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Crystallization of the One-Component Plasma at Finite Temperature
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We have determined the coexistence at positive temperature between a Wigner crystal and a fluid
plasma using path integral Monte Carlo. The total energies are significantly different from classical
and semiclassical predictions. The location of the phase transition between liquid and solid is higher in
temperature than predicted by a generalized Lindemann criterion. Some features of the phase diagram
can be understood using a novel application of the Clausius-Clapeyron equation. We find a maximum
melting temperature of6.0s5d 3 1025 Ry at rs . 180s20d. [S0031-9007(96)00437-1]

PACS numbers: 71.10.Ca, 68.35.Rh, 64.70.Dv, 67.90.+z
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An important model in the study of many body sy
tems is the one-component plasma (OCP), which con
of some type of charged particle (an atomic nucleus,
example), and a rigid neutralizing background. When
particles are fully ionized atoms, the OCP is thought to
a good approximation to the interiors of compact ste
remnants such as white dwarfs. Crystallization plays
important role in the evolution of such objects [1] sin
the cooling rate for white dwarfs strongly depends on
phase of the matter in the star—whether free thermal
tion or lattice vibrations are the central cooling mech
nism. Equivalently, if the particles are electrons in
uniform positive neutralizing background, then we a
modeling the homogeneous electron gas, or “jellium
a model for electrons in a solid. Ifm is the mass of
the particles under study andZe their charge, thena0 ­
h̄2ymsZed2 is a natural length scale, andRy ­ h̄2y2ma2

0
the energy scale (the usual rydbergs, if the particles
electrons). The dimensionless ratio,rs ­ aya0, where
a ­ s3Vy4pNd1y3, is used to construct the dimensio
less classical coupling parameter,G ­ sZed2yakBT ­
2yrskBT . The classical OCP requires onlyG to express
the equation of state. The quantum OCP requires an
ditional parameter, eitherrs or kBT . Also of interest is
the ratio of the thermal de Broglie wavelength,lT , to
a, lT ya ­ sh̄2ymkBT d1y2ya ­ sGyrsd1y2. Quantum ex-
change (particle statistics) is unimportant whenlT ø a.

Wigner [2] noted long ago that the electron gas wo
form a crystal at very low temperatures. In a very ea
computer simulation, Brush, Sahlin, and Teller [3] o
served a transition in a 32 particle classical Monte Ca
simulation atGm ­ 125. Hansen [4] and Pollock an
Hansen [5] followed with an improved calculation, a
foundGm ­ 155 6 10. Van Horn [6] used the empirica
Lindemann ratio melting criterion to determine a transit
at Gm ­ 170 6 10. Other studies have converged on t
current estimate ofGm ­ 172 2 178 [7–10]. Application
of pressure to the quantum solid results in melting [2,1

Significantly less has been said regarding the quan
effects on the melting point of the OCP. Until very r
cently, classical studies were thought to be sufficient
572 0031-9007y96y76(24)y4572(4)$10.00
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most astrophysical systems, since the de Broglie wa
length, measured relative to the separationa, is less than
unity. The OCP has so far been simulated at zero te
perature by Ceperley and Alder [12] for both fermions a
bosons [transition atr0

s ­ rssT ­ 0d ­ 160 for bosons
and particles with Boltzmann statistics]. Hansen [4] a
Pollock and Hansen [5] discussed quantum effects by
cluding the first, order̄h2, term in the Wigner-Kirkwood
expansion for the free energy. Higher order correctio
were later added by Hansen and Viellefosse (HV) [1
Iyetomi, Ogata, and Ichimaru [14] used the fluid co
rections along with a quantum Monte Carlo simulatio
for the crystal phase to estimate the importance of qu
tum effects. Chabrier, Ashcroft, and DeWitt [15], how
ever, have pointed out that, under typical white dwa
conditions, the expansion parameter proposed by Han
and Viellefosse and later used by Iyetomiet al. is larger
than one. Chabrier [16] has instead used a generali
Lindemann criterion [17] based on an analytic harmon
crystal model, interpolated between zero temperature
the classical regime, to find that, although the energ
in both phases may be strongly affected by quantum
fects, the transition is still close to the classical pr
diction over much of the region of interest. Nagat
Nagara, and Nakamura [18] used a new expansion sch
to add quantum corrections to the Slattery-Doolan-DeW
(SDD) [7] fluid energies, along with path integral Mont
Carlo (PIMC) calculations of the solid phase. Iida an
Ichimaru [19] have also recently estimated the freezi
transition for fermions at finite temperature using th
Iyetomi et al. solid results and calculations of second
order exchange diagrams for the fluid phase.

We have used PIMC to study the state of the OCP
finite temperature, and thus directly calculated the i
portance of quantum effects in the two phases. T
PIMC method allows us to simulate quantum system
at finite temperature with no uncontrolled approximatio
[20–23]. The long range nature of the Coulomb intera
tion presents a difficulty, but is tractable [5,24,25].

