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Crystallization of the One-Component Plasma at Finite Temperature
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We have determined the coexistence at positive temperature between a Wigner crystal and a fluid
plasma using path integral Monte Carlo. The total energies are significantly different from classical
and semiclassical predictions. The location of the phase transition between liquid and solid is higher in
temperature than predicted by a generalized Lindemann criterion. Some features of the phase diagram
can be understood using a novel application of the Clausius-Clapeyron equation. We find a maximum
melting temperature 06.0(5) X 1073 Ry atr, = 180(20). [S0031-9007(96)00437-1]

PACS numbers: 71.10.Ca, 68.35.Rh, 64.70.Dv, 67.90.+z

An important model in the study of many body sys- most astrophysical systems, since the de Broglie wave-
tems is the one-component plasma (OCP), which consistength, measured relative to the separatioris less than
of some type of charged particle (an atomic nucleus, founity. The OCP has so far been simulated at zero tem-
example), and a rigid neutralizing background. When theperature by Ceperley and Alder [12] for both fermions and
particles are fully ionized atoms, the OCP is thought to beébosons [transition at® = (T = 0) = 160 for bosons
a good approximation to the interiors of compact stellarand particles with Boltzmann statistics]. Hansen [4] and
remnants such as white dwarfs. Crystallization plays afPollock and Hansen [5] discussed quantum effects by in-
important role in the evolution of such objects [1] sincecluding the first, ordef:?, term in the Wigner-Kirkwood
the cooling rate for white dwarfs strongly depends on theexpansion for the free energy. Higher order corrections
phase of the matter in the star—whether free thermal mowere later added by Hansen and Viellefosse (HV) [13].
tion or lattice vibrations are the central cooling mecha-lyetomi, Ogata, and Ichimaru [14] used the fluid cor-
nism. Equivalently, if the particles are electrons in arections along with a quantum Monte Carlo simulation
uniform positive neutralizing background, then we arefor the crystal phase to estimate the importance of quan-
modeling the homogeneous electron gas, or “jellium,”tum effects. Chabrier, Ashcroft, and DeWitt [15], how-
a model for electrons in a solid. I is the mass of ever, have pointed out that, under typical white dwarf
the particles under study artt their charge, themy =  conditions, the expansion parameter proposed by Hansen
li2/m(Ze)? is a natural length scale, alRly = 72/2ma  and Viellefosse and later used by lyetoetial. is larger
the energy scale (the usual rydbergs, if the particles arhan one. Chabrier [16] has instead used a generalized
electrons). The dimensionless ratia, = a/ay, where Lindemann criterion [17] based on an analytic harmonic
a = (3V/4mwN)'/3, is used to construct the dimension- crystal model, interpolated between zero temperature and
less classical coupling parametdr, = (Ze)?/akzT =  the classical regime, to find that, although the energies
2/rskpT. The classical OCP requires only to express in both phases may be strongly affected by quantum ef-
the equation of state. The quantum OCP requires an adects, the transition is still close to the classical pre-
ditional parameter, eithet; or kgT. Also of interest is diction over much of the region of interest. Nagata,
the ratio of the thermal de Broglie wavelengthy, to  Nagara, and Nakamura [18] used a new expansion scheme
a, Ar/a = (h2/mkgT)"*/a = (T'/ry)"/2. Quantum ex- to add quantum corrections to the Slattery-Doolan-DeWitt
change (particle statistics) is unimportant when< a. (SDD) [7] fluid energies, along with path integral Monte

Wigner [2] noted long ago that the electron gas wouldCarlo (PIMC) calculations of the solid phase. lida and
form a crystal at very low temperatures. In a very earlylchimaru [19] have also recently estimated the freezing
computer simulation, Brush, Sahlin, and Teller [3] ob-transition for fermions at finite temperature using the
served a transition in a 32 particle classical Monte Carldyetomi et al. solid results and calculations of second-
simulation atl’,, = 125. Hansen [4] and Pollock and order exchange diagrams for the fluid phase.
Hansen [5] followed with an improved calculation, and We have used PIMC to study the state of the OCP at
foundI',, = 155 = 10. Van Horn [6] used the empirical finite temperature, and thus directly calculated the im-
Lindemann ratio melting criterion to determine a transitionportance of quantum effects in the two phases. The
atl',, = 170 = 10. Other studies have converged on thePIMC method allows us to simulate quantum systems
current estimate df,, = 172 — 178 [7—10]. Application at finite temperature with no uncontrolled approximations
of pressure to the quantum solid results in melting [2,11].[20—23]. The long range nature of the Coulomb interac-

