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Critical Fluctuations in Superconductors and the Magnetic Field Penetration Depth
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The superconducting transition is studied within the one-loop renormalization group in fixed
dimensionD = 3 and at the critical point. A tricritical behavior is found and, for> «., an attractive
charged fixed point, distinct from that of a neutral superfluid. The critical exponents of the continuous
transition are evaluated, and it is shown that the anomalous dimension of the gauge field equals
unity. This implies the proportionality of the magnetic field penetration depth and the superconducting
correlation length below the transition. The penetration depth exponent is nonclassical. We argue that
it cannot be extracted from the dual theory in a straightforward manner since it is not renormalized by
fluctuations of the dual field. [S0031-9007(96)00297-9]

PACS numbers: 74.40.+k

The problem of a charged scalar field coupled to aare k < k. the renormalization group (RG) flows are
gauge vector potential arises frequently in theoreticalnstable and the transition is likely first order while, for
physics. In its original version, it describes formation of k > k., we find a stable fixed point indicating a contin-
a Meissner state in superconductors [1] and Higgs mechitous transition. By selecting the regularization which re-
anism in particle physics [2]. Furthermore, the nematic—produces the established numerical valua gfwe evalu-
smecticA transition in liquid crystals [3] and, more re- atev and the anomalous dimension¥f 7y . Our results
cently, the transitions between plateaus in the quanturstrongly suggest that the exponent foiis nontrivial and
Hall effect [4,5] and the finite-magnetic-field critical be- therefore different from the mean-field value suggested by
havior in extreme type-1l superconductors [6] have alsdKiometzis, Kleinert, and Schakel [10]. We propose that
been related to this problem. In a superconductor, th¢his difference has a physical origin and that their dual
scalar field represents the fluctuating superconducting otheory does not offer any simple way of determining the
der paramete¥ which, BCS pairs being charged, is cou- exponent ofA. Since the penetration depth is of direct ex-
pled to fluctuations in the electromagnetic potential At perimental interest [11,12], the description of the critical
the mean-field level the transition is discontinuous andehavior within theoriginal SHE theory retains its physi-
remains so when fluctuations M are included via the cal significance.
€ (= 4 — D) expansion [1]. Numerical simulations [7,8] We are interested in the infrared behavior of the SHE:
of related lattice models support this scenario for smaller

values of the Ginzburg parameter However, for large H= [ dD7[I(V — AP + w2wF)P
k, the results are consistent with a continuous, second- b |
order phase transition [7,8]. The picture obtained in nu- + ?|\1f(?)|4 + > (V X 2)2}, (1)

merical work is in accordance with the/n expansion
[1,9] and with duality arguments which connect the latticewhere u? < T — Ty, T is the mean-field transition
version of the theory to a dual gas of interacting vortextemperature,b is a temperature independent constant,
loops and the “inverted” 3IXY model [7,10]. and e is the charge of a BCS pair. For generality,
In this Letter we study this superconducting-Higgs elecwe assume that the order parameterhasn complex
trodynamics (SHE) directly itD = 3 within perturbation ~components and that the systemOsdimensional,n =
theory at the critical point corresponding to the charged and D = 3 being eventually the case of physical
superfluid. Our results are as follows: We first showinterest. We chose to work in the gauge where the
that the anomalous dimension of the gauge fiej,  Vvector potential is purely transverse, i.e., where the
equals unity to all orders in perturbative expansion. Bybare gauge-field propagatorfy;(§) = (8;; — §:4,)/q*-
combining this result with the Josephson relation, we arFirst, let us discuss the nonperturbative results concerning
gue that the magnetic field penetration depthand the the anomalous dimension of the gauge field and the
superconducting correlation lengtl, diverge with the divergence of the penetration depth. The anomalous
same exponentr) as the transition is approached from dimension of the gauge-field propagator is defined as
below. These results shoulq .be cor]trasted wijth= 0 na = — lim dlogZ,/dlog(p), )
and A « /& at theunstablecritical point for neutral su- p—0
perfluid. We then demonstrate that our one-loop resultsvhereZ, is the gauge-field renormalization factor apd
imply the presence of the tricritical point in SHE. For is the momentum of the gauge-field propagator. Phe
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function for the charge is Q N
~~ ’\
de? d1ogZ, a) + A 4 (;.4.

