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Critical Fluctuations in Superconductors and the Magnetic Field Penetration Depth
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The superconducting transition is studied within the one-loop renormalization group in fixed
dimensionD ­ 3 and at the critical point. A tricritical behavior is found and, fork . kc, an attractive
charged fixed point, distinct from that of a neutral superfluid. The critical exponents of the continuous
transition are evaluated, and it is shown that the anomalous dimension of the gauge field equals
unity. This implies the proportionality of the magnetic field penetration depth and the superconducting
correlation length below the transition. The penetration depth exponent is nonclassical. We argue that
it cannot be extracted from the dual theory in a straightforward manner since it is not renormalized by
fluctuations of the dual field. [S0031-9007(96)00297-9]
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The problem of a charged scalar field coupled to
gauge vector potential arises frequently in theoreti
physics. In its original version, it describes formation
a Meissner state in superconductors [1] and Higgs me
anism in particle physics [2]. Furthermore, the nemati
smectic-A transition in liquid crystals [3] and, more re
cently, the transitions between plateaus in the quan
Hall effect [4,5] and the finite-magnetic-field critical be
havior in extreme type-II superconductors [6] have a
been related to this problem. In a superconductor,
scalar field represents the fluctuating superconducting
der parameterC which, BCS pairs being charged, is cou
pled to fluctuations in the electromagnetic potential$A. At
the mean-field level the transition is discontinuous a
remains so when fluctuations inC are included via the
e s; 4 2 Dd expansion [1]. Numerical simulations [7,8
of related lattice models support this scenario for sma
values of the Ginzburg parameterk. However, for large
k, the results are consistent with a continuous, seco
order phase transition [7,8]. The picture obtained in n
merical work is in accordance with the1yn expansion
[1,9] and with duality arguments which connect the latti
version of the theory to a dual gas of interacting vort
loops and the “inverted” 3DXYmodel [7,10].

In this Letter we study this superconducting-Higgs ele
trodynamics (SHE) directly inD ­ 3 within perturbation
theory at the critical point corresponding to the charg
superfluid. Our results are as follows: We first sho
that the anomalous dimension of the gauge field,hA,
equals unity to all orders in perturbative expansion.
combining this result with the Josephson relation, we
gue that the magnetic field penetration depth,l, and the
superconducting correlation length,j, diverge with the
same exponentsnd as the transition is approached fro
below. These results should be contrasted withhA ­ 0
and l ~

p
j at theunstablecritical point for neutral su-

perfluid. We then demonstrate that our one-loop res
imply the presence of the tricritical point in SHE. Fo
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bare k , kc the renormalization group (RG) flows ar
unstable and the transition is likely first order while, f
k . kc, we find a stable fixed point indicating a contin
uous transition. By selecting the regularization which
produces the established numerical value ofkc, we evalu-
aten and the anomalous dimension ofC, hC . Our results
strongly suggest that the exponent forl is nontrivial and
therefore different from the mean-field value suggested
Kiometzis, Kleinert, and Schakel [10]. We propose th
this difference has a physical origin and that their du
theory does not offer any simple way of determining t
exponent ofl. Since the penetration depth is of direct e
perimental interest [11,12], the description of the critic
behavior within theoriginal SHE theory retains its physi
cal significance.

We are interested in the infrared behavior of the SHE

H ­
Z

dD $r

∑
js= 2 ie $AdCs$rdj2 1 m2jCs$rdj2

1
b
2

jCs$rdj4 1
1
2

s= 3 $Ad2

∏
, (1)

where m2 ~ T 2 Tc0, Tc0 is the mean-field transition
temperature,b is a temperature independent consta
and e is the charge of a BCS pair. For generalit
we assume that the order parameterC has n complex
components and that the system isD dimensional,n ­
1 and D ­ 3 being eventually the case of physic
interest. We chose to work in the gauge where
vector potential is purely transverse, i.e., where t
bare gauge-field propagator isDijs $qd ­ sdij 2 q̂iq̂jdyq2.
First, let us discuss the nonperturbative results concern
the anomalous dimension of the gauge field and
divergence of the penetration depth. The anomal
dimension of the gauge-field propagator is defined as

hA ­ 2 lim
p!0

d logZAyd logspd , (2)

whereZA is the gauge-field renormalization factor andp
is the momentum of the gauge-field propagator. Theb
© 1996 The American Physical Society
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function for the charge is

be ­
dê2

r

d logspd
­ ê2

r

µ
D 2 4 2

d logZA

d logspd

∂
, (3)

where ê2
r ­ e2

r yp is the dimensionless renormalize
charge. On approaching the critical point,êr ! ê0 and
be ! 0, so taking the limitp ! 0 in Eq. (3), we obtain