Significantly less has been said regarding the quanturtion presents a difficulty, but is tractable [5,24,25].
effects on the melting point of the OCP. Until very re- To locate the transition between the crystal and liquid
cently, classical studies were thought to be sufficient fophases in the OCP, we use two criteria: dynamical melt-
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ing and free energy crossing. The dynamical melting crithermodynamic limit using the expression
terion simply brackets the location of the phase transition

between simulations in either phase by examining whether Eny — En = _&3(2) . (1)
a given phase is stable. To determine the phase of each Nrs

individual simulation, either observing the value of the For the liquid phase, we found instead that
total energy relative to its neighboring temperatures or ex-
amining the structure factor was enough. This method is Ey — E. =[0.035(18) — 0.0018(DI'}/Nry.  (2)
simple, but many long simulations are needed to pinpointThe crystal size dependence is within a standard deviation
the transition, metastability can be problematic, and thef that of Ceperley [25], and the liquid size dependence
dependence on the size of the system is significant. reduces to that of SDD [7] af — 1. The effect
The free energy crossing (determined by thermodyof the size dependence on the melting transition is
namic integration of the total energies) can be more easilyaken into account by including the size correction term
corrected for size dependence, as we discuss below. Wappropriately integrated) in the free energy.
have sampled many temperatures (in both phases) at fourTo determine the free energy we fit the total crystal
specific densitiesr{ = 1200, 200, 160, 100), and various energy with an anharmonic form,
densities (again in both phases) at three fixed temperatures ) 3
(B = 18750,23437.5,37500), as shown by the points in (E = E)/N =ao + ai/T" + ar/ 17, (3)
Fig. 1. The crossed points represent simulations in the/hereE,/N = 1.79185/r, is the energy of the ideal bcc
crystal phase, and the open points the liquid phase. lattice. A similar expression may be used to fit the liquid
In order to determine the dependence of the totaknergy data at low temperatures. The exceptional case
energy upon the finite size of the system, we studieds for r, = 190, where (for both the crystal and low
selected temperatures in the simulations;at= 1200 and  temperature liquid) the fit was made § — E;)/N =
200. The crystal phase size dependence was observeg + ¢/T3/2. This expression is more slowly varying
to vary inversely withN and 2. No temperature in I" than Eq. (3), and more accurately reflects the
dependence was evident in the size correction ternenergy dependence at larger densities. Figure 2 shows
for the crystal phase, enabling us to extrapolate to theur crystal energy data (points with error bars and solid
lines) at several densities as a functionlaf The solid
points at zero temperature are the Monte Carlo values of
Ceperley [25]. The dashed curves are the energies of the
harmonic crystal model proposed by Chabrier [16]. The
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FIG. 1. The OCP phase diagram. The open circleshare — L L 1
54 simulations which remained in the liquid phase, while the 4x10-° 6x107°
crosses are simulations which remained in the crystal phase kT [Ry]

The demarcation between these two sets of points marks the

dynamical melting point. The dotted line is the predictedFIG. 2. A comparison of the PIMC crystal energies (points
melting curve of Chabrier [16], and the dashed line is thewith error bars and solid lines) with the harmonic crystal model
classical melting point. The dash-dotted line is the projectedf Chabrier [16] (dotted lines) and the zero temperature Monte
superfluid—normal fluid transition temperature based upon tha€arlo values of Ceperley [25] (filled squares). The calculations
of “He [22]. Points with error bars are our PIMC melting of lyetomi et al. [14] (dot-dashed lines) lie between our results
points. The solid line is provided only to guide the eye. and those of the harmonic model. Note the scaling-by.
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extrapolation of the present results to zero temperaturies reached. Our PIMC liquid energies are in agreement
is in good agreement with the previous zero temperatureith the classical Monte Carlo values of SDD at the
calculations (within error bars). We also note that thehighest temperatures. The corrections computed by lida
harmonic model is not adequate to describe the finiteand Ichimaru [19] do not show the instabilities of the
temperature energies, although it does appear to do wedkemiclassical corrections, but are more appropriate for
at extremely low temperature, and for densities wherdermions, and are not included in Fig. 3.
the total energy is very slowly varying with respect to The freezing transition (determined using the free en-
temperature. The PIMC results of lyetorat al.[14] ergies), before allowing for finite size effects, was con-
show a slight improvement over the harmonic model, andgistent with the dynamical melting point observed in the
lie between the harmonic prediction and our results. simulations. We have found that size effects, which favor
The liquid energies at constant density show a muchhe crystal phase, shift the transition temperature by ap-
stronger temperature dependence, so they become magreoximately 10% above thy = 54 melting point. This
challenging to fit. There is no satisfactory microscopicbrings the transition td’,, = 175(7), 185(17), 240(23) for
model of quantum liquids to use to obtain a simpler; = 1200, 200, 160, and r, = 149(8) for all three con-
expansion scheme, but we found that an expansion of th&ant temperature lines.
liquid energy in terms of"!/4 works well for the range of Figure 4 plots the Lindemann’s ratig;, of the OCP