~2
e = = r - - ] 3
.= Tingy ~ ¥l r
where ¢2 = ¢2/p is the dimensionless renormalized b Q O
- - + - A

charge. On approaching the critical poiét,— &, and
B. — 0, so taking the limitp — 0 in Eq. (3), we obtain

e5(D — 4+ my) =0. ()] ) o
. . . c X + + +% K
Assuming a stable charged fixed point in the theory ~7

ey # 0, one obtains

FIG. 1. Lowest order contributions to the self-energy (a),
na=4-D. (5) polarization (b), and the quartic vertex (c¢). The full and dashed

This exact result has an important physical consequench€S aré the order parameter and the gauge-field propagators,
. . e ' . _“réspectively.

since it modifies the relation between the correlation

length and the penetration depth as the critical point is

approached from below. In general, the penetration dept

scales with the superfluid density below the transition as {he diagrams in Fig. 1. Due to the choice of gauge, the
remaining one-loop diagrams for the quartic vertex all

AN pg, (6)  vanish when the external momenta go to zero [2]. Note
where p; « ¢270 is the Josephson relation [13]. Close that this procedure explicitly preserves Ward identities

to the transition controlled by the attractive charged fixec@ssociated with gauge invariance. Since we wish to
point if follows that work directly in D = 3, we are forced to define the

renormalized value ob at a finite momenta of external

A =g (7) legs to avoid the infrared divergence in the last diagram
for all D. In contrast to the scaling governed by tk¥  in Fig. 1. This divergence is a consequence of gauge
fixed point, wheren, = 0 and A « £°~2/2 the ratio invariance which requires massless gauge field. The
between the two lengths close to the charged critical pointenormalized coupling constant is defined at the usual
approaches a finite constant. The divergences of botsymmetric point
lengths are determined by the same exponment ..

To obtain the flow diagram for the coupling constants ki kj = (46;; — ) p%/4, i,j=1,273 (8)

and the value of critical exponents one must rely on
some approximation for the3 functions. Here we and atthe critical point where the renormalized mas¥ of
perform the perturbative calculation g8 functions in  vanishes. There are two relevant coupling constants in the
fixed dimension and at the critical point. To the lowestproblem: the quartic term coupling and the charge. The
order in perturbation theory, the contributions to the selfstandard procedure [14] gives the renormalized coupling
energy, polarization, and the quartic vertex are given |b)constants to lowest order

e (47)P/2T(D) T

b <n +3 N 1) e - D/2T2(D/2 — 1)
' 22-D/2 (4m)P2T(D - 2)

2D — DI = D/2)T*D/2 = 1) 4 p_4

- @m)PT(D — 22202 P
whereI'(x) is the factorial function, the momentum scgés defined above, and is the momentum of the gauge-

field propagator. Hereafter, we sbt= 3 andn = 1, and define dimensionless couplings with respect to the external

momentump, b = b/p, ¢ = ¢*/p. If we choose the reference momentum of the gauge-field propagajor=ag/c,
wherec is a constant, th@ functions are

5 2, 2nI'(1 — D/2)T3(D/2) A D4

N 4D - NI'2 — D/2)T'(D/2 — 1)[(D/2) bepP 4

bzpD*4
(4m)P/2T(D — 1) ©)

Be(b,2) = de*/dlog(p) = —&> + ce*/16, (10)

. db PO D . 1. 1
b,e) = =—b+ —(2vV2 + Db* — —be* + —=o*, 11
By(b,e) 210g(p) 8( V ) Sbe 2\/53 (11)

and we dropped the subscripfor renormalized coupling constants in the last two equations.
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The abovegB functions depend explicitly on the intro- we fix the value ofc by demanding thak. in Eq. (15)
duced ratio of momenta, This reflects the known prop- matches the value obtained via the duality transformation
erty of the RG in fixed dimension that, unlike in tke  of the lattice SHE [15] (see also numerical Monte
expansion scheme, the coefficients in the perturbative s&arlo results of Ref. [8])«x. = 0.8/+/2. This condition
ries for 8 functions are procedure dependent [14]. Conseresults inc = 5.7 (>>5.16). The other straight trajectory
guently, additional information is needed to fix the valuegiven by thex. solution connects the Gaussian and the
of ¢ in the one-loop calculation. We now note an im- superconducting fixed point.
portant property of Egs. (10) and (11): dfis treated as Having fixed the value of the parameter we thus
a free parameter, the RG flow diagram has a structurebtain the flow diagram of Fig. 2 [16,17]. The exponents
pictured in Fig. 2 (forc > 5.16). Besides the standard at the attractive fixed point are