ê2
0sD 2 4 1 hAd ­ 0 . (4)

Assuming a stable charged fixed point in the the
ê0 fi 0, one obtains

hA ­ 4 2 D . (5)

This exact result has an important physical conseque
since it modifies the relation between the correlat
length and the penetration depth as the critical poin
approached from below. In general, the penetration de
scales with the superfluid density below the transition

lhA22 ~ rs , (6)

wherers ~ j22D is the Josephson relation [13]. Clo
to the transition controlled by the attractive charged fix
point if follows that

l ~ j (7)

for all D. In contrast to the scaling governed by theXY
fixed point, wherehA ­ 0 and l ~ jsD22dy2, the ratio
between the two lengths close to the charged critical p
approaches a finite constant. The divergences of b
lengths are determined by the same exponentn.

To obtain the flow diagram for the coupling consta
and the value of critical exponents one must rely
some approximation for theb functions. Here we
perform the perturbative calculation ofb functions in
fixed dimension and at the critical point. To the lowe
order in perturbation theory, the contributions to the s
energy, polarization, and the quartic vertex are given
y

e,

s
th

t
th

t
-
y

FIG. 1. Lowest order contributions to the self-energy (a
polarization (b), and the quartic vertex (c). The full and dash
lines are the order parameter and the gauge-field propaga
respectively.

the diagrams in Fig. 1. Due to the choice of gauge, t
remaining one-loop diagrams for the quartic vertex
vanish when the external momenta go to zero [2]. No
that this procedure explicitly preserves Ward identiti
associated with gauge invariance. Since we wish
work directly in D ­ 3, we are forced to define the
renormalized value ofb at a finite momenta of externa
legs to avoid the infrared divergence in the last diagra
in Fig. 1. This divergence is a consequence of gau
invariance which requires massless gauge field. T
renormalized coupling constantbr is defined at the usua
symmetric point

$ki ? $kj ­ s4dij 2 1d p2y4, i, j ­ 1, 2, 3 (8)

and at the critical point where the renormalized mass ofC

vanishes. There are two relevant coupling constants in
problem: the quartic term coupling and the charge. T
standard procedure [14] gives the renormalized coupl
constants to lowest order
-
rnal
e2
r ­ e2 1

2nGs1 2 Dy2dG2sDy2d
s4pdDy2GsDd

e4qD24 ,

br ­ b 2

µ
n 1 3
222Dy2

1 1

∂
Gs2 2 Dy2dG2sDy2 2 1d

s4pdDy2GsD 2 2d
b2pD24 1

4sD 2 1dGs2 2 Dy2dGsDy2 2 1dGsDy2d
s4pdDy2GsD 2 1d

be2pD24

2
2sD 2 1dGs2 2 Dy2dG2sDy2 2 1d

s4pdDy2GsD 2 2d222Dy2
e4pD24 ,

(9)

whereGsxd is the factorial function, the momentum scalep is defined above, andq is the momentum of the gauge
field propagator. Hereafter, we setD ­ 3 andn ­ 1, and define dimensionless couplings with respect to the exte
momentump, b̂ ­ byp, ê2 ­ e2yp. If we choose the reference momentum of the gauge-field propagator asq ­ pyc,
wherec is a constant, theb functions are

besb̂, êd ; dê2yd logspd ­ 2ê2 1 cê4y16 , (10)

bbsb̂, êd ;
db̂

d logspd
­ 2b̂ 1

1
8

s2
p

2 1 1db̂2 2
1
2

b̂ê2 1
1

2
p

2
ê4 , (11)

and we dropped the subscriptr for renormalized coupling constants in the last two equations.
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The aboveb functions depend explicitly on the intro
duced ratio of momenta,c. This reflects the known prop
erty of the RG in fixed dimension that, unlike in thee-
expansion scheme, the coefficients in the perturbative
ries forb functions are procedure dependent [14]. Con
quently, additional information is needed to fix the val
of c in the one-loop calculation. We now note an im
portant property of Eqs. (10) and (11): Ifc is treated as
a free parameter, the RG flow diagram has a struc
pictured in Fig. 2 (forc . 5.16). Besides the standar
Gaussian and the neutral superfluid fixed points, there
two charged fixed points of the above flow equatio
sb̂2, ê2

0d and sb̂1, ê2
0d, where ê2

0 ­ 16yc and b̂1 and b̂2

are the real roots of the equationbbsb̂, ê0d ­ 0. Stability
analysis shows that the fixed point with the larger va
of b̂ ­ b̂1 is attractive, while the one witĥb ­ b̂2 is un-
stable in the direction of quartic term coupling. Now w
look for the straight RG trajectories,̂b ­ 2k2ê2, by de-
manding the invariance of the constantk under RG trans-
formation:

dsb̂yê2dyd logspd ­ 0 . (12)