To locate the transition between the crystal and liqu
phases in the OCP, we use two criteria: dynamical me
© 1996 The American Physical Society
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ing and free energy crossing. The dynamical melting
terion simply brackets the location of the phase transi
between simulations in either phase by examining whe
a given phase is stable. To determine the phase of
individual simulation, either observing the value of t
total energy relative to its neighboring temperatures or
amining the structure factor was enough. This metho
simple, but many long simulations are needed to pinp
the transition, metastability can be problematic, and
dependence on the size of the system is significant.

The free energy crossing (determined by thermo
namic integration of the total energies) can be more ea
corrected for size dependence, as we discuss below.
have sampled many temperatures (in both phases) at
specific densities (rs ­ 1200, 200, 160, 100), and various
densities (again in both phases) at three fixed tempera
(b ­ 18 750, 23 437.5, 37 500), as shown by the points i
Fig. 1. The crossed points represent simulations in
crystal phase, and the open points the liquid phase.

In order to determine the dependence of the to
energy upon the finite size of the system, we stud
selected temperatures in the simulations atrs ­ 1200 and
200. The crystal phase size dependence was obse
to vary inversely with N and r

3y2
s . No temperature

dependence was evident in the size correction t
for the crystal phase, enabling us to extrapolate to
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FIG. 1. The OCP phase diagram. The open circles areN ­
54 simulations which remained in the liquid phase, while t
crosses are simulations which remained in the crystal ph
The demarcation between these two sets of points marks
dynamical melting point. The dotted line is the predict
melting curve of Chabrier [16], and the dashed line is
classical melting point. The dash-dotted line is the projec
superfluid–normal fluid transition temperature based upon
of 4He [22]. Points with error bars are our PIMC meltin
points. The solid line is provided only to guide the eye.
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thermodynamic limit using the expression

EN 2 E` ­ 2
3.03s8d

Nr
3y2
s

. (1)

For the liquid phase, we found instead that

EN 2 E` ­ f0.035s18d 2 0.0018s1dGgyNrs . (2)

The crystal size dependence is within a standard devia
of that of Ceperley [25], and the liquid size dependen
reduces to that of SDD [7] asG ! 1. The effect
of the size dependence on the melting transition
taken into account by including the size correction te
(appropriately integrated) in the free energy.

To determine the free energy we fit the total crys
energy with an anharmonic form,

sE 2 E0dyN ­ a0 1 a1yG2 1 a2yG3 , (3)

whereE0yN ­ 1.79185yrs is the energy of the ideal bc
lattice. A similar expression may be used to fit the liqu
energy data at low temperatures. The exceptional c
is for rs # 190, where (for both the crystal and low
temperature liquid) the fit was made bysE 2 E0dyN ­
a0 1 cyG3y2. This expression is more slowly varyin
in G than Eq. (3), and more accurately reflects t
energy dependence at larger densities. Figure 2 sh
our crystal energy data (points with error bars and so
lines) at several densities as a function ofG. The solid
points at zero temperature are the Monte Carlo value
Ceperley [25]. The dashed curves are the energies o
harmonic crystal model proposed by Chabrier [16]. T
e.
e

d
t

FIG. 2. A comparison of the PIMC crystal energies (poin
with error bars and solid lines) with the harmonic crystal mo
of Chabrier [16] (dotted lines) and the zero temperature Mo
Carlo values of Ceperley [25] (filled squares). The calculatio
of Iyetomi et al. [14] (dot-dashed lines) lie between our resu
and those of the harmonic model. Note the scaling byr3y2

s .
4573
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extrapolation of the present results to zero temperat
is in good agreement with the previous zero temperat
calculations (within error bars). We also note that t
harmonic model is not adequate to describe the fin
temperature energies, although it does appear to do
at extremely low temperature, and for densities wh
the total energy is very slowly varying with respect
temperature. The PIMC results of Iyetomiet al. [14]
show a slight improvement over the harmonic model, a
lie between the harmonic prediction and our results.

The liquid energies at constant density show a mu
stronger temperature dependence, so they become m
challenging to fit. There is no satisfactory microscop
model of quantum liquids to use to obtain a simp
expansion scheme, but we found that an expansion of
liquid energy in terms ofG1y4 works well for the range of
densities and temperatures that we have explored,

sE 2 E0dyN ­
6X

i­0

biG
si24dy4. (4)

For low temperatures, a functional similar to Eq. (
should instead be used for the liquid energy. Figure
plots our PIMC liquid energies as a function ofG for
several densities, in comparison with the classical res
of SDD and the semiclassical calculations of HV. T
departure from the classical fluid is clear, and occ
at higher temperatures (smallerG ) as the density is
increased (rs is lowered). Note the instability of the
semiclassical expression of Hansen and Vieillefosse [
even at moderately large values ofG, when the de
Broglie wavelength becomes comparable to the aver
interparticle separation, well before the transition regi
(
ns
o

ion
stal
of
FIG. 3. The thermal excess energy in the OCP fluid phasen
and solid lines), compared with the classical fluid simulatio
of SDD [7] (dotted lines), and the semiclassical calculations
HV [13] (dashed lines).
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is reached. Our PIMC liquid energies are in agreem
with the classical Monte Carlo values of SDD at t
highest temperatures. The corrections computed by
and Ichimaru [19] do not show the instabilities of th
semiclassical corrections, but are more appropriate
fermions, and are not included in Fig. 3.