Gaussian and the neutral superfluid fixed points, there are T
two czharged Afixe(g points of2 the above flow equations, mv = ~&/4 = =070, (16)
(b—,ep) and (b4, e3), whereeg = 16/c and by and b- b= Y01+ by/8 — 62/8) = 053, 17)

are the real roots of the equatig (b, 2;) = 0. Stability
analysis shows that the fixed point with the larger valuewith the numerical values calculated fer= 5.7 (k. =

of b = b is attractive, while the one with = h_ isun-  0.8/+/2). It is worth mentioning that our procedure gives
stable in the direction of quartic term coupling. Now we a respectable value for the correlation length exponent at
look for the straight RG trajectorie@, = 2«2%2%, by de-  the neutral superfluid fixed pointyy = 0.63. The value
manding the invariance of the constantinder RG trans- of the anomalous dimension is rather large and negative

formation: but it does satisfypy > —1 in D = 3. Note that small
d(h/e*)/dlog(p) = 0. (12) reductions .in the assumed value far rapidly mal_<en\p
o less negative (as do the next-order perturbative terms)
In our one-loop analysis this leads to while the value forv is more robust: Fox, = 0.42/+/2
Br(2x%e3,23) =0, (13) [8], m4 = —02 and » = 0.62. The other exponents

follow from standard scaling relations. It is conceivable,
5 R > however, that the hyperscaling relation does not hold, due
Ky _ = by -/2¢. (14) o the presence of long-range gauge forces in (1). In
Together with the result for the stability of thé_,e3)  that case, we could define a characteristic dimensipn,
fixed point, this implies that there is a tricritical line in the from 2 — a = d.v. By combining our results with the

resulting in two straight-line RG trajectories for which

theory given by a Ginzburg-Landau parameter: prediction of the dual theoryr = axy = —0.013, one
A obtainsd,. = 3.8. This is close tad. = 4 which would

, b ct+8-— \/6‘2 + 16c — 322 + V2) arise from a naive scaling of current-current interactions.
e ™ g2 T 82v2 + 1) : To the lowest order ine = 4 — D the B functions

(15) derived from Egs. (9) completely reproduce the results
) ) ) ) . f the RG defined at zero external momenta and finite
This solution appears physically plausible and is in accorgn,5511,16]. This is to be expected since the dimensional
with Ref. [15] in that the tricritical point is determined yqqjarization and the minimal subtraction scheme lead to
by a particular value of the Ginzburg parameter, as Ongnique values of the coefficients in thfunctions [14].
would expect from a mean-field argument. Consequentlyrhe narametec then does not appear at all, the attractive
. N fixed point exists only forn > 182.95, and the exponents
P- '} agree with our in this limit [18].
The exponent for the magnetic field penetration depth
8t //L‘\/ is v = 0.53(0.62). While this is not far from the mean-
- + & field value of1/2 suggested by Kiometzis, Kleinert, and
. Schakel [10] on the basis of the dual theory, it is clear
TR,'_%":I'CAL from our procedure that this exponent is nontrivial and
determined by the structure of the charged fixed point.
This is an important aspect of the physics of this problem:
In the dual approach the partition function of the original
problem is related to the one for the interacting vortex
loops [7]. The dual description is a theory of a scalar
complex field coupled to anassivevector potential [10]
and is in the universality class of the 30y model [10].
FIG. 2. The schematic flow diagram for the dimensionlessThiS description is useful in providing the information

charge and the dimensionless quartic term coupliagffor ~ ©N thermodynamic quantities. For example, the Sp?CiﬁC
¢ >5.16). Note that, forc = 5.7, 83 = 2.81, b, = 3.22, heat exponentx canbe calculated from the hyperscaling

b- = 1.80, ks = 1.07//2, k- = 0.80/~/2. relation, which holds in the dual theory, and has the value
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0 Xy l“?



VOLUME 76, NUMBER 24 PHYSICAL REVIEW LETTERS 10uNE 1996

for the 3DXY model. The dual approach, however, offersthe Aspen Center for Physics where part of the work was

little help in calculating exponents which characterizeperformed. This work has been supported in part by NSF

correlation functions of the original superconducting ordeiGrant No. DMR-9415549. |.F.H. has also been supported

parameter. In particular, the magnetic field penetratioroy NSERC of Canada.

depth appears in the dual description via the mass of After the submission of this manuscript, the paper by

the “dual” vector field. If one assumes that this massB. Bergerhoff, F. Freire, D.F. Litim, S. Lola, and C.

vanishes fast enough at the transition at btaee level,  Wetterich [Phys. Rev. B53, 5734 (1996)] has appeared

then, at the critical point of the dual theory, this massin which the SHE theory is studied by applying various

does not renormalize, i.e., it remains equal to its bardruncations to the nonperturbative RG flow equations.

value [19]. Since the mass of the dual vector field is

what determines the inverse of the penetration depth, the

implication is that the divergence of the penetration depth

at the superconducting transiticannotbe extracted from  [1] B.I. Halperin, T.C. Lubensky, and S.K. Ma, Phys. Rev.

the RG analysis of the dual model [10], even in principle. Lett. 32, 292 (1974).

