [in [18
we found´2 ø 0.9 (Bi ­ 0), a value which later turned
out to be erroneous by a factor of 2]. However,
all experiments on BMC, rolls were never obtained an
hexagons were stable for much larger values of´ [6,21].
A sequence of instabilities that is qualitatively similar t
that obtained in experiments is found if we allow the cub
coefficients to depend weakly oń. It is sufficient if only
B0 is assumed to vary linearly:

B0 ­ b0 1 b0 ˜́ . (8)

We mention that this assumption is completely heuris
and will lead to a model that describes the numerica
found sequence of instabilities qualitatively. In fact, a
the coefficients in (7) depend oń; however, we do
not claim to derive them from the basic equations (
far above threshold. A more systematic approach sho
at least include amplitude equations for the modes w
positive eigenvalues. We note also that (8) leads to
higher order expression iń then the usual cubic terms
Then it could be important to include at least quartic term
in the amplitudes (due to symmetry reasons they wou
not change the stability of squares, but that of hexagon
Also the question of validity of (7) may be asked so fa
above threshold. For a pitchfork bifurcation (A ­ 0) the
amplitudes may be expanded and are ofOs

p
´ d. On the

other hand, ifA fi 0, and, moreover,A is not of Os
p

´ d,
which is always the case for BMC, a proper´ expansion
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of the amplitudes is no longer possible. In this sense,
the amplitude equations derived for BMC and discuss
in the literature (e.g., [6,16,18–20]) are not systematic
´. Under these restrictions we continue considering (
with (8) as a model. If we choseb0 . 0, a scenario as
shown in Fig. 5 is found. For large enoughA, a transition
from hexagons to squares is now possible, and the reg
of rolls can no longer be reached. In the phase diagr
exist large regions of bistability of rolls and hexagons,
squares and hexagons, here denoted as RH,HR or SH
respectively. The pattern that finally emerges in such
region corresponds to a global minimum of the potentia

V sjid ­ 2
1
2

"
˜́

4X
i­1

j2
i 1 2Aj1j2j3 2

B0

2

4X
i­1

j4
i

2 B60sj2
1j2

2 1 j2
1j2

3 1 j2
2j2

3 d

2 j2
4 sB90j2

1 1 B30j2
2 1 B30j2

3d

#
(9)

from which (7) can be obtained by variation ofji. If
(9) reaches only a local minimum and if the amplitude
may depend on the spatial coordinates, small disturban
may lead to regions where the more stable pattern (glo
minimum) evolves. The domain boundaries separati
this region suffer a force (analog to the Peach-Köh
force in solid state physics [22]) and move in such a w
that (9) will decrease further towards its global minimum
In this way the hysteretic regions in Fig. 5 vanish an
shrink to the dashed line where the values of (9) a
equal for the two stable pattern types [23]. We no
that even in this case a small region of bistability ma
exist if pinning effects between such a front and th
underlying small scale structures are taken into accou
The front can then be trapped by a hexagon (or
rollysquare) for values of the control parameters in t

FIG. 5. Phase diagram showing the regions of differe
stable solutions of the model Eqs. (7) withB30 ­ 1.8, B60 ­
1.5, B90 ­ 1.1, andB0 according to (8) withb0 ­ 1 andb0 ­
0.05. R: rolls, S: squares, H: hexagons, SHyHS: bistability
of squares and hexagons, RHyHR: bistability of rolls and
hexagons. The first letter in each bistable region denotes
pattern that minimizes the potential (9). On the dashed lin
the potential for both pattern types is equal.
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vicinity of the dashed line [23,24]. This region increas
exponentially with ´. Therefore pinning effects may
cause a mixed state of hexagons and squares and c
explain the disordered states found experimentally as w
as numerically [Fig. 2(a)] for largé and large Pr.

For smaller values ofA, the sequence hexagons
rolls–squares should be found for increasing´. As
was demonstrated recently [20,25],A depends on Pr
and vanishes for Pr­ 0.23c. Indeed our numerica
simulations of the Navier-Stokes equations showed
Pr close to Prc the transition from hexagons to rolls
If ´ is increased further, the rolls get destabilized
a perpendicular set of rolls and give way to squar
However, these squares were not stable but showed
intrinsic time dependence caused by the vertical vortic
that is rather large for this small value of Pr. Of cours
the vertical vorticity is not included in our amplitud
model (7).

In conclusion, we may say that the experimenta
as well as numerically obtained pattern transitions fro
hexagons to squares can be explained by the interac
of only four dominating modes or order paramete
namely, the roll amplitudes. A more complete pictu
could be obtained if the effects of a large scaled verti
vorticity together with spatially slowly varying amplitude
in the way outlined in [26] would be included also
The extension of (7) to more than four modes shou
allow us to compute the coefficients of the amplitu
equations directly from the Navier-Stokes equations
a systematic way far from threshold. This could gi
a more quantitative picture of the experimentally a
numerically observed hierarchy of instabilities. This wo
is currently under progress. The Prandtl number pla
a key role in our observations. If Pr is very large
infinite, the structures obtained far from threshold a
rather disordered. For smaller Pr, regular squares can
seen. For very small Pr we expect rolls near thresho
and for increasinǵ a direct transition to squares i
predicted. However, the additional degrees of freed
due to the vertical vorticity will render the patterns in th
case of small Pr time depending even for small values
´ and should result in phase turbulence and a rich de
dynamics.

I wish to thank K. Nitschke and A. Thess for bringin
the existence of square patterns found in their Béna
Marangoni experiment at Rossendorf to my attention.
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