The freezing transition (determined using the free
ergies), before allowing for finite size effects, was co
sistent with the dynamical melting point observed in t
simulations. We have found that size effects, which fa
the crystal phase, shift the transition temperature by
proximately 10% above theN ­ 54 melting point. This
brings the transition toGm . 175s7d, 185s17d, 240s23d for
rs ­ 1200, 200, 160, and rs . 149s8d for all three con-
stant temperature lines.

Figure 4 plots the Lindemann’s ratio,g, of the OCP
crystal determined by the PIMC simulations, and co
pares it with Chabrier’s harmonic model. Note th
importance of anharmonic effects even at relatively l
temperatures for the larger densities. The Lindemann
tio is more sensitive to these effects than is the total
ergy. Our results for the Lindemann ratio do not sh
finite size dependence within our statistical errors.

The slope of the melting curve can also be determin
by using the Clausius-Clapeyron relation in conjuncti
with thermodynamic quantities found using PIMC. W
work in the r21

s -T plane, since the uniform rigid back
ground fixes the microscopic density, in contrast to
uncharged system, where pressure and temperature w
be specified. The transition between liquid and so
is determined by the equivalence of the free ener
Fsr21

s , kBTd, in the two phases. The virial relation fo
f

FIG. 4. The Lindemann ratio of the OCP crystal as a funct
of G for selected densities, compared with the harmonic cry
model of Chabrier [16] (dashed line). The classical value
the Lindemann ratio at melting is0.155.
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the OCP,pV ­ sE 1 Kdy3, wherep is the pressure an
K the kinetic energy, implies that the transition line (w
Bose, Fermi, or Boltzmann statistics) obeys the differ
tial equation

ds2yrsd
dskBT d

­ G
dEN

dKN 1 dEN
, (5)

where dEN ­ ExyN 2 ElyN and dKN ­ KxyN 2

KlyN are the changes in total and kinetic energy betw
the crystal (Ex , Kx) and liquid (El , Kl) phases. In the
classical regime,dKN ø dEN , so the slope of the melt
ing curve (in these units) isG ­ 175. The first quantum
correction to the slope is given by [13]

ds2yrsd
dskBT d

. G

∑
1 1 O

√
G3

r2
s

!
1 · · ·

∏
. (6)

Eventually, a turning point is reached (in our PIM
data nearrs ­ 160), whendEN . 2dKN , and the slope
becomes singular. Near the top of the phase diagr
dEN ! 0, and the slope is very small. Table I lis
our PIMC determined slope atrs ­ 1200, 200, and160
predicted by the above relation, as well as the ene
differencesdKN anddEN . We note thatdEN # 0 over
the complete phase diagram, whiledKN is positive and
increasing as one follows the phase boundary from
classical to the quantum regime. This behavior indica
that the slope of the melting curve is negative (but v
small) near the quantumT ­ 0 melting point.

The phase diagram illustrated in Fig. 1 summarizes
description of the liquid-crystal boundary in the OC
Included in Fig. 1 are the size independent transit
points from our OCP data, along with Chabrier’s p
diction. Our analysis finds the crystal phase more sta
than that of Chabrier. From this phase diagram, we s
maximum melting temperature,T p ­ 6.0s5d 3 1025 Ry,
at a density ofrp

s ­ 180s20d. For the electron gas
this corresponds toTp ­ 9.5s8d K at np ­ 2.8s9d 3

1017 e2ycm3, while for a carbon plasma,Tp ­ 2.7s2d 3

108 K at rp ­ 2.7s9d 3 1012 gycm3.
Quantum statistics, neglected here, will play a r

in the region below the dash-dotted line in Fig.
indicating the onset of superfluidity for4He [given
by lT $

p
1.6 r21y3, or rs # s3y4pd1y3s3.2ykBT d1y2],

where particle statistics become important for a sys
of interacting bosons. For bosons there will be a tri
point (crystal, normal fluid, and superfluid) located ne
the maximum melting temperature.
e,
er

.

TABLE I. Parameters in the slope of the OCP melting curv
as determined by the Clausius-Clapeyron equation. At z
temperature [12],dEN ­ 0, anddKN ­ 1.3s3d 3 1024.

rs Gm dKN 3 105 dEN 3 105 ds2yrsdydskBTd

1200 175 0.003(49) 22.0(4) 175(4)
200 185 1.12(14) 22.38(22) 423(38)
160 240 1.84(52) 22.63(57) 800(800)
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We have presented a PIMC study of the OCP freez
transition at finite temperature. We have found that
solid-liquid boundary is quite close to the classical line
an extended portion of the phase diagram, far further t
expected based upon a consideration of the genera
Lindemann melting criterion. The Lindemann criterio
fails due to the large anharmonic effects present in
crystal phase. Although the quantum effects are relativ
large near the transition, quantum contributions to the
phases are nearly equal, making the classical predic
of the melting point valid for a large portion of the OC
phase diagram.
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