To calculate the penetration depth exponent it is necessary2] S. Coleman and E. Weinberg, Phys. Rev. D 1988

to apply the RG analysis to theriginal SHE theory. This (1973). _

fact supplied the primary motivation for the present work. [3] P-G. de Gennes, Solid State Commud, 753 (1972);
Our value for the penetration depth exponent= (Tl'é:7'8;‘”ben‘°’ky and J-H. Chen, Phys. Rev.1, 366

0.5_3, is not seen in the gxperlmental results of Ref. [11], [4] X. G. Wen and Y. S. Wu, Phys. Rev. Lefi0, 1501 (1993).

Whlc_h are consistent with the ne_utral 3RY behavior, [5] L. Pryadko and S.C. Zhang, Phys. Rev. L&t8, 3282

but is in excellent agreement with those of Ref. [12]. (1994).

While the critical region in which charge of BCS pairs [6] z. Tesanovi¢ Phys. Rev. B51, 16 204 (1995).

is relevant is rather narrow [even for high temperature [7] C. Dasgupta and B.l. Halperin, Phys. Rev. Ldff, 1556

superconductors] due to the small value of the fine  (1981).

structure constant, the fact that our exponent is close to[8] J. Bartholomew, Phys. Rev. B8, 5378 (1983).

the mean-field value may effectively “enlarge” this region. [9] L. Radzihovsky, Europhys. Let29, 227 (1995).

In general, as we approach the transition from below[10] M. Kiometzis, H. Kleinert, and A.M.J. Schakel, Phys.

we expect that the mean-field behavior of the penetration _ ReV. Lett.73,1975 (1994); Fortschr. Phy43, 697 (1995).

depth crosses over to the intermediate regime of neutrgjrl] S. Kamal, D. A. Bonn, N. Goldenteld, P.J. Hirschfeld, R.

superfluid followed by the ultimate charged superfluid Liang, and W.N. Hardy, Phys. Rev. Lew3, 1845 (1994).

L . . . : [12] Z.H. Lin, G.L. Spalding, A. M. Goldman, B.F. Bayman,
critical behavior. The exponent in this intermediate 3D and O. T. Valls, Europhys. Let82, 573 (1995). This paper

XY regime is ~1/3, considerably different from both also contains a detailed comparison with Ref. [11].

the mean-field value and the ultimate value ©0.53.  [13] B.D. Josephson, Phys. Leftl, 608 (1969).
Consequently, on purely empirical grounds, the regiorj14] J. zinn-Justin,Quantum Field Theory and Critical Phe-
over which the penetration depth can be described by the  nomena(Oxford University Press, Oxford, 1993).
crossover behavior should be quite narrow. Finally, weg15] H. Kleinert, Lett. Nuovo Ciment@5, 405 (1982).

should mention that experiments on other systems [3116] The flow diagram with the same topology follows from
6] might be even more promising in studying the SHE  the largen limit in D =4 — . See, for example, I.D.

critical behavior since there the effective “fine structure Lawrie, Nucl. Phys.B200[FS 14] 1 (1982); J. Phys. C

constant” can be of order unity. 15, L879 (1982):16, 3527 (1983).

. . .[17] A. Kovner, P. Kurzepa, and B. Rosenstein, Mod. Phys.
In summary, we studied the superconducting transi: Lett. A 14, 1343 (1993).

tion by calculating the one-lqoﬁ fgnctlons In f'xe_d di- [18] In this context we should note that within our theory the
mensionD = 3. The gauge invariance leads to infrared numerical value forc is sufficiently large to allow for
divergences which are handled by defining the renor-  charged critical points even in 3D (i.ec, = 1) and for
malized coupling constants at finite values of the exter- , =1.

nal momenta and right at the critical point. We elim- [19] Under the assumption that the penetration depthoes
inate the remaining freedom in the definition of renor- as (I. — T)™#, our RG analysis of the dual theory
malized couplings by requiring that our analysis yields to ~ shows thatA is not renormalized by the fluctuations
the previously established [8,15] numerical value of the  ©f the dual field if x > 1/3. The mean-field exponent
Ginzburg parameteix = «.) which characterizes the tri- for A suggested in Ref. [10] satlsfl.es thls condition [a§
critical point. We then evaluate critical exponents at the ~ 9°€s the value 0.53(0.62) found in this work], but it
attractive charged fixed point of our theory. It is shown Is clear from our analysis that this exponent cannot be

. . . determined solely from the dual theory. The exponent
that the penetration depth and the correlation length di- for A is renormalized by the critical fluctuations of the

verge in the same way close to the charged fixed pointto  gyperconductingrder parameter and takes on a nontrivial

all orders in perturbation theory. _ ' value when such fluctuations are accounted for within
We acknowledge useful conversations with Professor I.  the original SHE theory. Note that dual theory, when

Affleck and Professor O.T. Valls and the hospitality of combined with Eq. (7), suggests = v,,.

4591