densities and temperatures that we have explored, crystal determined by the PIMC simulations, and com-
6 pares it with Chabrier's harmonic model. Note the

(E — Ey)/N = Zbil"("“‘)/“. (4) importance of anharmonic effects even at relatively low

i=0 temperatures for the larger densities. The Lindemann ra-

For low temperatures, a functional similar to Eq. (3)tio is more sensitive to these effects than is the total en-
should instead be used for the liquid energy. Figure Zrgy. Our results for the Lindemann ratio do not show
plots our PIMC liquid energies as a function bf for finite size dependence within our statistical errors.
several densities, in comparison with the classical results The slope of the melting curve can also be determined
of SDD and the semiclassical calculations of HV. Theby using the Clausius-Clapeyron relation in conjunction
departure from the classical fluid is clear, and occurswith thermodynamic quantities found using PIMC. We
at higher temperatures (smalldf) as the density is work in the r;!-T plane, since the uniform rigid back-
increased «; is lowered). Note the instability of the ground fixes the microscopic density, in contrast to the
semiclassical expression of Hansen and Vieillefosse [13)incharged system, where pressure and temperature would
even at moderately large values &f, when the de be specified. The transition between liquid and solid
Broglie wavelength becomes comparable to the average determined by the equivalence of the free energy,
interparticle separation, well before the transition regionfF(r!, kzT), in the two phases. The virial relation for
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FIG. 3. The thermal excess energy in the OCP fluid phase ( FIG. 4. The Lindemann ratio of the OCP crystal as a function
and solid lines), compared with the classical fluid simulationsof I" for selected densities, compared with the harmonic crystal
of SDD [7] (dotted lines), and the semiclassical calculations ofmodel of Chabrier [16] (dashed line). The classical value of
HV [13] (dashed lines). the Lindemann ratio at melting &155.
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the OCPpV = (E + K)/3, wherep is the pressure and

We have presented a PIMC study of the OCP freezing

K the kinetic energy, implies that the transition line (with transition at finite temperature. We have found that the
Bose, Fermi, or Boltzmann statistics) obeys the differensolid-liquid boundary is quite close to the classical line for

tial equation

d(2/ry) _ 5EN
d(kgT) 6Ky + SEy’ ©)

where SEy = E,/N — E;/N and 6Ky = K,/N —

an extended portion of the phase diagram, far further than
expected based upon a consideration of the generalized
Lindemann melting criterion. The Lindemann criterion

fails due to the large anharmonic effects present in the
crystal phase. Although the quantum effects are relatively

K;/N are the changes in total and kinetic energy betweef@rge near the transition, quantum contributions to the two

the crystal £,,K,) and liquid E;, K;) phases. In the
classical regimed Ky < S6Ey, so the slope of the melt-
ing curve (in these units) iF = 175. The first quantum
correction to the slope is given by [13]

d(z/rs)~ F_3
o 11+ @(r3> o]

(6)

Eventually, a turning point is reached (in our PIMC

data near, = 160), whendEy = — 6Ky, and the slope
becomes singular.
8Ey — 0, and the slope is very small.
our PIMC determined slope at = 1200, 200, and 160

Near the top of the phase diagra
Table | lists

phases are nearly equal, making the classical prediction
of the melting point valid for a large portion of the OCP
phase diagram.
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