In our one-loop analysis this leads to

bbs2k2ê2
0, ê2

0d ­ 0 , (13)

resulting in two straight-line RG trajectories for which

k2
1,2 ­ b̂1,2y2ê2

0 . (14)

Together with the result for the stability of thesb̂2, ê2
0d

fixed point, this implies that there is a tricritical line in th
theory given by a Ginzburg-Landau parameter:

k2
c ­

b̂2

2ê2
0

­
c 1 8 2

q
c2 1 16c 2 32s2 1

p
2d

8s2
p

2 1 1d
.

(15)

This solution appears physically plausible and is in acc
with Ref. [15] in that the tricritical point is determine
by a particular value of the Ginzburg parameter, as
would expect from a mean-field argument. Consequen
s

s

pth
-
d
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FIG. 2. The schematic flow diagram for the dimensionle
chargeê and the dimensionless quartic term couplingb̂ (for
c . 5.16). Note that, for c ­ 5.7, ê2

0 ­ 2.81, b̂1 ­ 3.22,
b̂2 ­ 1.80, k1 ­ 1.07y

p
2, k2 ­ 0.80y

p
2.
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we fix the value ofc by demanding thatkc in Eq. (15)
matches the value obtained via the duality transforma
of the lattice SHE [15] (see also numerical Mon
Carlo results of Ref. [8]):kc > 0.8y

p
2. This condition

results inc ­ 5.7 s.5.16d. The other straight trajector
given by thek1 solution connects the Gaussian and
superconducting fixed point.

Having fixed the value of the parameterc, we thus
obtain the flow diagram of Fig. 2 [16,17]. The expone
at the attractive fixed point are

hC ­ 2ê2
0y4 ­ 20.70 , (16)

n ­
1
2 s1 1 b̂1y8 2 ê2

0y8d ­ 0.53 , (17)

with the numerical values calculated forc ­ 5.7 skc ­
0.8y

p
2d. It is worth mentioning that our procedure giv

a respectable value for the correlation length exponen
the neutral superfluid fixed point:nXY ­ 0.63. The value
of the anomalous dimension is rather large and nega
but it does satisfyhC . 21 in D ­ 3. Note that small
reductions in the assumed value forkc rapidly makehC

less negative (as do the next-order perturbative ter
while the value forn is more robust: Forxc ­ 0.42y

p
2

[8], h4 ­ 20.2 and n ­ 0.62. The other exponent
follow from standard scaling relations. It is conceivab
however, that the hyperscaling relation does not hold,
to the presence of long-range gauge forces in (1).
that case, we could define a characteristic dimensiondc,
from 2 2 a ­ dcn. By combining our results with the
prediction of the dual theorya ­ aXY ­ 20.013, one
obtainsdc > 3.8. This is close todc ­ 4 which would
arise from a naive scaling of current-current interaction

To the lowest order ine ; 4 2 D the b functions
derived from Eqs. (9) completely reproduce the res
of the RG defined at zero external momenta and fi
mass [1,16]. This is to be expected since the dimensi
regularization and the minimal subtraction scheme lea
unique values of the coefficients in theb functions [14].
The parameterc then does not appear at all, the attract
fixed point exists only forn . 182.95, and the exponent
agree with our in this limit [18].

The exponent for the magnetic field penetration de
is n ­ 0.53s0.62d. While this is not far from the mean
field value of1y2 suggested by Kiometzis, Kleinert, an
Schakel [10] on the basis of the dual theory, it is cle
from our procedure that this exponent is nontrivial a
determined by the structure of the charged fixed po
This is an important aspect of the physics of this proble
In the dual approach the partition function of the origin
problem is related to the one for the interacting vor
loops [7]. The dual description is a theory of a sca
complex field coupled to amassivevector potential [10]
and is in the universality class of the 3DXY model [10].
This description is useful in providing the informatio
on thermodynamic quantities. For example, the spec
heat exponenta can be calculated from the hyperscalin
relation, which holds in the dual theory, and has the va
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for the 3DXYmodel. The dual approach, however, offe
little help in calculating exponents which characteri
correlation functions of the original superconducting ord
parameter. In particular, the magnetic field penetrat
depth appears in the dual description via the mass
the “dual” vector field. If one assumes that this ma
vanishes fast enough at the transition at thebare level,
then, at the critical point of the dual theory, this ma
does not renormalize, i.e., it remains equal to its b
value [19]. Since the mass of the dual vector field
what determines the inverse of the penetration depth,
implication is that the divergence of the penetration de
at the superconducting transitioncannotbe extracted from
the RG analysis of the dual model [10], even in princip
To calculate the penetration depth exponent it is neces
to apply the RG analysis to theoriginal SHE theory. This
fact supplied the primary motivation for the present wo

Our value for the penetration depth exponent,n ­
0.53, is not seen in the experimental results of Ref. [1
which are consistent with the neutral 3DXY behavior,
but is in excellent agreement with those of Ref. [1
While the critical region in which charge of BCS pai
is relevant is rather narrow [even for high temperatu
superconductors] due to the small value of the fi
structure constant, the fact that our exponent is close
the mean-field value may effectively “enlarge” this regio
In general, as we approach the transition from belo
we expect that the mean-field behavior of the penetra
depth crosses over to the intermediate regime of neu
superfluid followed by the ultimate charged superflu
critical behavior. The exponent in this intermediate 3
XY regime is ,1y3, considerably different from both
the mean-field value and the ultimate value of,0.53.
Consequently, on purely empirical grounds, the reg
over which the penetration depth can be described by
crossover behavior should be quite narrow. Finally,
should mention that experiments on other systems
6] might be even more promising in studying the SH
critical behavior since there the effective “fine structu
constant” can be of order unity.

In summary, we studied the superconducting tran
tion by calculating the one-loopb functions in fixed di-
mensionD ­ 3. The gauge invariance leads to infrare
divergences which are handled by defining the ren
malized coupling constants at finite values of the ext
nal momenta and right at the critical point. We elim
inate the remaining freedom in the definition of reno
malized couplings by requiring that our analysis yields
the previously established [8,15] numerical value of t
Ginzburg parametersk ­ kcd which characterizes the tri
critical point. We then evaluate critical exponents at t
attractive charged fixed point of our theory. It is show
that the penetration depth and the correlation length
verge in the same way close to the charged fixed poin
all orders in perturbation theory.
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After the submission of this manuscript, the paper
B. Bergerhoff, F. Freire, D. F. Litim, S. Lola, and C
Wetterich [Phys. Rev. B53, 5734 (1996)] has appeare
in which the SHE theory is studied by applying vario
truncations to the nonperturbative RG flow equations.
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[6] Z. Tešanović, Phys. Rev. B51, 16 204 (1995).
[7] C. Dasgupta and B. I. Halperin, Phys. Rev. Lett.47, 1556

(1981).
[8] J. Bartholomew, Phys. Rev. B28, 5378 (1983).
[9] L. Radzihovsky, Europhys. Lett.29, 227 (1995).

[10] M. Kiometzis, H. Kleinert, and A. M. J. Schakel, Phy
Rev. Lett.73, 1975 (1994); Fortschr. Phys.43, 697 (1995).

[11] S. Kamal, D. A. Bonn, N. Goldenfeld, P. J. Hirschfeld, R
Liang, and W. N. Hardy, Phys. Rev. Lett.73, 1845 (1994).

[12] Z. H. Lin, G. L. Spalding, A. M. Goldman, B. F. Bayman
and O. T. Valls, Europhys. Lett.32, 573 (1995). This pape
also contains a detailed comparison with Ref. [11].

[13] B. D. Josephson, Phys. Lett.21, 608 (1969).
[14] J. Zinn-Justin,Quantum Field Theory and Critical Phe

nomena(Oxford University Press, Oxford, 1993).
[15] H. Kleinert, Lett. Nuovo Cimento35, 405 (1982).
[16] The flow diagram with the same topology follows fro

the largen limit in D ­ 4 2 e. See, for example, I. D.
Lawrie, Nucl. Phys.B200[FS 14], 1 (1982); J. Phys. C
15, L879 (1982);16, 3527 (1983).

[17] A. Kovner, P. Kurzepa, and B. Rosenstein, Mod. Ph
Lett. A 14, 1343 (1993).

[18] In this context we should note that within our theory t
numerical value forc is sufficiently large to allow for
charged critical points even in 3D (i.e.,e ­ 1) and for
n ­ 1.

[19] Under the assumption that the penetration depthl goes
as sTc 2 T d2m, our RG analysis of the dual theor
shows thatl is not renormalized by the fluctuation
of the dual field if m . 1y3. The mean-field exponen
for l suggested in Ref. [10] satisfies this condition [
does the value 0.53(0.62) found in this work], but
is clear from our analysis that this exponent cannot
determined solely from the dual theory. The expon
for l is renormalized by the critical fluctuations of th
superconductingorder parameter and takes on a nontriv
value when such fluctuations are accounted for wit
the original SHE theory. Note that dual theory, wh
combined with Eq. (7), suggestsm ­ nxy.
4591


